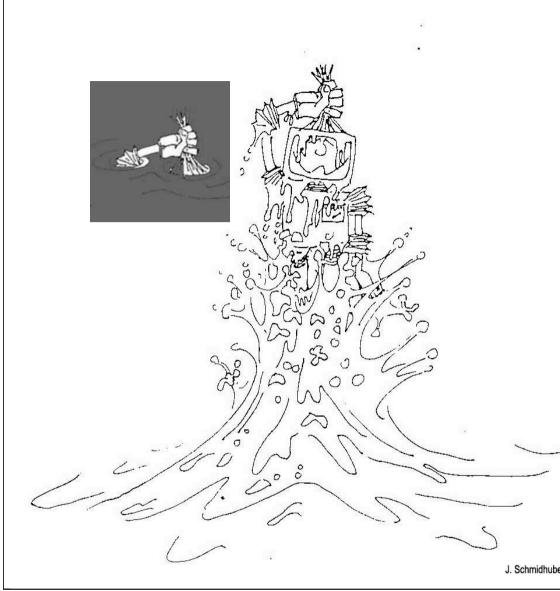


Learning how to Learn Learning Algorithms: Recursive Self-Improvement

Jürgen Schmidhuber The Swiss AI Lab IDSIA Univ. Lugano & SUPSI http://www.idsia.ch/~juergen

NNAISENSE

Jürgen Schmidhuber You_again Shmidhoobuh

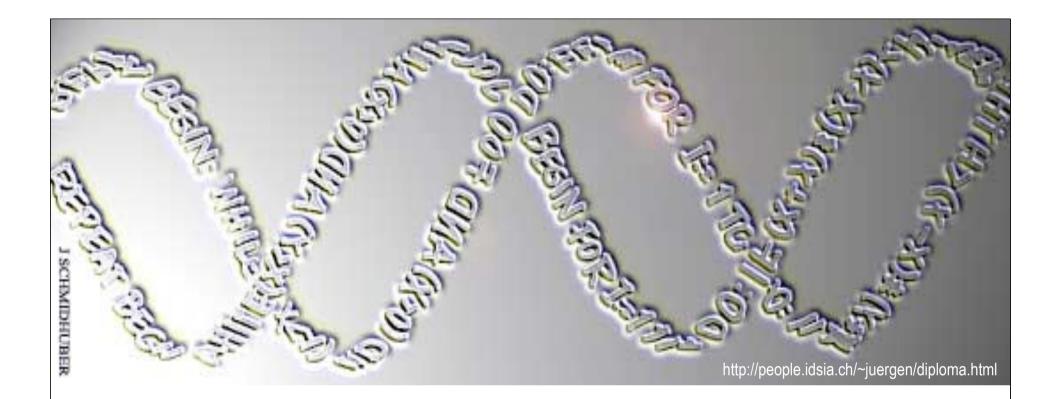

"True" Learning to Learn (L2L) is not just transfer learning! Even a simple feedforward NN can transfer-learn to learn new images faster through pre-training on other image sets

True L2L is not just about learning to adjust a few hyperparameters such as mutation rates in evolution strategies (e.g., Rechenberg & Schwefel, 1960s)

Radical L2L is about encoding the initial learning algorithm in a universal language (e.g., on an RNN), with primitives that allow to modify the code itself in arbitrary computable fashion

Then surround this self-referential, selfmodifying code by a recursive framework that ensures that only "useful" selfmodifications are executed or survive (RSI)

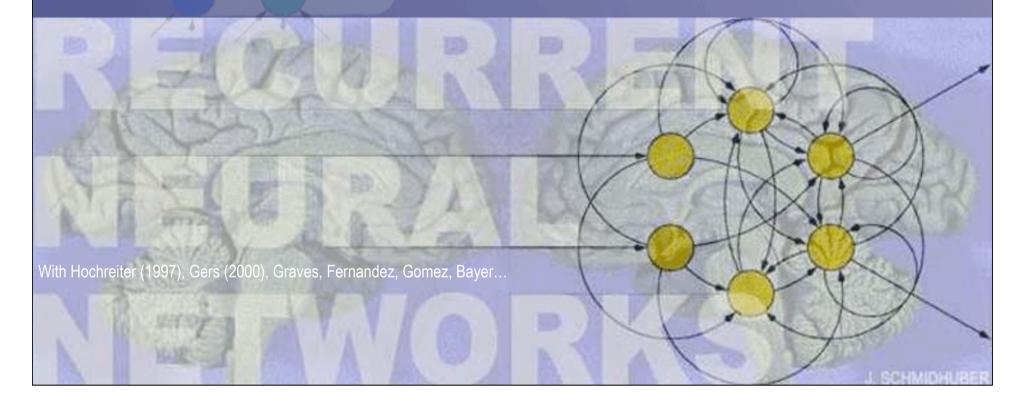
J. Good (1965): informal remarks on an intelligence explosion through recursive self-improvement (RSI) for super-intelligences My concrete algorithms for RSI: 1987, 93, 94, 2003

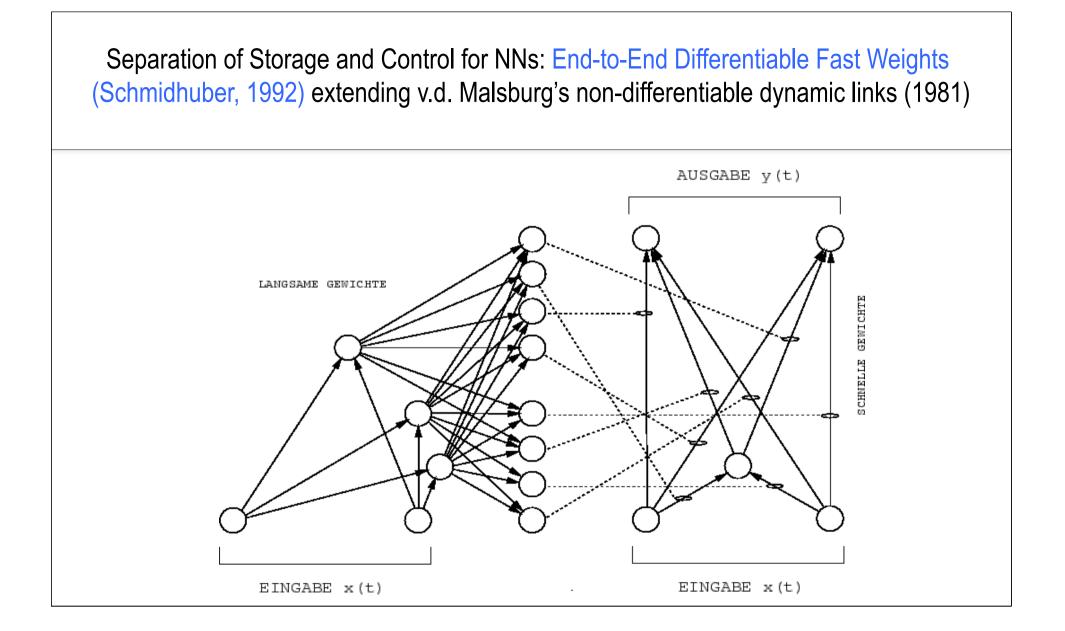


My diploma thesis (1987): concrete design of recursively self-improving AI

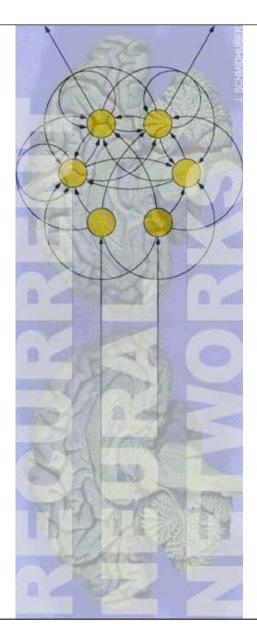
http://people.idsia.ch/~juergen/metalearner.html

R-learn & improve learning algorithm itself, and also the meta-learning algorithm, etc...

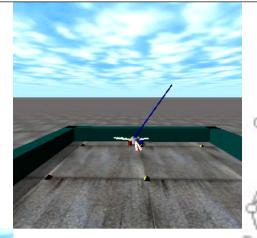

J. Schmidhuber, 1987



Genetic Programming recursively applied to itself, to obtain Meta-GP and Meta-Meta-GP etc: J. Schmidhuber (1987). Evolutionary principles in self-referential learning. On learning how to learn: The meta-meta-... hook. Diploma thesis, TU Munich http://www.idsia.ch/~juergen/rnn.html

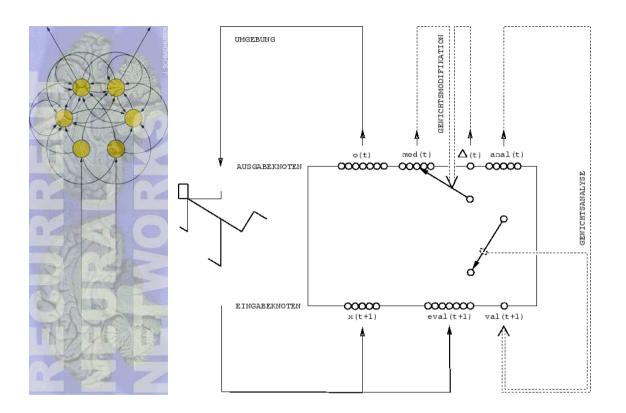

LONG SHORT-TERM MEMORY

1997-2009. Since 2015 on your phone! Google, Microsoft, IBM, Apple, all use LSTM now


1993: More elegant Hebb-inspired addressing to go from (#hidden) to (#hidden)² temporal variables: gradientbased RNN learns to control internal end-to-end differentiable spotlights of attention for fast differentiable memory rewrites again fast weights

Schmidhuber, ICANN 1993:

Reducing the ratio between learning complexity and number of timevarying variables in fully recurrent nets.


Similar to NIPS 2016 paper by Ba, Hinton, Mnih, Leibo, Ionesco 2005: Reinforcement-Learning or Evolving RNNs with Fast Weights

Robot learns to balance 1 or 2 poles through 3D joint

> Gomez & Schmidhuber: Co-evolving recurrent neurons learn deep memory POMDPs. GECCO 2005

http://www.idsia.ch/~juergen/evolution.html

1993: Gradientbased meta-RNNs that can learn to run their own weight change algorithm: J. Schmidhuber. A self-referential weight matrix. ICANN 1993

This was before LSTM. In 2001, however, Sepp Hochreiter taught a meta-LSTM to learn a learning algorithm for quadratic functions that was faster than backprop

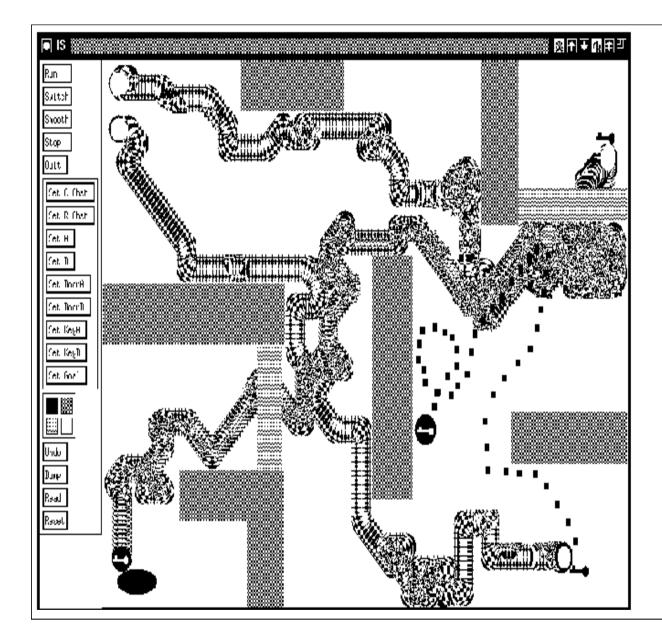
Success-story algorithm (SSA) for self-modifying code (since 1994)

R(t): Reward until time t. Stack of past check points $v_1v_2v_3 \dots$ with self-mods in between. SSA undoes selfmods after v_i that are not followed by long-term reward acceleration up until t (now):

E.g., Schmidhuber, Zhao, Wiering: MLJ 28:105-130, 1997

 $R(t)/t < [R(t)-R(v_1)] / (t-v1) < [R(t)-R(v_2)] / (t-v_2) < ...$

						INTERN	IAL ST.	ATE						
ADDRESSES	0	1	2	3	4	5	6	7	8	9	10	11	12	
CONTENTS	5321	-44	810	-2	-3322	5	7	3	0	- 189	2	237	6	
		ם	NSTRU		POINTH PAR	ER AMETE	RS							
0 = ADD(a1, a2, a3)	0.001	0.0014	0.9	0.24	0.001	0.0014	0.9	0.9	131			PERCE	TIONS A	
l = MUL(al, a2, a3)	0.001	0.0014	0.04	0.01	0.001	0.0014	0.04	0.04						
2 = SUB(a1, a2, a3)	0.99	0.0014	0.01	0.01	0.99	0.0014	0.01	0.01						
3 = JMPLEQ(a1, a2, a3)	0.001	0.99	0.01	0.01	0.001	0.99	0.01	0.01	82. 					
4 = MOVEAGENT(a1, a2)	0.001	0.0014	0.01	0.7	0.001	0.0014	0.01	0.01	82		~	2 E		
5 = InvokeSSA()	0.004	0.0014	0.01	0.01	0.004	0.0014	0.01	0.01			ア	T	EXTERNAL	
6 = INCPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01	121	ENVIRONMEN				
7= DECPROB(a1, a2)	0.001	001 0.0014 0.01 0.01 0.001 0.0014 0.01 0.01												

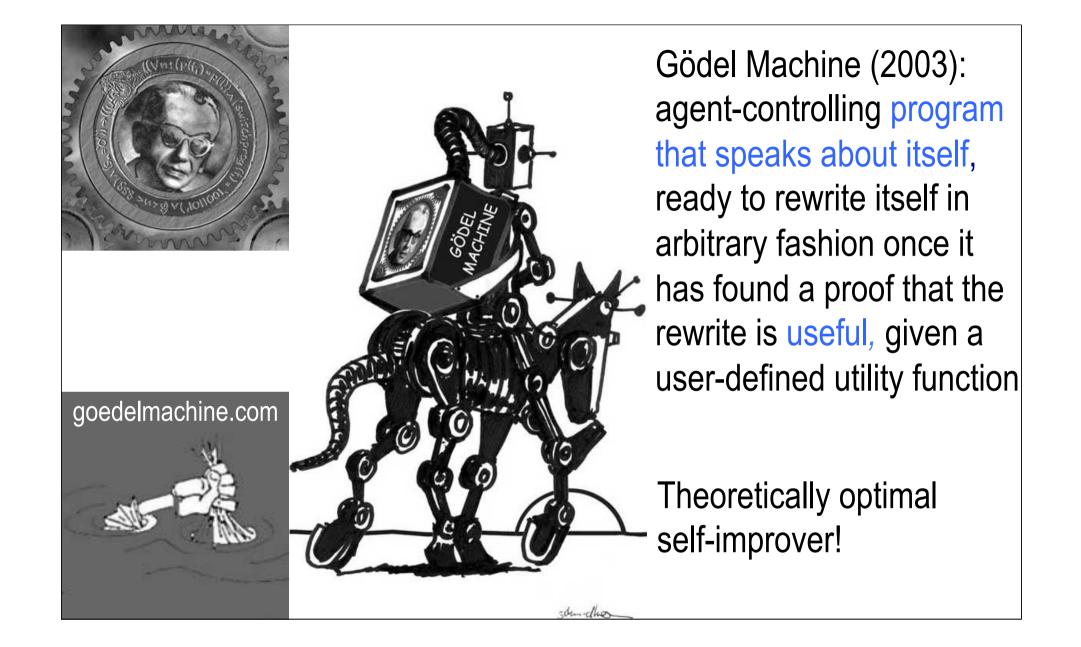

						INTERN	IAL ST.	ATE								
ADDRESSES	0	1	2	3	4	5	6	7	8	9	10	11	12			
CONTENTS	5321	-44	810	-2	-3322	5	7	3	0	- 189	2	237	6			
		I	NSTRU		POINTH PAR	ir Amete	RS			·						
0 = ADD(a1, a2, a3)	0.001	0.0014	0.9	0.24	0.001	0.0014	0.9	0.9	121			PERCE	PTIONS A			
l = MUL(a1, a2, a3)	0.001	0.0014	0.04	0.01	0.001	0.0014	0.04	0.04	121							
2 = SUB(a1, a2, a3)	0.99	0.0014	0.01	0.01	0.99	0.0014	0.01	0.01	12			i.				
3 = JMPLEQ(a1, a2, a3)	0.001	0.99	0.01	0.01	0.001	0.99	0.01	0.01	12							
4 = MOVEAGENT(a1, a2)	0.001	0.0014	0.01	0.7	0.001	0.0014	0.01	0.01	52.		~	24				
5 = InvokeSSA()	0.004	0.0014	0.01	0.01	0.004	0.0014	0.01	0.01			ア	EXTERNAL ENVIRONMENT				
6 = INCPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01	131	ENVIRONMENT						
7= DECPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01	88). 							

						INTERN	IAL ST.	ATE						
ADDRESSES	0	1	2	3	4	5	6	7	8	9	10	11	12	
CONTENTS	5321	-44	810	-2	-3322	5	7	3	0	- 189	2	237	6	
		1	NSTRU		POINTI PAR	ER AMETE	RS							
0 = ADD(a1, a2, a3)	0.001	0.0014	0.9	0.24	0.001	0.0014	0.9	0.9	881			PERCEI	PTIONS A	
l = MUL(a1, a2, a3)	0.001	0.0014	0.04	0.01	0.001	0.0014	0.04	0.04	181					
2 = SUB(a1, a2, a3)	0.99	0.0014	0.01	0.01	0.99	0.0014	0.01	0.01	331			4		
3 = JMPLEQ(a1, a2, a3)	0.001	0.99	0.01	0.01	0.001	0.99	0.01	0.01	12					
4 = MOVEAGENT(a1, a2)	0.001	0.0014	0.01	0.7	0.001	0.0014	0.01	0.01	131		~	24		
5 = InvokeSSA()	0.004	0.0014	0.01	0.01	0.004	0.0014	0.01	0.01			マ		EXTERNAL	
6 = INCPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01	12	ENVIRONME				
7= DECPROB(a1, a2)	0.001	0.001 0.0014		0.01	0.001	0.0014	0.01	0.01	861					

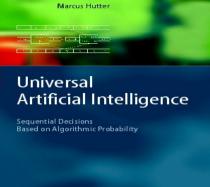
	8					INTERN	IAL ST.	ATE									
ADDRESSES	0	1	2	3	4	5	6	7	8	9	10	11	12				
CONTENTS	5321	-44	810	-2	-3322	5	7	3	0	- 189	2	237	6				
	2	I	NSTRU	CTION	POINT	ER.				•							
				V	PAR	AMETE	RS	10					820				
0 = ADD(a1, a2, a3)	0.001	0.0014	0.9	0.24	0.001	0.0014	0.9	0.9				PERCEI	PTIONS A				
l = MUL(a1, a2, a3)	0.001	0.0014	0.04	0.01	0.001	0.0014	0.04	0.04	-								
2 = SUB(a1, a2, a3)	0.99	0.0014	0.01	0.01	0.99	0.0014	0.01	0.01				2					
3 = JMPLEQ(a1, a2, a3)	0.001	0.99	0.01	0.01	0.001	0.99	0.01	0.01									
4 = MOVEAGENT(a1, a2)	0.001	0.0014	0.01	0.7	0.001	0.0014	0.01	0.01	80		_	EXTERNAL ENVIRONMENT					
5 = InvokeSSA()	0.004	0.0014	0.01	0.01	0.004	0.0014	0.01	0.01									
6 = INCPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01									
7 = DECPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01	80								
	VARIAF	3LE PRO	BABI	יוח אידו	יו ופו איזי	TIONS					2	6					

						INTERN	IAL ST.	ATE								
ADDRESSES	0	1	2	3	4	5	6	7	8	9	10	11	12			
CONTENTS	5321	-44	810	-2	-3322	5	7	3	0	- 189	2	237	6			
						IN	STRUC	TION P		ir Ameter						
0 = ADD(a1, a2, a3)	0.001	0.0014	0.9	0.24	0.001	0.0014	0.9	0.9				PERCEI	TIONS A			
l = MUL(a1, a2, a3)	0.001	0.0014	0.04	0.01	0.001	0.0014	0.04	0.04								
2 = SUB(a1, a2, a3)	0.99	0.0014	0.01	0.01	0.99	0.0014	0.01	0.01								
3 = JMPLEQ(a1, a2, a3)	0.001	0.99	0.01	0.01	0.001	0.99	0.01	0.01								
4 = MOVEAGENT(a1, a2)	0.001	0.0014	0.01	0.7	0.001	0.0014	0.01	0.01				24				
5 = InvokeSSA()	0.004	0.0014	0.01	0.01	0.004	0.0014	0.01	0.01			72	Ĩ	EXTERNAL ENVIRONMENT			
6 = INCPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01				ENVIRUNMENT				
7=DECPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01								

	2					INTERN	IAL ST.	ATE										
ADDRESSES	0	1	2	3	4	5	6	7	8	9	10	11	12					
CONTENTS	5321	-44	810	-2	-3322	5	7	3	0	- 189	2	237	6					
		2	2.	2	2	4	ISTRU		POINT	ER		PERCE	PTIONS					
0 = ADD(a1, a2, a3)	0.001	0.0014	0.9	0.24	0.001	0.0014	0.9	0.9				FERCE	A A					
l = MUL(a1, a2, a3)	0.001	0.0014	0.04	0.01	0.001	0.0014	0.04	0.04										
2 = SUB(a1, a2, a3)	0.99	0.0014	0.01	0.01	0.99	0.0014	0.01	0.01	131									
3 = JMPLEQ(a1, a2, a3)	0.001	0.99	0.01	0.01	0.001	0.99	0.01	0.01	131			2						
4 = MOVEAGENT(a1, a2)	0.001	0.0014	0.01	0.7	0.001	0.0014	0.01	0.01	82		~	25						
5 = InvokeSSA()	0.004	0.0014	0.01	der	0.004	0.0014	0.01	0.01			72	EXTERNAL ENVIRONMENT						
6 = INCPROB(a1, a2)	0.001	0.0014	0.01	0.11	0.001	0.0014	0.01	0.01	88									
7= DECPROB(a1, a2)	0.001	0.0014	0.01 0.01 0.001 0.0014 0.01 0.01															
	VARIAE	BLEPRO				IFICA TIONS	ATIC)N			2	2						



1997: Lifelong meta-learning with selfmodifying policies and success-story algorithm: 2 agents, 2 doors, 2 keys. 1st southeast wins 5, the other 3. Through recursive self-modifications only: from 300,000 steps per trial down to 5,000.


Kurt Gödel, father of theoretical computer science, exhibited the limits of math and computation (1931) by creating a formula that speaks about itself, claiming to be unprovable by a computational theorem prover: either formula is true but unprovable, or math is flawed in an algorithmic sense

Universal problem solver Gödel machine uses self reference trick in a new way

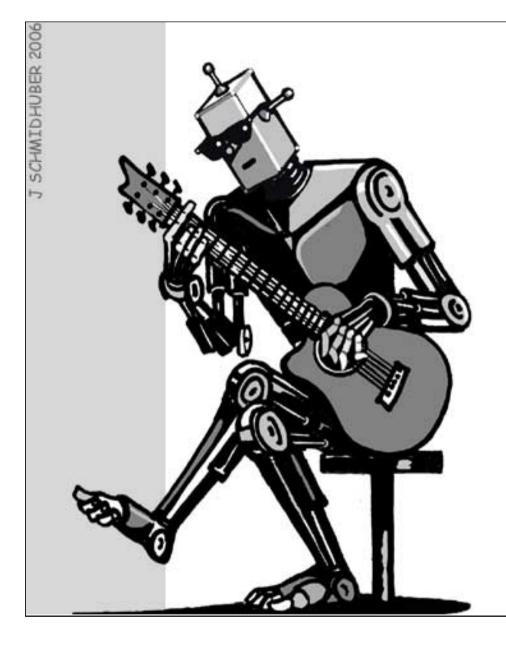
Initialize Gödel Machine by Marcus Hutter's asymptotically fastest method for all welldefined problems

D Springer

Given f:X \rightarrow Y and x \in X, search proofs to find program q that provably computes f(z) for all z \in X within time bound t_q(z); spend most time on f(x)-computing q with best current bound

n³+10¹⁰⁰⁰⁼n³+O(1)

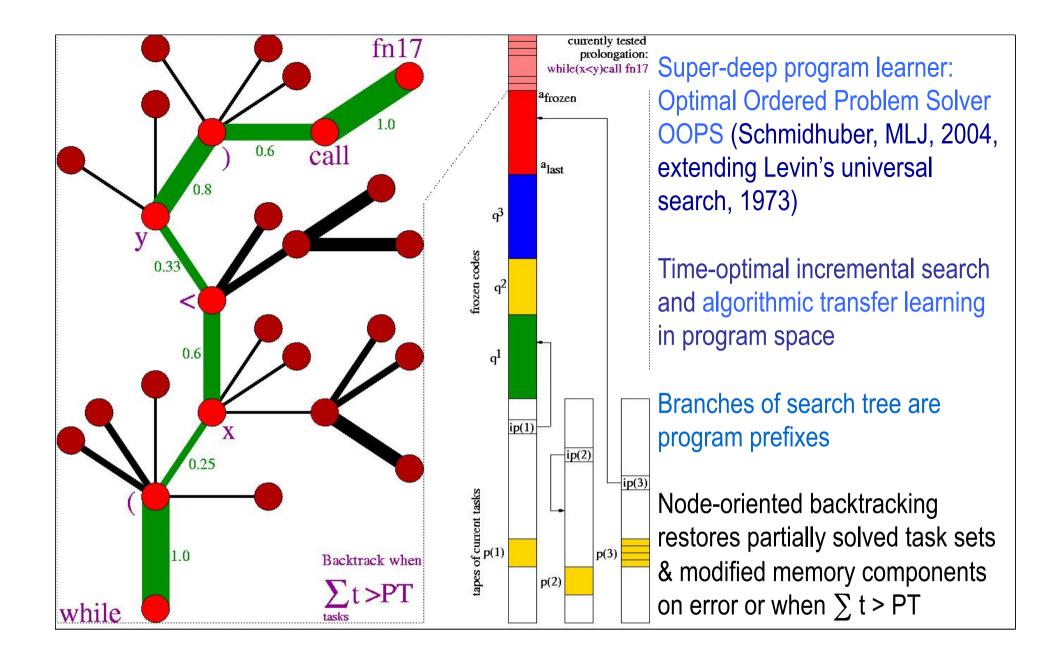
As fast as fastest f-computer, save for factor 1+ε and f-specific const. independent of x! PowerPlay not only solves but also continually invents problems at the borderline between what's known and unknown - training an increasingly general problem solver by continually searching for the simplest still unsolvable problem

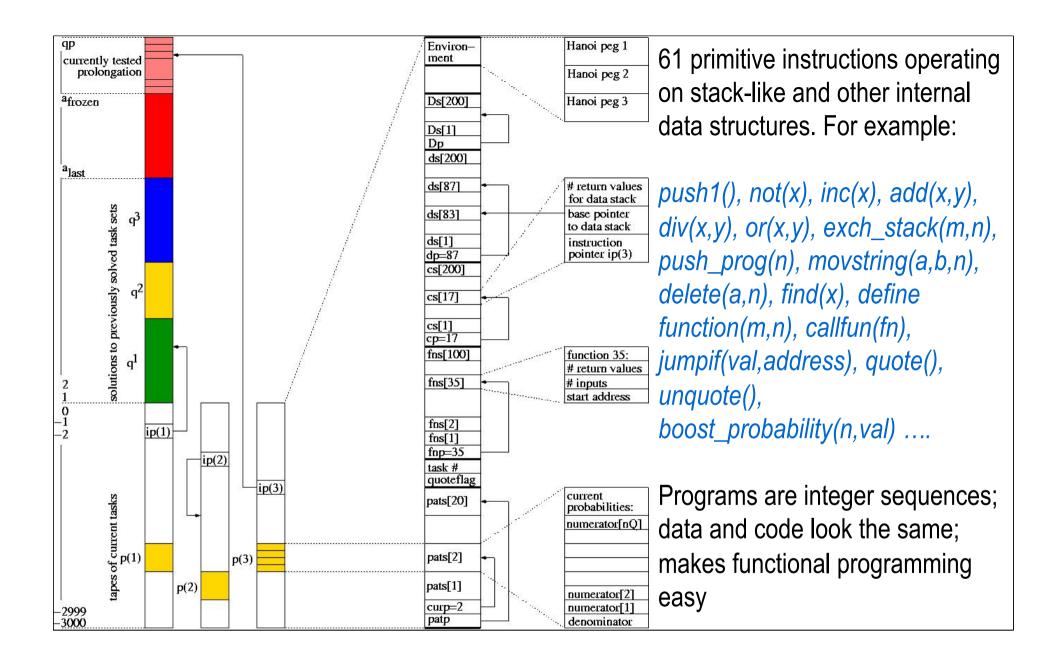

- 1. J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: The meta-meta-... hook. Diploma thesis, TUM, 1987. (First concrete RSI.)
- 2. J. Schmidhuber. A self-referential weight matrix. ICANN 1993
- 3. J. Schmidhuber. On learning how to learn learning strategies. TR FKI-198-94, 1994.
- 4. J. Schmidhuber and J. Zhao and M. Wiering. Simple principles of metalearning._TR IDSIA-69-96, 1996. (Based on 3.)
- 5. J. Schmidhuber, J. Zhao, N. Schraudolph. Reinforcement learning with self-modifying policies. In *Learning to learn*, Kluwer, pages 293-309, 1997. (Based on 3.)
- 6. J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning 28:105-130, 1997. (Based on 3.)
- 7. J. Schmidhuber. Gödel machines: Fully Self-Referential Optimal Universal Self-Improvers. In *Artificial General Intelligence*, p. 119-226, 2006. (Based on TR of 2003.)
- 8. T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.
- 9. More under http://people.idsia.ch/~juergen/metalearner.html

neural networks-based artificial intelligence

Ny nnaisense

THE DAWN OF AI

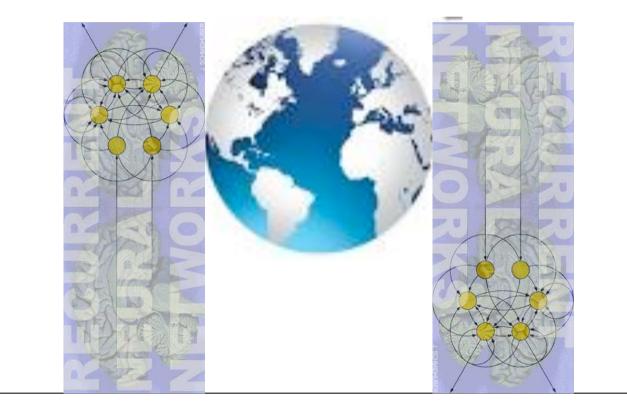




Learning how to Learn Learning Algorithms: Extra Slides

Jürgen Schmidhuber The Swiss AI Lab IDSIA Univ. Lugano & SUPSI http://www.idsia.ch/~juergen

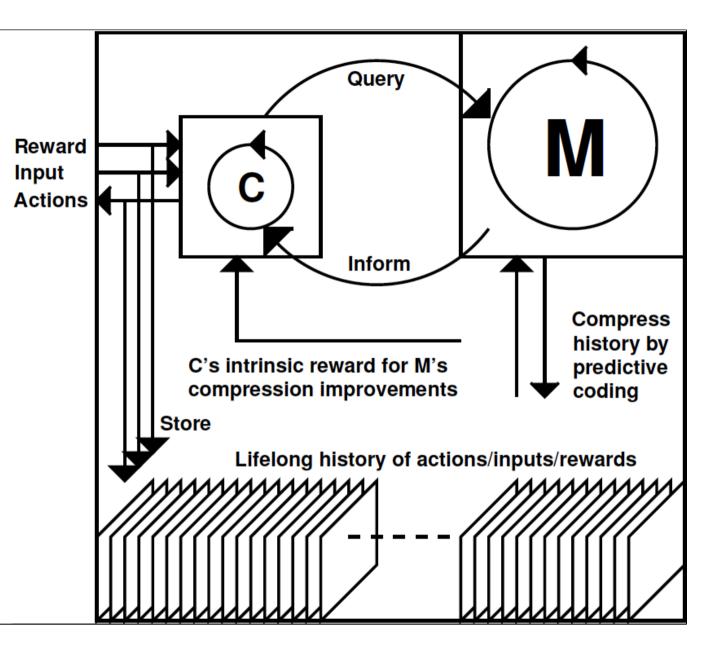
NNAISENSE


Towers of Hanoi: incremental solutions

- +1ms, n=1: (*movdisk*)
- 1 day, n=1,2: (c4 c3 cpn c4 by2 c3 by2 exec)
- 3 days, n=1,2,3: (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)
- 4 days: n=4, n=5, ..., n=30: by same double-recursive program
- Profits from 30 earlier context-free language tasks (1ⁿ2ⁿ): transfer learning
- 93,994,568,009 prefixes tested
- 345,450,362,522 instructions
- 678,634,413,962 time steps
- longest single run: 33 billion steps (5% of total time)! Much deeper than recent memory-based "deep learners" ...
- top stack size for restoring storage: < 20,000

What the found Towers of Hanoi solver does:

- (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)
- Prefix increases P of double-recursive procedure: Hanoi(Source,Aux,Dest,n): IF n=0 exit; ELSE BEGIN Hanoi(Source,Dest,Aux,n-1); move top disk from Aux to Dest; Hanoi(Aux,Source,Dest,n-1); END
- Prefix boosts instructions of previoulsy frozen program, which happens to be a previously learned solver of a context-free language (1ⁿ2ⁿ). This rewrites search procedure itself: Benefits of metalearning!
- Prefix probability 0.003; suffix probability 3*10⁻⁸; total probability 9*10⁻¹¹
- Suffix probability without prefix execution: 4*10⁻¹⁴
- That is, Hanoi does profit from 1ⁿ2ⁿ experience and incremental learning (OOPS excels at algorithmic transfer learning): speedup factor 1000


J.S.: IJCNN 1990, NIPS 1991: Reinforcement Learning with Recurrent Controller & Recurrent World Model

Learning and planning with recurrent networks

RNNAlssance 2014-2015 On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning RNNbased Controllers (RNNAIs) and **Recurrent Neural** World Models

http://arxiv.org/abs/1511.09249

