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Abstract

We describe the approach that won the final phase of the German traffic sign
recognition benchmark. Our method is the only one that achieved a better-
than-human recognition rate of 99.46%. We use a fast, fully parameterizable
GPU implementation of a Deep Neural Network (DNN) that does not re-
quire careful design of pre-wired feature extractors, which are rather learned
in a supervised way. Combining various DNNs trained on differently prepro-
cessed data into a Multi-Column DNN (MCDNN) further boosts recognition
performance, making the system insensitive also to variations in contrast and
illumination.

Keywords: deep neural networks, image classification, traffic signs, image
preprocessing

1. Introduction

The human visual system efficiently recognizes and localizes objects within
cluttered scenes. For artificial systems, however, this is still difficult, due to
viewpoint-dependent object variability, and the high in-class variability of
many object types. Deep hierarchical neural models roughly mimic the na-
ture of mammalian visual cortex, and are among the most promising archi-
tectures for such tasks. The most successful hierarchical object recognition
systems all extract localized features from input images, convolving image
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patches with filters. Filter responses are then repeatedly pooled and re-
filtered, resulting in a deep feed-forward network architecture whose output
feature vectors are eventually classified. One of the first hierarchical neural
systems was the Neocognitron by Fukushima (1980), which inspired many of
the more recent variants.

Unsupervised learning methods applied to patches of natural images tend
to produce localized filters that resemble off-center-on-surround filters, orientation-
sensitive bar detectors, Gabor filters (Schmidhuber et al., 1996; Olshausen &
Field, 1997; Hoyer & Hyvärinen, 2000). These findings in conjunction with
experimental studies of the visual cortex justify the use of such filters in the
so-called standard model for object recognition (Riesenhuber & Poggio, 1999;
Serre et al., 2005; Mutch & Lowe, 2008), whose filters are fixed, in contrast to
those of Convolutional Neural Networks (CNNs) (LeCun et al., 1998; Behnke,
2003; Simard et al., 2003), whose weights (filters) are randomly initialized
and learned in a supervised way using back-propagation (BP). A DNN, the
basic building block of our proposed MCDNN, is a hierarchical deep neural
network, alternating convolutional with max-pooling layers (Riesenhuber &
Poggio, 1999; Serre et al., 2005; Scherer et al., 2010). A single DNN of our
team won the offline Chinese character recognition competition (Liu et al.,
2011), a classification problem with 3755 classes. Ciresan et al. (2011a) re-
port state-of-the-art results on isolated handwritten character recognition
using a MCDNN with 7 columns. Meier et al. (2011) show that there is no
need for optimizing the combination of different DNNs: simply averaging
their outputs generalizes just as well or even better on the unseen test set.

Despite the hardware progress of the past decades, computational speed
is still a limiting factor for deep architectures characterized by many building
blocks. For our experiments we therefore rely on a fast implementation on
Graphics Processing Units (GPUs) (Ciresan et al., 2011b). Our implemen-
tation is flexible and fully online (i.e., weight updates after each image). It
allows for training large DNN within days instead of months, thus making
MCDNN feasible.

Recognizing traffic signs is essential for the automotive industry’s efforts
in the field of driver assistance, and for many other traffic-related applica-
tions. The German traffic sign recognition benchmark (GTSRB) (Stallkamp
et al., 2011), a 43 class classification challenge, consisted of two phases: an
online preliminary evaluation followed by an on-site final competition at the
International Joint Conference on Neural Networks in 2011. We won the
preliminary phase (Ciresan et al., 2011c) using a committee of (Multi-Layer
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Perceptrons) MLP trained on provided features, and a DNN trained on raw
pixel intensities. Here we present the method that won the on-site competi-
tion using a MCDNN, instead of a committee of MLP and DNN. Our new
approach does not use handcrafted features anymore, relying only on the raw
pixel images.

We first give a brief description of our MCDNN architecture, then describe
the creation of the training set and the data preprocessing. We conclude by
summarizing the results obtained during the on-site competition.

2. Multi-Column Deep Neural Networks

As a basic building block we use a deep hierarchical neural network that
alternates convolutional with max-pooling layers, reminiscent of Wiesel &
Hubel (1959) and Hubel & Wiesel (1962) classic work on the cat’s primary
visual cortex, which identified orientation-selective simple cells with overlap-
ping local receptive fields and complex cells performing down-sampling-like
operations. Such architectures vary in how simple and complex cells are re-
alized and how they are initialized/trained. Here we give a brief description
of our architecture; a detailed description of the GPU implementation can
be found in Ciresan et al. (2011b).

2.1. DNN

A DNN (Fig. 1a) consists of a succession of convolutional and max-
pooling layers, and each layer only receives connections from its previous
layer. It is a general, hierarchical feature extractor that maps raw pixel in-
tensities of the input image into a feature vector to be classified by several,
usually 2 or 3, fully connected layers. All adjustable parameters are jointly
optimized through minimization of the misclassification error over the train-
ing set.

2.1.1. Convolutional layer

Each convolutional layer performs a 2D convolution of its Mn−1 input
maps with a filter of size Kn

x × Kn
y . The resulting activations of the Mn

output maps are given by the sum of the Mn−1 convolutional responses which
are passed through a nonlinear activation function:

Yn
j = f(

Mn−1∑
i=1

Yn−1
i ∗Wn

ij + bnj ), (1)
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Figure 1: (a) DNN architecture. (b) Training a DNN: The dataset is preprocessed (P)
before training starts; during training all original or preprocessed images are randomly dis-
torted before each epoch (D). (c) MCDNN architecture: The input image is preprocessed
by n different preprocessors P0 − Pn−1 and an arbitrary number of columns is trained
on each preprocessed input. The final predictions are obtained by averaging individual
predictions of each DNN.
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where n indicates the layer, Y is a map of size Mx ×My, and Wij is a
filter of size Kx ×Ky connecting input map i with output map j, bnj is the
bias of output map j, and ∗ is the valid 2D convolution. That is, for an input
map Yn−1 of size Mn−1

x ×Mn−1
y and a filter W of size Kn

x ×Kn
y the output

map Yn is of size Mn
x = Mn−1

x −Kn
x + 1, Mn

y = Mn−1
y −Kn

y + 1. Note that
the summation in equation 1 runs over all Mn−1 input maps.

2.1.2. Max-pooling layer

The biggest architectural difference between our DNN and the CNN of
LeCun et al. (1998) is the use of max-pooling layers (Riesenhuber & Poggio,
1999; Serre et al., 2005; Scherer et al., 2010) instead of sub-sampling lay-
ers. The output of a max-pooling layer is given by the maximum activation
over non-overlapping rectangular regions of size Kx ×Ky. Max-pooling cre-
ates slight position invariance over larger local regions and down-samples the
input image by a factor of Kx and Ky along each direction.

2.1.3. Classification layer

Kernel sizes of convolutional filters and max-pooling rectangles are chosen
such that either the output maps of the last convolutional layer are down-
sampled to 1 pixel per map, or a fully connected layer combines the outputs of
the last convolutional layer into a 1D feature vector. The last layer is always
a fully connected layer with one output unit per class in the recognition task.
We use a softmax activation function for the last layer such that each neuron’s
output activation can be interpreted as the probability of a particular input
image belonging to that class.

2.1.4. Training a single DNN

The training procedure of a single DNN is illustrated in Figure 1b. A
given dataset is preprocessed (P) before training starts, and then continually
distorted (D) during training. Note that the preprocessing (details in Section
3.1) is not stochastic and is done for the whole dataset prior to training.
Distortions on the other hand are stochastic and applied to each preprocessed
image during training, using random but bounded values for translation,
rotation and scaling. These values are drawn from a uniform distribution in
a specified range, i.e. ±10% of the image size for translation, 0.9 − 1.1 for
scaling and ±5◦ for rotation. The final, fixed sized image is obtained using
bilinear interpolation of the distorted input image. These distortions allow
us to train DNN with many free parameters without overfitting and greatly
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improve generalization performance (i.e. the error rate on the first phase of
GTSRB decreases from 2.83% to 1.66% (Ciresan et al., 2011c)). All DNN
are trained using on-line gradient descent with an annealed learning rate.

2.1.5. Forming the MCDNN

Finally, we form an MCDNN by averaging the output activations of sev-
eral DNN columns (Fig. 1c). For a given input pattern, the predictions of
all columns are averaged. Before training, the weights of all columns are ran-
domly initialized. Various columns can be trained on the same inputs, or on
inputs preprocessed in different ways. If the errors of P different models have
zero mean and are uncorrelated, the average error might be reduced by a fac-
tor of P simply by averaging the P models (Bishop, 2006). In practice, errors
of models trained on similar data tend to be highly correlated. To avoid this
problem, our MCDNN combines various DNN trained on differently normal-
ized data. A key question is whether to optimize the combination of outputs
of various models or not (Duin, 2002). Common problems during training
include: a) additional training data is required, and b) there is no guaran-
tee that the trained MCDNN generalize well to the unseen test data. For
handwritten digits it was shown (Meier et al., 2011), that simply averaging
the outputs of many DNN generalizes better on the test set than a linear
combination of all the DNN with weights optimized over a validation set
(Hashem & Schmeiser, 1995; Ueda, 2000). We therefore form the MCDNN
by democratically averaging the outputs of each DNN.

3. Experiments

We use a system with a Core i7-950 (3.33GHz), 24 GB DDR3, and four
graphics cards of type GTX 580. Images from the training set might be
translated, scaled and rotated, whereas only the undeformed, original or pre-
processed images are used for validation. Training ends once the validation
error is zero (usually after 15 to 30 epochs). Initial weights are drawn from
a uniform random distribution in the range [−0.05, 0.05]. Each neuron’s
activation function is a scaled hyperbolic tangent (e.g. LeCun et al., 1998).

3.1. Data preprocessing

The original color images contain one traffic sign each, with a border of
10% around the sign. They vary in size from 15 × 15 to 250 × 250 pixels
and are not necessarily square. The actual traffic sign is not always centered
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within the image; its bounding box is part of the annotations. The training
set consists of 39209 images; the test set of 12630 images. We crop all
images and process only the image within the bounding box. Our MCDNN
implementation requires all training images to be of equal size. After visual
inspection of the training image size distribution we resize all images to 48×48
pixels. As a consequence, the scaling factors along both axes are different for
traffic signs with rectangular bounding boxes. Resizing forces them to have
square bounding boxes.

High contrast variation among the images calls for contrast normalization.
We use the following standard normalizations:

• Image Adjustment (Imadjust) increases image contrast by map-
ping pixel intensities to new values such that 1% of the data is saturated
at low and high intensities (MATLAB, 2010).

• Histogram Equalization (Histeq) enhances contrast by transform-
ing pixel intensities such that the output image histogram is roughly
uniform (MATLAB, 2010).

• Adaptive Histogram Equalization (Adapthisteq) operates (un-
like Histeq) on tiles rather than the entire image: the image is tiled
in 8 nonoverlapping regions of 6x6 pixels each. Every tile’s contrast is
enhanced such that its histogram becomes roughly uniform (MATLAB,
2010).

• Contrast Normalization (Conorm) enhances edges through filter-
ing the input image by a difference of Gaussians. We use a filter size
of 5x5 pixels (Sermanet & LeCun, 2011).

Note that the above normalizations, except Conorm, are not performed
in RGB-color space but rather in a color space that has image intensity as
one of its components. For this purpose we transform the image from RGB-
to Lab-space, perform the normalization and then transform the normalized
image back to RGB-space. The effect of the four different normalizations is
illustrated in Figure 2, where histograms of pixel intensities together with
original and normalized images are shown.

3.2. Results

Initial experiments with varying network depths showed that deep nets
work better than shallow ones, consistent with our previous work on image
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Figure 2: Histogram of pixel intensities for image 11917 from the test set of the preliminary
phase of the competition, before and after normalization, as well as an additional selection
of 5 traffic signs before and after normalization.

classification (Ciresan et al., 2010, 2011b). We report results for a single
DNN with 9 layers (Table 1); the same architecture is shown in Figure 3
where the activations of all layers together with the filters of a trained DNN
are illustrated. Filters of the first layer are shown in color but consist in
principle of three independent filters, each connected to the red, green and
blue channel of the input image, respectively. The input layer has three
maps of 48x48 pixels for each color channel; the output layer consists of 43
neurons, one per class. The used architecture has approximately 1.5 million
free parameters, half of which are from the last two fully connected layers. It
takes 37 hours to train the MCDNN with 25 columns on four GPUs. After
training, 87 images per second can be processed on a single GPU.

We also train a DNN with bigger filters, 15x15 instead of 7x7, in the first
convolutional layer and plot them in Figure 4. They are randomly initialized,
and learn to respond to blobs, edges and other shapes in the input images.
This illustrates that even the first layer of a very deep (9 layers) DNN can
be successfully trained by simple gradient descent, although it is usually the
most problematic one (Hochreiter et al., 2001).

In total we trained 25 nets, 5 randomly initialized nets for each of the
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Table 1: 9 layer DNN architecture.

Layer Type # maps & neurons kernel
0 input 3 maps of 48x48 neurons
1 convolutional 100 maps of 42x42 neurons 7x7
2 max pooling 100 maps of 21x21 neurons 2x2
3 convolutional 150 maps of 18x18 neurons 4x4
4 max pooling 150 maps of 9x9 neurons 2x2
5 convolutional 250 maps of 6x6 neurons 4x4
6 max pooling 250 maps of 3x3 neurons 2x2
7 fully connected 300 neurons 1x1
8 fully connected 43 neurons 1x1

five datasets (i.e. original plus 4 different normalizations). The results are
summarized in Table 2. Each column shows the recognition rates of 5 ran-
domly initialized DNN. Mean and standard deviations are listed for each of
the five distinct datasets as well as for all 25 DNN. The MCDNN results
(but not the recognition rates) after averaging the outputs of all 25 DNN are
shown as well. All individual DNN are better than any other method that
entered the competition. Moreover, the resulting MCDNN with 25 DNN
columns achieves a recognition rate of 99.46% and a drastic improvement
with respect to any of the individual DNN.

Table 2: Recognition rates [%] of the MCDNN and its 25 DNN.

Trial Original Imadjust Histeq Adapthisteq Conorm

1 98.56 98.39 98.80 98.47 98.63
2 98.16 98.58 98.27 98.47 98.33
3 98.64 98.77 98.51 98.51 98.46
4 98.46 98.61 98.31 98.53 98.62
5 98.54 98.77 98.58 98.58 98.66

Avg. 98.47±0.18 98.62±0.15 98.48±0.22 98.50±0.04 98.54±0.14

Average DNN recognition rate: 98.52±0.15

MCDNN: 99.46

Figure 5 depicts all errors, plus ground truth and first and second pre-
dictions. Over 80% of the 68 errors are associated with correct second pre-
dictions. Erroneously predicted class probabilities tend to be very low—here
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Figure 3: DNN architecture from Table 1 together with all the activations and the learned
filters. Only a subset of all the maps and filters are shown, the output layer is not drawn
to scale and weights of fully connected layers are not displayed. For better contrast, the
filters are individually normalized.

the MCDNN is quite unsure about its classifications. In general, however, it
is very confident—most of its predicted class probabilities are close to one or
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Figure 4: The learned filters of the first convolutional layer of a DNN. The layer has 100
maps each connected to the three color channels of the input image for a total of 3x100
filters of size 15x15. Every displayed filter is the superposition of the 3 filters that are
connected to the red, green and blue channel of the input image respectively. For better
contrast, the filters are individually normalized.

zero. Rejecting only 1% percent of all images (confidence below 0.51) results
in an even lower error rate of 0.24%. To reach an error rate of 0.01% (a single
misclassification), only 6.67% of the images have to be rejected (confidence
below 0.94).

4. Conclusion

Our MCDNN won the German traffic sign recognition benchmark with
a recognition rate of 99.46%, better than the one of humans on this task
(98.84%), with three times fewer mistakes than the second best competing
algorithm (98.31%). Forming a MCDNN from 25 nets, 5 per preprocess-
ing method, increases the recognition rate from an average of 98.52% to
99.46%. None of the preprocessing methods are superior in terms of single
DNN recognition rates, but combining them into a MCDNN increases ro-
bustness to various types of noise and leads to more recognized traffic signs.

We plan to embed our method in a more general system that first localizes
traffic signs in realistic scenes and then classifies them.
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Figure 5: The 68 errors of the MCDNN, with correct label (left) and first (middle) and
second best (right) predictions. Best seen in color.
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