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Summary.  Most traditional artificial intelligence (Al) systems ofdlpast decades are ei-
ther very limited, or based on heuristics, or both. The nellermium, however, has brought
substantial progress in the field of theoretically optimad gractically feasible algorithms
for prediction, search, inductive inference based on O&ceamor, problem solving, decision
making, and reinforcement learning in environments of & yeEmeral type. Since inductive
inference is at the heart of all inductive sciences, somaefésults are relevant not only for
Al and computer science but also for physics, provoking raafitional predictions based on
Zuse’s thesis of the computer-generated universe. We fieghbreview the history of Al since
Godel's 1931 paper, then discuss recent post-2000 agmsdbat are currently transforming
general Al research into a formal science.

Key words:  Prediction, Search, Inductive Inference, Occam’s razpee8 Prior, Super-
Omega, Limit-Computability, Generalizations of KolmogerComplexity, Digital Physics,
Optimal Universal Problem Solvers, Gddel Machine, Art#ficCreativity & Curiosity, Al as
a Formal Science
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2.1 Introduction

Remarkably, there is a theoreticatiptimalway of making predictions based on observations,
rooted in the early work of Solomonoff and Kolmogorov [84].2ZBhe approach reflects basic
principles of Occam'’s razor: simple explanations of dataeferable to complex ones.

The theory of universal inductive inference quantifies vdieplicity really means. Given
certain very broad computability assumptions, it provitezhniques for making optimally
reliable statements about future events, given the past.

Once there is an optimal, formally describable way of préxcthe future, we should
be able to construct a machine that continually computessaadutes action sequences that
maximize expected or predicted reward, thus solving areangjoal of Al research.

For many decades, however, Al researchers have not paicbddttiention to the theory
of inductive inference. Why not? There is another reasoidbseghe fact that most of them
have traditionally ignored theoretical computer scierthe:theory has been perceived as be-
ing associated with excessive computational costs. Initaanost general statements refer to
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methods that are optimal (in a certain asymptotic senseinbamputable. So researchers in
machine learning and artificial intelligence have ofterrex to alternative methods that lack
a strong theoretical foundation but at least seem feasildertain limited contexts. For exam-
ple, since the early attempts at building a “General Prolsatver” [38, 47] much work has
been done to develop mostly heuristic machine learningrigitgos that solve new problems
based on experience with previous problems. Many pointdesatning by chunking, learning
by macros, hierarchical learning, learning by analogjc. can be found in Mitchell’s book
[36] and Kaelbling’s survey [26].

Recent years, however, have brought substantial prognese ffield ofcomputableand
feasiblevariants of optimal algorithms for prediction, search,uative inference, problem
solving, decision making, and reinforcement learning iry\general environments. Many of
the results were obtained at the Swiss Al Lab IDSIA.

Outline. Section 2.2 will first provide a brief overview of the past &ddes of Al re-
search. Sections 2.4, 2.5, 2.8 will then relate Occam’srramd the notion of simplicity to
the shortest algorithms for computing computable objewig, concentrate on recessymp-
totic optimality results for universal learning machines, eiaéyignoring issues of practical
feasibility. Section 2.6, however, will focus on the Speei@Rour recent non-traditional sim-
plicity measure which isot based on the shortest but on fhstestwvay of describing objects,
yielding computable optimal predictions and behaviorsti®a 2.7 will use this measure to
derive non-traditional predictions concerning the futofreur universe. Sections 2.9 and 2.10
will address quite pragmatic issues and “true” time-oplityagiven a problem and only so
much limited computation time, what is the best way of spegdion evaluating solution can-
didates? In particular, Section 2.10 will outline a biasiopl way of incrementally solving
each task in a sequence of tasks with quickly verifiable Bmigt given a probability distri-
bution (thebias) on programs computing solution candidates. Section 2.illlsummarize
the recent Godel machine [79], a self-referential, thiéceily optimal self-improver which
explicitly addresses th&rand Problem of Artificial Intelligence[65] by optimally dealing
with limited resources in general reinforcement learniaegisgs. Finally, Section 2.12 will
provide an overview of the simple but general formal thedrgreativity and curiosity and
intrinsic motivation (1990-2010). Systems based on théoth actively create or discover
novel patterns that allow for compression progress. Thiga@ixs many essential aspects of
intelligence including autonomous development, scieademusic, humor. Section 2.13 will
conclude by arguing that general Al is finally becoming a feahal science.

2.2 Highlights of Al History—From G odel (1931) to 2010

Godel and Lilienfeld. In 1931, just a few years after Julius Lilienfeld patenteg tfansistor,
Kurt Godel layed the foundations of theoretical computgersce (CS) with his work on uni-
versal formal languages and the limits of proof and compartdil9]. He constructed formal
systems allowing for self-referential statements th&taslout themselves, in particular, about
whether they can be derived from a set of given axioms thraugbmputational theorem
proving procedure. Godel went on to construct stateméatsctaim their own unprovability,
to demonstrate that traditional math is either flawed in gagerlgorithmic sense or contains
unprovable but true statements.

Godel’s incompleteness result is widely regarded as thet neonarkable achievement of
20th century mathematics, although some mathematicigng &alogic, not math, and oth-
ers call it the fundamental result of theoretical computéersce, a discipline that did not yet
officially exist back then but was effectively created trgbuGodel’'s work. It had enormous
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impact not only on computer science but also on philosopldyather fields. In particular,
since humans can “see” the truth of Godel’'s unprovablestahts, some researchers mistak-
enly thought that his results show that machines and Adiflaitelligences (Als) will always
be inferior to humans. Given the tremendous impact of Gédesults on Al theory, it does
make sense to date Al's beginnings back to his 1931 puldicd3, 72].

Zuse and Turing. In 1936 Alan Turing [91] introduced th&uring machineto reformu-
late Godel’s results and Alonzo Church’s extensions thfefEMs are often more convenient
than Godel’s integer-based formal systems, and latembe@acentral tool of CS theory. Si-
multaneously Konrad Zuse built the first working progranmcolled computers (1935-1941),
using the binary arithmetic and thits of Gottfried Wilhelm von Leibniz (1701) instead of
the more cumbersome decimal system used by Charles Bablvhgepioneered the con-
cept of program-controlled computers in the 1840s, and tgebuild one, although without
success. By 1941, all the main ingredients of ‘modern’ campacience were in place, a
decade after Godel's paper, a century after Babbage, arghlyothree centuries after Wil-
helm Schickard, who started the history of automatic comgutardware by constructing the
first non-program-controlled computer in 1623.

Inthe 1940s Zuse went on to devise the first high-level prognang language (Plankalkil),
which he used to write the first chess program. Back then gblaging was considered an in-
telligent activity, hence one might call this chess progthefirst design of an Al program, al-
though Zuse did not really implement it back then. Soon afteds, in 1948, Claude Shannon
[82] published information theory, recycling several olieas such as Ludwig Boltzmann's
entropy from 19th century statistical mechanics, andoihef information(Leibniz, 1701).

Relays, Tubes, TransistorsVariants of transistors, the concept pioneered and patéyte
Julius Edgar Lilienfeld (1920s) and Oskar Heil (1935), wau#t by William Shockley, Walter
H. Brattain & John Bardeen (1948: point contact transisasrvell as Herbert F. Mataré &
Heinrich Walker (1948, exploiting transconductance éffeaf germanium diodes observed
in the Luftwaffeduring WW-II). Today, however, most transistors are of tkek feeld-effect
type a la Lilienfeld & Heil. In principle a switch remains a switch noatter whether it is
implemented as a relay or a tube or a transistor, but tramsiswitch faster than relays (Zuse,
1941) and tubes (Colossus, 1943; ENIAC, 1946). This evéptleal to significant speedups
of computer hardware, which was essential for many subseduepplications.

The |'in Al. In 1950, some 56 years ago, Turing invented a famous sugetdst to
decide whether a machine or something else is intelligeyeds later, and 25 years af-
ter Godel’s paper, John McCarthy finally coined the term”:&A0 years later, in 2006, this
prompted some to celebrate the 50th birthday of Al, but tadisn’s title should make clear
that its author cannot agree with this view—it is the thingtttounts, not its name [72].

Roots of Probability-Based Al. In the 1960s and 1970s Ray Solomonoff combined theo-
retical CS and probability theory to establish a generahef universal inductive inference
and predictive Al [85] closely related to the concept of Kobprov complexity [29]. His
theoretically optimal predictors and their Bayesian le@ggralgorithms only assume that the
observable reactions of the environment in response taineattion sequences are sampled
from an unknown probability distribution contained in aBebf all enumerable distributions.
That is, given an observation sequence we only assume tkiste @ computer program that
can compute the probabilities of the next possible obsenat This includes all scientific
theories of physics, of course. Since we typically do notktiais program, we predict using
a weighted sung of all distributions in.#, where the sum of the weights does not exceed 1.
It turns out that this is indeed the best one can possiblyrda,very general sense [85, 25].
Although the universal approach is practically infeasisilece M contains infinitely many
distributions, it does represent the first sound and gemieeary of optimal prediction based
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on experience, identifying the limits of both human andfiaitil predictors, and providing a
yardstick for all prediction machines to come.

Al vs Astrology? Unfortunately, failed prophecies of human-level Al withsjua tiny
fraction of the brain’s computing power discredited soméhefAl research in the 1960s and
70s. Many theoretical computer scientists actually regadmuch of the field with contempt
for its perceived lack of hard theoretical results. ETH £his Turing award winner and cre-
ator of the PASCAL programming language, Niklaus Wirth, dat hesitate to compare Al
to astrology. Practical Al of that era was dominated by hésed expert systems and Logic
Programming. That is, despite Solomonoff’s fundamentalilts, a main focus of that time
was on logical, deterministic deduction of facts from poexgly known facts, as opposed to
(probabilistic) induction of hypotheses from experience.

Evolution, Neurons, Ants. Largely unnoticed by mainstream Al gurus of that era, a
biology-inspired type of Al emerged in the 1960s when Ingalitmberg pioneered the
method of artificial evolution to solve complex optimizatitasks [44], such as the design
of optimal airplane wings or combustion chambers of rocketztes. Such methods (and later
variants thereof, e.g., Holland [23] (1970s), often gavgdbeesults than classical approaches.
In the following decades, other types of “subsymbolic” A$@lbecame popular, especially
neural networks. Early neural net papers include those @@och & Pitts, 1940s (linking
certain simple neural nets to old and well-known, simpleheatatical concepts such as lin-
ear regression); Minsky & Papert [35] (temporarily dis@mging neural network research),
Kohonen [27], Amari, 1960s; Werbos [97], 1970s; and manyei#tin the 1980s. Orthog-
onal approaches included fuzzy logic (Zadeh, 1960s), Re&ssa practical variants [45] of
Solomonoff’s universal method, “representation-free’{Btooks [5]), Artificial Ants (Dorigo
& Gambardella [13], 1990s), statistical learning theony l¢ss general settings than those
studied by Solomonoff) & support vector machines (Vapni&][@nd others). As of 2006,
this alternative type of Al research is receiving more dttenthan “Good Old-Fashioned Al”
(GOFAI).

Mainstream Al Marries Statistics. A dominant theme of the 1980s and 90s was the
marriage of mainstream Al and old concepts from probabifigory. Bayes networks, Hidden
Markov Models, and numerous other probabilistic modelsébwide applications ranging
from pattern recognition, medical diagnosis, data miningg¢hine translation, robotics, etc.

Hardware Outshining Software: Humanoids, Robot Cars, Etc.In the 1990s and
2000s, much of the progress in practical Al was due to betteshviiare, getting roughly 1000
times faster per Euro per decade. In 1995, a fast visionebas®t car by Ernst Dickmanns
(whose team built the world’s first reliable robot cars in #ely 1980s with the help of
Mercedes-Benz, e. g., [12]) autonomously drove 1000 miles fMunich to Denmark and
back, up to 100 miles without intervention of a safety drig@ho took over only rarely in
critical situations), in traffic at up to 120 mph, visuallyatking up to 12 other cars simulta-
neously, automatically passing other cars. Japanese Hairglé, Sony) and Pfeiffer’s lab at
TU Munich built famous humanoid walking robots. Enginegrproblems often seemed more
challenging than Al-related problems.

Another source of progress was the dramatically improvertsscto all kinds of data
through the WWW, created by Tim Berners-Lee at the Europeaticie collider CERN
(Switzerland) in 1990. This greatly facilitated and enemed all kinds of “intelligent” data
mining applications. However, there were few if any obvifwsdamental algorithmic break-
throughs; improvements / extensions of already existiggrithms seemed less impressive
and less crucial than hardware advances. For example, sleelsschampion Kasparov was
beaten by a fast IBM computer running a fairly standard étlgor. Rather simple but com-
putationally expensive probabilistic methods for speedognition, statistical machine trans-
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lation, computer vision, optimization, virtual realitie. started to become feasible on PCs,
mainly because PCs had become 1000 times more powerfuhvettiecade or so.

As noted by Stefan Artmann (personal communication, 2G06gy’s Al textbooks seem
substantially more complex and less unified than those ddrakdecades ago, e. g., [39],
since they have to cover so many apparently quite diffendnjests. There seems to be a need
for a new unifying view of intelligence. Today the importanof embodied, embedded Al
(real robots living in real physical environments) is altnosiversally acknowledged (e. g.,
[41]). While the extension of Al into the realm of the physibady seems to be a step away
from formalism, the new millennium’s formal point of view &tually taking this step into
account in a very general way, through the first mathematieairy of universal embedded
Al, combining “old” theoretical computer science and “amdi’ probability theory to derive
optimal behavior for embedded, embodied rational agemwisgliin unknown but learnable
environments. More on this below.

2.3 More Formally

Before we proceed, let us clarify what we are talking abohbuidn’t researchers on Arti-
ficial Intelligence (Al) agree on basic questions such asaW Intelligence? Interestingly
they don't. Turing’s definition (1950, 19 years after Gdslplaper) was totally subjective: in-
telligent is what convinces me that it is intelligent whilarh interacting with it. Fortunately,
however, there are now more formal and less subjective tiefisiwith respect to the abilities
of universal optimal problem solvers.

What is the optimal way of predicting the future, given thet@aVhich is the best way to
act such as to maximize one’s future expected reward? Whittteibest way of searching for
the solution to a novel problem, making optimal use of soh&ito earlier problems?

Most previous work on these old and fundamental questioagdwsed on very limited
settings, such as Markovian environments where the optieet action, given past inputs,
depends on the current input only [26].

We will concentrate on a much weaker and therefore much menergl assumption,
namely, that the environment’s responses are sampled faomautable probability distribu-
tion. If even this weak assumption were not true then we cootceven formally specify the
environment, leave alone writing reasonable scientifiepapbout it.

Let us first introduce some notatidd’® denotes the set of finite sequences over the binary
alphabeB = {0,1}, B® the set of infinite sequences o\&rA the empty stringd! = B* UB®.
x,y,z,2%,72 stand for strings irBf. If x € B* thenxy is the concatenation of andy (e.g.,
if x= 10000 andy = 1111 thenxy = 100001111). Fok € B*, I(x) denotes the number of
bits in x, wherel (x) = o for x € B®; I(A) = 0. x is the prefix ofx consisting of the first
n bits, if I(x) > n, andx otherwise %o := A). log denotes the logarithm with basis 2,9
denote functions mapping integers to integers. We wWriteé = O(g(n)) if there exist positive
constants, ng such thatf (n) < cg(n) for all n > ny. For simplicity let us consider universal
Turing Machines [91] (TMs) with input alphabBtand trinary output alphabet including the
symbols “0”, “1”, and “ " (blank). For efficiency reasons, thiéls should have several work
tapes to avoid potential quadratic slowdowns associatéd Ivtape TMs. The remainder of
this paper assumes a fixed universal reference TM.

Now suppose bitstring represents the data observed so far. What is its most likely c
tinuationy € B!? Bayes’ theorem yields

P(x | xy)P(xy)

POy 1Y) =g

O P(xy) (2.1)



8 No Author Given

whereP(z2 | %) is the probability ofz?, given knowledge o, andP(x) = [, q: P(x2)dz

is just a normalizing factor. So the most likely continuatipis determined byP(xy), the
prior probability of xy. But which prior measur® is plausible? Occam'’s razor suggests that
the “simplest”y should be more probable. But which exactly is the “correctfimtion of
simplicity? Sections 2.4 and 2.5 will measure the simpliaf a description by its length.
Section 2.6 will measure the simplicity of a description bg time required to compute the
described object.

2.4 Prediction Using a Universal Algorithmic Prior Based onthe
Shortest Way of Describing Objects

Roughly fourty years ago Solomonoff started the theory dfensal optimal induction based
on the apparently harmless simplicity assumption Eht computable [84]. While Equation
(2.1) makes predictions of the entire future, given the,[@stomonoff [85] focuses just on the
next bit in a sequence. Although this provokes surprisingiytrivial problems associated with
translating the bitwise approach to alphabets other tharbithery one — this was achieved
only recently [25] — it is sufficient for obtaining essentilagights. Given an observed bitstring
X, Solomonoff assumes the data are drawn according to a rezoneasures; that is, there is
a program for a universal Turing machine that remadsB* and computeg!(x) and halts. He
estimates the probability of the next bit (assuming therébei one), using the remarkable,
well-studied, enumerable pridf [84, 101, 85, 18, 32]

M(x) = Z 271, (2.2)

program prefix p computes
output starting with x

M is universal dominating the less general recursive measures as folfewsllx € B*,
M(%) > cup(x) (2.3)

wherec, is a constant depending @nbut not onx. Solomonoff observed that the conditional
M-probability of a particular continuation, given previoabservations, converges towards
the unknown conditionali as the observation size goes to infinity [85], and that the sum
over all observation sizes of the correspondingxpected deviations is actually bounded by a
constant. Hutter (on the author's SNF research grant “”daifon of Universal Induction and
Sequential Decision Theory”) showed that the number ofiptieth errors made by universal
Solomonoff prediction is essentially bounded by the numifeerrors made by any other
predictor, including the optimal scheme based on the fir{@5].

Recent Loss Bounds for Universal PredictionA more general result is this. Assume
we do know thap is in some seP of distributions. Choose a fixed weight, for eachq in P
such that thevq add up to 1 (for simplicity, leP be countable). Then construct the Bayesmix
M(x) = ¥ qWqad(x), and predict using/ instead of the optimal but unknowm How wrong is
it to do that? The work of Hutter provides general and sh3rjpés bounds [25]:

Let LM(n) andLp(n) be the total expected unit losses of thepredictor and the p-
predictor, respectively, for the firstevents. Ther.M(n) — Lp(n) is at most of the order of
v/Lp(n). Thatis,M is not much worse thap. And in general, no other predictor can do better
than that! In particular, ip is deterministic, then thel-predictor soon won’t make any errors
any more.

If P containsall recursively computable distributions, thehbecomes the celebrated enu-
merable universal prior. That is, after decades of somegtiaginating research we now have
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sharp loss bounds for Solomonoff’s universal inductioreseld (compare work of Merhav and
Feder [34]).

Solomonoff's approach, however, is uncomputable. To aldadeasible approach, reduce
M to what you get if you, say, just add up weighted estimategréifinance data probabilities
generated by 1000 commercial stock-market predictiomsoét packages. If only one of the
probability distributions happens to be close to the true @out you do not know which) you
still should get rich.

Note that the approach is much more general than what is tigro@ne in traditional
statistical learning theory, e.g., [94], where the ofteiteunrealistic assumption is that the
observations are statistically independent.

2.5 Super Omegas and Generalizations of Kolmogorov
Complexity & Algorithmic Probability

Our research generalized Solomonoff’s approach to theafdess restrictive nonenumerable
universal priors that are still computable in the limit [&2].

An objectX is formally describable if a finite amount of information cpletely describes
X and onlyX. More to the pointX should be representable by a possibly infinite bitstxing
such that there is a finite, possibly never halting progpethrat computeg and nothing buxin
a way that modifies each output bit at most finitely many tirttes; is, each finite beginning of
x eventuallyconvergesnd ceases to change. This constructive notion of formarithesility
is less restrictive than the traditional notion of compilighb[91], mainly because we do not
insist on the existence of a halting program that computegpaer bound of the convergence
time of p's n-th output bit. Formal describability thus pushes congivigin [6, 1] to the
extreme, barely avoiding the nonconstructivism embodieeMen less restrictive concepts of
describability (compare computability the limit[20, 43, 17] ancﬂ,?-describability [46][32,
p. 46-47)).

The traditional theory of inductive inference focuses omifigimachines with one-way
write-only output tape. This leads to the universal enutnler&olomonoff-Levin (semi) mea-
sure. We introduced more general, nonenumerable, butistittcomputable measures and
a natural hierarchy of generalizations of algorithmic @ioibity and Kolmogorov complexity
[60, 62], suggesting that the “true” information contensofne (possibly infinite) bitstring
actually is the size of the shortest nonhalting programadbaverges ta and nothing buk on
a Turing machine that can edit its previous outputs. In thes, “true” content is often smaller
than the traditional Kolmogorov complexity. We showed ttredre areSuper Omegasom-
putable in the limit yet more random than Chaitin’s “numb&wisdom” Omega10] (which
is maximally random in a weaker traditional sense), anddhgtapproximable measure xf
is small for anyx lacking a short description.

We also showed that there is a universal cumulatively enabhemeasure of based on
the measure of all enumerahtdexicographically greater than It is more dominant yet just
as limit-computable as Solomonoff's [62]. That is, if we @meerested in limit-computable
universal measures, we should prefer the novel universautatively enumerable measure
over the traditional enumerable one. If we include in our &agix such limit-computable
distributions we obtain again sharp loss bounds for premtidtased on the mix [60, 62].

Our approach highlights differences between countableuacduntable sets. Which are
the potential consequences for physics? We argue thatstisingh asincountable time and
space andncomputable probabilities actually should not play a rolexplaining the world,
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for lack of evidence that they are really necessary [60]. Soray feel tempted to counter this
line of reasoning by pointing out that for centuries phystiehave calculated with continua of
real numbers, most of them incomputable. Even quantum giysiwho are ready to give up
the assumption of a continuous universe usually do takertortgd the existence of continu-
ous probability distributions on their discrete universesd Stephen Hawking explicitly said:
“Although there have been suggestions that space-time @y & discrete structure | see no
reason to abandon the continuum theories that have beenceessful."Note, however, that
all physicists in fact have only manipulated discrete syls\ibius generating finite, describ-
able proofs of their results derived from enumerable axiorhsit real numbers reallgxistin

a way transcending the finite symbol strings used by evenrylmody be a figment of imag-
ination — compare Brouwer’s constructive mathematics [6arid the Lowenheim-Skolem
Theorem [33, 83] which implies that any first order theoryhaain uncountable model such
as the real numbers also has a countable model. As Kroneuokér {Die ganze Zahl schuf
der liebe Gott, alles)brige ist Menschenwerk(God created the integers, all else is the work
of man” [7]). Kronecker greeted with scepticism Cantor'sebeated insight [8] about real
numbers, mathematical objects Kronecker believed did vent exist.

Assuming our future lies among the few (countably many) deable futures, we can
ignore uncountably many nondescribable ones, in partictia random ones. Adding the
relatively mild assumption that the probability distrilmut from which our universe is drawn
is cumulatively enumerable provides a theoretical justifan of the prediction that the most
likely continuations of our universes are computable tgtoshort enumeration procedures. In
this sense Occam’s razor is just a natural by-product of gpotability assumption! But what
about falsifiability? The pseudorandomness of our univerigit be effectively undetectable
in principle, because some approximable and enumerablerpstcannot be proven to be
nonrandom in recursively bounded time.

The next sections, however, will introduce additional giale assumptions that do lead
to computableoptimal prediction procedures.

2.6 Computable Predictions through the Speed Prior Based on
the Fastest Way of Describing Objects

Unfortunately, whileM and the more general priors of Section 2.5 are computableeifinhit,
they are not recursive, and thus practically infeasiblds Tawback inspired less general
yet practically more feasible principles of minimum deptidn length (MDL) [96, 45] as
well as priors derived from time-bounded restrictions [82Kolmogorov complexity [29,
84, 10]. No particular instance of these approaches, hawisveniversally accepted or has a
general convincing motivation that carries beyond ratpecilized application scenarios. For
instance, typical efficient MDL approaches require the gjpation of a class of computable
models of the data, say, certain types of neural networks, gtme computable loss function
expressing the coding costs of the data relative to the mdtéd provokes numerowsd-hoc
choices.

Our recent work [63], however, offers an alternative to takelorated but noncomputable
algorithmic simplicity measure or Solomonoff-Levin measdiscussed above [84, 101, 85].
We introduced a new measure (a prior on the computable shjettich is not based on the
shortestbut on thefastestway of describing objects.

Let us assume that the observed data sequence is generaezbimputational process,
and that any possible sequence of observations is thergdamputable in the limit [60]. This
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assumption is stronger and more radical than the traditimmat Solomonoff just insists that
the probability of any sequence prefix is recursively coraplg, but the (infinite) sequence
itself may still be generated probabilistically.

Given our starting assumption that data are determinigtigenerated by a machine, it
seems plausible that the machine suffers from a computdtiesource problem. Since some
things are much harder to compute than others, the resoui@gted point of view suggests
the following postulate.

Postulate 1 The cumulative prior probability measure of all x incompalgawithin time t by
any method is at most inversely proportional to t.

This postulate leads to the Speed P&x), the probability that the output of the following
probabilistic algorithm starts with[63]:

Initialize: Sett := 1. Let the input scanning head of a universal TM point to the first
cell of its initially empty input tape.

Forever repeat: While the number of instructions executed so far exceetiss an
unbiased coin; if heads is up det= 2t; otherwise exit. If the input scanning head
points to a cell that already contains a bit, execute theesponding instruction (of
the growing self-delimiting program, e.g., [31, 32]). Etess the coin again, set the
cell's bit to 1 if heads is up (0 otherwise), and et t/2.

Algorithm GUESSIs very similar to a probabilistic search algorithm used iavious
work on applied inductive inference [55, 57]. On severalgoyblems it generalized extremely
well in a way unmatchable by traditional neural network fesag algorithms.

With Scomes a computable methdd for predicting optimally withine accuracy [63].
Consider a finite but unknown programjcomputingy € B*. What if Postulate 1 holds but
p is not optimally efficient, and/or computed on a computet thffiers from our reference
machine? Then we effectively do not sample beginnipgffom S but from an alternative
semimeasur§. Can we still predict well? Yes, because the Speed RradominatesS. This
dominance is all we need to apply the recent loss bounds T2 loss that we are expected
to receive by predicting according &S instead of using the true but unknovéhdoes not
exceed the optimal loss by much [63].

2.7 Speed Prior-Based Predictions for Our Universe

Physicists and economists and other inductive scientistisenpredictions based on obser-
vations. Astonishingly, however, few physicists are awafréhe theory ofoptimalinductive
inference [84, 29]. In fact, when talking about the very nawf their inductive business, many
physicists cite rather vague concepts such as PopperiBdhikity [42], instead of referring
to quantitative results.

Allwidely accepted physical theories, however, are aaxpbt because they are falsifiable—
they are not—or because they match the data—many altegribteries also match the data—
but because they are simple in a certain sense. For exaimpbagory of gravitation is induced
from locally observable training examples such as fallipgles and movements of distant
light sources, presumably stars. The theory predicts thplea on distant planets in other
galaxies will fall as well. Currently nobody is able to verir falsify this. But everybody be-
lieves in it because this generalization step makes theyttsdmpler than alternative theories
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with separate laws for apples on other planets. The sames Ffmlduperstring theory [21] or
Everett's many world theory [15], which presently also aegtimer verifiable nor falsifiable,
yet offer comparatively simple explanations of humerousesbations. In particular, most of
Everett’'s postulated many worlds will remain unobservdblever, but the assumption of
their existence simplifies the theory, thus making it morauiéul and acceptable.

In Sections 2.4 and 2.5 we have made the assumption thatdbalglities of next events,
given previous events, are (limit-)computable. Here weerektronger assumption by adopt-
ing Zuse’s thesis[99, 100, 71], namely, that the very universe is actualljngesomputed
deterministically, e.g., on a cellular automaton (CA) [9B]. Quantum physics, quantum
computation [3, 11, 40], Heisenberg’s uncertainty priteignd Bell’s inequality [2] daot
imply any physical evidence against this possibility, d20].

But then which is our universe’s precise algorithm? Theofsihg method [56] does com-
pute it:

Systematically create and execute all programs for a usav@omputer, such as a
Turing machine or a CA, the first program is run for one indinrcevery second
step on average, the next for one instruction every secotfteaemaining steps on
average, and so on.

This method in a certain sense implements the simplestytte@verything:all computable
universes, including ours and ourselves as observersparputed by the very short program
that generates and executdspossible programs [56]. In nested fashion, some of these pro
grams will execute processes that again compute all pessibiVerses, etc. [56]. Of course,
observers in “higher-level” universes may be completelgware of observers or universes
computed by nested processes, and vice versa. For exatrg#ems hard to track and inter-
pret the computations performed by a cup of tea.

The simple method above is more efficient than it may seem sitdiance. A bit of
thought shows that it even has the optimal order of complekior example, it outputs our
universe history as quickly as this history’s fastest paogrsave for a (possibly huge) constant
slowdown factor that does not depend on output size.

Nevertheless, some universes are fundamentally hardemipute than others. This is re-
flected by the Speed Pri@discussed above (Section 2.6). So let us assume that oersely
history is sampled frons or a less dominant prior reflecting suboptimal computatibthe
history. Now we can immediately predict:

1. Our universe will not get many times older than it is now [68] 6~ essentially, the
probability that it will last 2 times longer than it has lasted so far is at most.2

2. Any apparent randomness in any physical observation musgubeo some yet un-
known butfast pseudo-random generator PRG [60, 63] which we should tryswoger.2a.

A re-examination of beta decay patterns may reveal that ya siemple, fast, but maybe not
quite trivial PRG is responsible for the apparently randaoays of neutrons into protons,
electrons and antineutrinagb. Whenever there are several possible continuations of aur un
verse corresponding to different Schrodinger wave famctiollapses — compare Everett’s
widely accepted many worlds hypothesis [15] — we should beertikely to end up in one
computable by a shoandfast algorithm. A re-examination of split experiment daeoilving
entangled states such as the observations of spins oflinitlase but soon distant particles
with correlated spins might reveal unexpected, nonobyiaooslocal algorithmic regularity
due to a fast PRG.

3. Large scale quantum computation [3] will not work well, egsaly because it would
require too many exponentially growing computational teses in interfering “parallel uni-
verses” [15].
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4. Any probabilistic algorithm depending on truly random itgpérom the environment
will not scale well in practice.

Prediction2 is verifiable but not necessarily falsifiable within a fixeahd interval given
in advance. Still, perhaps the main reason for the curresgrade of empirical evidence in this
vein is that few [14] have looked for it.

In recent decades several well-known physicists havesstavtiting about topics of com-
puter science, e.g., [40, 11], sometimes suggesting tlahtwrerld physics might allow for
computing things that are not computable traditionallyirdppressed by this trend, computer
scientists have argued in favor of the opposite: since tisene evidence that we need more
than traditional computability to explain the world, we ghibtry to make do without this
assumption, e.g., [99, 100, 16, 56, 63, 71].

2.8 Optimal Rational Decision Makers

So far we have talked about passive prediction, given therghgsons. Note, however, that
agents interacting with an environment can also use piedgbf the future to compute action
sequences that maximize expected future reward. HuA€&bmodel[25] (established on the
author’'s SNF grant 61847) does exactly this, by combininipr@onoff's M-based universal
prediction scheme with aexpectimaxomputation.

In cyclet actiony; results in perceptior and rewardt, where all quantities may depend
on the complete history. The perceptighand rewardr; are sampled from the (reactive)
environmental probability distributiop. Sequential decision theory shows how to maximize
the total expected reward, called valugyifs known. Reinforcement learning [26] is useglif
is unknown. AIXI defines a mixture distributichas a weighted sum of distributiomrse .7,
where.# is any class of distributions including the true environten

It can be shown that the conditionisl probability of environmental inputs to an AlXI
agent, given the agent’s earlier inputs and actions, cgegawith increasing length of interac-
tion against the true, unknown probability [25], as longteslatter is recursively computable,
analogously to the passive prediction case.

Recent work [25] also demonstrated AIXI's optimality in tleowing sense. The Bayes-
optimal policypé based on the mixtur& is self-optimizing in the sense that the average value
converges asymptotically for all € .# to the optimal value achieved by the (infeasible)
Bayes-optimal policyp# which knowsy in advance. The necessary condition th#tadmits
self-optimizing policies is also sufficient. No other stiwal assumptions are made o#.
Furthermorep? is Pareto-optimal in the sense that there is no other poliging higher or
equal value irall environmenty € .# and a strictly higher value in at least one [25].

We can modify the AIXI model such that its predictions aredabsn thes-approximable
Speed PrioSinstead of the incomputabM. Thus we obtain the so-callédS modelUsing
Hutter's approach [25] we can now show that the conditi@atobability of environmental
inputs to an AIS agent, given the earlier inputs and acticmisyerges to the true but unknown
probability, as long as the latter is dominated$guch as th& above.

2.9 Optimal Universal Search Algorithms

In a sense, plain search is less general than reinforceemihg because it does not neces-
sarily involve predictions of unseen data. Still, search tentral aspect of computer science
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(and any reinforcement learner needs a searcher as a sulemeshe Section 2.11). Surpris-
ingly, however, many books on search algorithms do not evention the following, very
simple asymptotically optimal, “universal” algorithm farbroad class of search problems.

Define a probability distributio® on a finite or infinite set of programs for a given com-
puter.P represents the searcher’s initial bias (eRgcould be based on program length, or on
a probabilistic syntax diagram).

Method LSEARCH Set current time limit T=1. WILE problem not solveado:
Test all programs) such that(q), the maximal time spent on creating and
running and testing, satisfiez(q) < P(q) T. SetT := 2T.

LseARcH(for Levin Searchmay be the algorithm Levin was referring to in his 2 page pape
[30] which states that there is an asymptotically optimalersal search method for problems
with easily verifiable solutions, that is, solutions whosdidity can be quickly tested. Given
some problem class, if some unknown optimal prograraquiresf (k) steps to solve a prob-
lem instance of siz&, then LseARCHwill need at mosiO(f (k) /P(p)) = O(f(k)) steps —
the constant factor/P(p) may be huge but does not dependkoi€ompare [32, p. 502-505]
and [24] and the fastest way of computing all computableemsis in Section 2.7.

Hutter developed a more complex asymptotically optimataealgorithm forall well-
defined problems, not just those with with easily verifialdiBons [24, 25]. SEARCHClev-
erly allocates part of the total search time for searchimgspace of proofs to find provably
correct candidate programs with provable upper runtimenleuand at any given time fo-
cuses resources on those programs with the currently bastrptime bounds. Unexpectedly,
HseEARCHmManages to reduce the unknown constant slowdown factoseARCHto a value
of 1+ &, wheree is an arbitrary positive constant.

Unfortunately, however, the search in proof space intreduan unknowradditive prob-
lem class-specific constant slowdown, which again may be.hWhile additive constants
generally are preferrable over multiplicative ones, bgfies may make universal search meth-
ods practically infeasible.

HSEARCH and LSEARCH are nonincremental in the sense that they do not attempt to
minimize their constants by exploiting experience cobedn previous searches. Our method
AdaptiveL SEARCHor ALS tries to overcome this [81] — compare Solomonoff’s relatézhis
[86, 87]. Essentially it works as follows: whenevestARCH finds a prograng that com-
putes a solution for the current problegs probability P(q) is substantially increased using
a “learning rate,” while probabilities of alternative prags decrease appropriately. Subse-
quent LSeEARCHes for new problems then use the adjusieetc. A nonuniversal variant of
this approach was able to solve reinforcement learning (BdKs [26] in partially observable
environments unsolvable by traditional RL algorithms [98].

Each LseARCHinvoked by ALs is optimal with respect to the most recent adjustment of
P. On the other hand, the modificationsthemselves are not necessarily optimal. Recent
work discussed in the next section overcomes this drawlraalprincipled way.

2.10 Optimal Ordered Problem Solver (OOPS)

Our recent @Ps[66, 64] is a simple, general, theoretically sound, in aarrsense time-
optimal way of searching for a universal behavior or progthaat solves each problem in a
sequence of computational problems, continually orgagiand managing and reusing earlier
acquired knowledge. For example, theh problem may be to compute tineth event from



2 No Title Given 15

previous events (prediction), or to find a faster way throaghaze than the one found during
the search for a solution to time- 1-th problem (optimization).

Let us first introduce the important concept of bias-optityalvhich is a pragmatic def-
inition of time-optimality, as opposed to the asymptotidioglity of both LseEaArRCH and
HsEARCH, which may be viewed as academic exercises demonstratigh#O() notation
can sometimes be practically irrelevant despite its wideingheoretical computer science.
Unlike asymptotic optimality, bias-optimality does noh@e huge constant slowdowns:

Definition 1 (BIAS-OPTIMAL SEARCHERS. Given is a problem clasg?, a search space
% of solution candidates (where any probleng i should have a solution ifF), a task
dependent bias in form of conditional probability distritmns F(q | r) on the candidates
g € ¢, and a predefined procedure that creates and tests any givemany re % within
time t(q,r) (typically unknown in advance). A searcher idbias-optimal(n > 1) if for any
maximal total search timenfax > O it is guaranteed to solve any problenerZ if it has a
solution pe ¢ satisfying tp,r) < P(p|r) Tmax/n. It is bias-optimaif n = 1.

This definition makes intuitive sense: the most probablelicktes should get the lion’s share
of the total search time, in a way that precisely reflects tiiteal bias. Now we are ready to
provide a general overview of the basic ingredientes oPs[66, 64]:

Primitives. We start with an initial set of user-defined primitive belwasi Primitives may
be assembler-like instructions or time-consuming soféwauch as, say, theorem provers, or
matrix operators for neural network-like parallel arcbitees, or trajectory generators for
robot simulations, or state update procedures for multinggstems, etc. Each primitive is
represented by a token. It is essential that those prirsitivieose runtimes are not known in
advance can be interrupted at any time.

Task-specific prefix codesComplex behaviors are represented by token sequences-or pro
grams. To solve a given task represented by task-specifgraroinputs,0opPstries to se-
guentially compose an appropriate complex behavior fromitive ones, always obeying
the rules of a given user-defined initial programming lamguaPrograms are grown incre-
mentally, token by token; their beginnings mefixesare immediately executed while being
created; this may modify some task-specific internal stateesmory, and may transfer control
back to previously selected tokens (e.g., loops). To addhatoken to some program prefix,
we first have to wait until the execution of the prefix so éaplicitly requestsuch a pro-
longation, by setting an appropriate signal in the intestate. Prefixes that cease to request
any further tokens are callezlf-delimitingprograms or simply programs (programs are their
own prefixes)Binary self-delimiting programs were studied by [31] and [9] in twntext of
Turing machines [91] and the theory of Kolmogorov complgxind algorithmic probability
[84, 29]. Cops however, uses a more practical, not necessarily binanyeweork.

The program construction procedure above yidkdk-specific prefix codem program
space: with any given task, programs that halt because teyfound a solution or encoun-
tered some error cannot request any more tokens. Given thenttask-specific inputs, no
program can be the prefix of another one. On a different tamkeher, the same program may
continue to request additional tokens. This is importanoto novel approach—incrementally
growing self-delimiting programs are unnecessary for gygrgtotic optimality properties of
LseAarRcHand HSEARCH, but essential foooprs
Access to previous solutionsLet p" denote a found prefix solving the firattasks. The
search fop"1 may greatly profit from the information conveyed by (or thektedge em-
bodied by)p!, p%, ..., p" which are stored adfrozenin specialnormodifiable memory shared
by all tasks, such that they are accessiblgo! (this is another difference toorincremental
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LsearcHand HsEARCH). For examplep™ might execute a token sequence that cpllls®

as a subprogram, or that copigs 1/ into some internaiodifiabletask-specific memory, then
modifies the copy a bit, then applies the slightly edited dapghe current task. In fact, since
the number of frozen programs may grow to a large value, méidnedknowledge embodied
by p/ may be about how to access and edit and use q@dgr< j).

Bias. The searcher’s initial bias is embodied by initial, usefirde, task dependent proba-
bility distributions on the finite or infinite search spacepafssible program prefixes. In the
simplest case we start with a maximum entropy distributioritee tokens, and define pre-
fix probabilities as the products of the probabilities ofithiekens. But prefix continuation
probabilities may also depend on previous tokens in costaxsitive fashion.

Self-computed suffix probabilities. In fact, we permit that any executed prefix assigns a
task-dependent, self-computed probability distributimits own possible continuations. This
distribution is encoded and manipulated in task-speciferival memory. So unlike with As
[81] we do not use a prewired learning scheme to update tHeapiiity distribution. Instead
we leave such updates to prefixes whose online executionfiemthie probabilities of their
suffixes. By, say, invoking previously frozen code that fedes the probability distribution
on future prefix continuations, the currently tested prefayrnoompletely reshape the most
likely paths through the search space of its own continnatibased on experience ignored
by norincremental ISEARCHand HSEARCH This may introduce significant problem class-
specific knowledge derived from solutions to earlier tasks.

Two searchesEssentiallyoopsprovides equal resources for two nésas-optimalsearches
(Def. 1) that run in parallel untip™? is discovered and stored in non-modifiable memory.
The first is exhaustive; it systematically tests all possiblefixes on all tasks up to+ 1.
Alternative prefixes are tested on all current tasks in pelradhile still growing; once a task
is solved, we remove it from the current set; prefixes thatoiaia single task are discarded.
The second search is much more focused; it only searchesefixgs that start withp", and
only tests them on tagk+ 1, which is safe, because we already know that such prefixes so
all tasks up ta.

Bias-optimal backtracking. HSEARCH and LSEARCH assume potentially infinite storage.
Hence they may largely ignore questions of storage managenmeany practical system,
however, we have to efficiently reuse limited storage. Tloeeg in both searches afors al-
ternative prefix continuations are evaluated by a novettwal, token-oriented backtracking
procedure that can deal with several tasks in parallelngheenecode biadn the form of pre-
viously found code. The procedure always ensures biearoptimality(Def. 1): no candidate
behavior gets more time than it deserves, given the prababibias. Essentially we conduct
a depth-first search in program space, where the branchbe eétrch tree are program pre-
fixes, and backtracking (partial resets of partially soltzessk sets and modifications of internal
states and continuation probabilities) is triggered oheesum of the runtimes of the current
prefix on all current tasks exceeds the prefix probabilitytiplid by the total search time so
far.

In case of unknown, infinite task sequences we can typicalenknow whether we al-
ready have found an optimal solver for all tasks in the segeieBut once we unwittingly
do find one, at most half of the total future run time will be teason searching for alterna-
tives. Given the initial bias and subsequent bias shiftstdye, p?, ..., no other bias-optimal
searcher can expect to solve the 1-th task set substantially faster thaoprs A by-product
of this optimality property is that it gives us a natural andgise measure of bias and bias
shifts, conceptually related to Solomonof€senceptual jump sizef [86, 87].

Since there is no fundamental difference between domagoifép problem-solving pro-
grams and programs that manipulate probability distrdngiand thus essentially rewrite the



2 No Title Given 17

search procedure itself, we collapse both learning andleztang in the same time-optimal
framework.

An example initial language. For an illustrative application, we wrote an interpreter o
stack-based universal programming language inspireddsyTH [37], with initial primitives

for defining and calling recursive functions, iterativepgparithmetic operations, and domain-
specific behavior. Optimal metasearching for better sealgbrithms is enabled through the
inclusion of bias-shifting instructions that can modifetbonditional probabilities of future
search options in currently running program prefixes.

Experiments.Using the assembler-like language mentioned above, weédashoopssome-
thing about recursion, by training it to construct sampliethe simple context free language
{1k2k} (k 1's followed byk 2’s), fork up to 30 (in fact, the system discovers a universal solver
for all k). This takes roughly 0.3 days on a standard personal com{®@). Thereafter, within

a few additional dayspoprsdemonstrates incremental knowledge transfer: it expésfsects
of its previously discovered universdiZ-solver, by rewriting its search procedure such that
it more readily discovers a universal solver for lalllisk Towers of Hanoproblems—in the
experiments it solves all instances upkte: 30 (solution size ®— 1), but it would also work
for k > 30. Previous, less general reinforcement learnersanéarning Al planners tend to
fail for much smaller instances.

Future researchmay focus on devising particularly compact, particulaggsonable sets of
initial codes with particularly broad practical applicétyi It may turn out that the most useful
initial languages are not traditional programming langsasjmilar to the BRTH-like one, but
instead based on a handful of primitive instructions for sihay parallel cellular automata
[92, 95, 100], or on a few nonlinear operations on matrie-ldata structures such as those
used in recurrent neural network research [97, 48, 4]. Famgke, we could use the principles
of ooPsto create a non-gradient-based, near-bias-optimal asfadochreiter’s successful
recurrent network metalearner [22]. It should also be ddriggt to study probabilisti€peed
Prior-basedoopsvariants [63, 55, 57] and to devise applicationsoafpslike methods as
components of universal reinforcement learners (see below

2.11 The Gdel Machine

The Gddel machine [69, 67, 79] explicitly addresses‘'@mand Problem of Artificial Intel-
ligence’ [65] by optimally dealing with limited resources in generainforcement learning
settings, and with the possibly huge (but constant) slowdoburied by AIXI[t,l) [25] in
the somewhat misleadin@()-notation. It is designed to solve arbitrary computatigoalb-
lems beyond those solvable by plampPs such as maximizing the expected future reward of
a robot in a possibly stochastic and reactive environmeote(that the total utility of some
robot behavior may be hard to verify—its evaluation may coms the robot’s entire lifetime).
How does it work? While executing some arbitrary initial Iplem solving strategy, the
Godel machine simultaneously runs a proof searcher wiystesatically and repeatedly tests
proof techniques. Proof techniques are programs that naayemrgy part of the Godel machine’s
state, and write on a reserved part which may be reset forreaglproof technique test. In an
example Godel machine [79] this writable storage inclutiesrariableproofandswitchprog
whereswitchprogholds a potentially unrestricted program whose executiuidccompletely
rewrite any part of the Godel machine’s current softwarermlly the currenswitchprog
is not executed. However, proof techniques may invoke aiapsgbroutinecheck()which
tests whetheproof currently holds a proof showing that the utility of stoppitige system-
atic proof searcher and transferring control to the curssvitchprogat a particular point in
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the near future exceeds the utility of continuing the seartii some alternativewitchprog

is found. Such proofs are derivable from the proof searsteetfiom scheme which formally

describes the utility function to be maximized (typicallyetexpected future reward in the
expected remaining lifetime of the Godel machine), the patational costs of hardware in-

structions (from which all programs are composed), andffieets of hardware instructions on

the Godel machine’s state. The axiom scheme also fornsakimewn probabilistic properties

of the possibly reactive environment, and alsoitligal Godel machine state and software,
which includes the axiom scheme itself (no circular arguineame). Thus proof techniques
can reason about expected costs and results of all progrentogling the proof searcher.

Oncecheck()has identified a provably go@Witchprog the latter is executed (some care
has to be taken here because the proof verification itselftenttansfer of control tewitch-
progalso consume part of the typically limited lifetime). Thedbveredswitchprogrepresents
a globally optimal self-change in the following sense: provahiyne of all the alternative
switchprog andproofs (that could be found in the future by continuing the procireb) is
worth waiting for.

There are many ways of initializing the proof searcher. élifgh identical proof tech-
nigues may yield different proofs depending on the time efrtmvocation (due to the contin-
ually changing Godel machine state), there is a bias-@ptimd asymptotically optimal proof
searcher initialization based on a variantoaiPs[79] (Section 2.10). It exploits the fact that
proof verification is a simple and fast business where thegodarr optimality notion ofooPs
is appropriate. The Godel machine itself, however, mayetav arbitrarytypically different
and more powerfusense of optimality embodied by its given utility function.

One practical question remains: to build a particular, eistlg practical Godel machine
with small initial constant overhead, which generally uséfieorems should one add to the
axiom set (as initial bias) such that the initial searchegsdoot have to prove them from
scratch? If our Al can execute only a fixed number of comportati instructions per unit time
interval (say, 10 trillion elementary operations per seljpwhat is the best way of using them
in the initial phase of his Godel machine, before the firtissvrite?

2.12 Formal Theory of Creativity for Artificial Scientists &
Artists (1990-2010)

Perhaps an answer to the question above may be found by rsguciytious, creative systems
that not only maximize rare external rewards but also fragjaelditional intrinsic rewards
for learning more about how the world works, and what can heeda it. Below we will
briefly summarize the simple but general formal theory oftivity and intrinsic motivation
(1990-2010) which explains many essential aspects ofliggelce including autonomous de-
velopment, science, art, music, humor.

Since 1990 we have built agents that may be viewed as sintffieiat scientists or artists
with an intrinsic desire to create / discover maravel patternsthat is, data predictable or
compressible in hitherto unknown ways [50, 54, 52, 53, 8863968, 74, 75, 78, 77, 76, 80].
The agents not only maximize rare external rewards for aotgeexternally posed goals, but
also invent and conduct experiments to actively explorenthidd, always trying to learn new
behaviors exhibiting previously unknown regularitiesu€al ingredients are:

1. A predictor or compressor of the continually growing higtoaf actions and sensory
inputs, reflecting what's currently known about how the wawxiorks,
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2. A learning algorithm that continually improves the predicbr compressor (detecting
novel spatio-temporal patterns that subsequently becomerk patterns),

3. Intrinsic rewards measuring the predictor's or compréssarprovements due to the
learning algorithm,

4. A reward optimizer or reinforcement learner, which tratedethose rewards into action
sequences or behaviors expected to optimize future rewtirel agents are intrinsically
motivated to acquire skills leading to additional novelteats predictable or compressible
in previously unknown ways.

There are many ways of combining algorithms for (1-4). Welenented the following vari-
ants:

A. Non-traditional reinforcement learning (RL) based on astaprecurrent neural net-
works as predictive world models [51] is used to maximizeimsic reward created in
proportion to prediction error (1990) [50, 54].

B. Traditional reinforcement learning (RL) [26, 89] is usedntaximize intrinsic reward
created in proportion to improvements of prediction erd®91) [52, 53].

C. Traditional RL maximizes intrinsic reward created in prdpm to relative entropies
between the agent’s priors and posteriors (1995) [88].

D. Non-traditional RL [81] (without restrictive Markovian sssmptions) learns probabilis-
tic, hierarchical programs and skills through zero-surmirnstc reward games of two play-
ers, each trying to out-predict or surprise the other, @kio account the computational
costs of learning, and learninghento learn andvhatto learn (1997-2002) [59, 61].

B-D also showed experimentally how intrinsic rewards cahstantially accelerate goal-
directed learning anexternalreward intake.

Finally, we also discussed mathematically optinnaiyersalRL methods (as discussed in
earlier sections of this paper) for intrinsically motivdt®y/stems driven by prediction progress
or compression progress [68, 74, 78, 77] (2006-2009).

The theory is sufficiently general to explain all kinds ofatiree behavior, from the discov-
ery of new physical laws through active design of experimetat the invention of jokes and
interesting works of art. It formalizes and extends pregimformal ideas of developmental
psychology and aesthetics theory. Among the applicatidriseotheory are low-complexity
artworks [58] created through human-computer interad@n 74, 78, 77, 76].

Artificial systems based on the theory have a bias towarde®grg previously unknown
environmental regularities. This oftendgriori desirable because goal-directed learning may
greatly profit from this bias, as behaviors leading to exdereward may often be rather easy
to compose from previously learnt curiosity-driven bebasi Ongoing work aims at formally
quantifying the bias towards novel patterns in form of a mnigtbased prior [85, 32, 63, 25],
a weighted sum of probability distributions on sequenceactibns and resulting inputs, and
deriving precise conditions for improved expected exteraaard intake [80].

2.13 Conclusion: General Al Becoming a Formal Science

Recent theoretical and practical advances are currerittingra renaissance in the fields of
universal learners and optimal search. A new kind of Al is yimg. Does it really deserve
the attributé'new,” given that its roots date back to the 1930s, when Godel ghidi the fun-
damental result of theoretical computer science [19] arebAtiarted to build the first general
purpose computer (completed in 1941), and the 1960s, whemm®aoff and Kolmogorov
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published their first relevant results? An affirmative ansseems justified, since it is the re-
cent results on practically feasible computable variahth®old incomputable methods that
are currently reinvigorating the long dormant field. TheWwf@\l is new in the sense that it
abandons the mostly heuristic or non-general approachthe gfast decades, offering meth-
ods that are both general and theoretically sound, and lpisoeggtimal in a sense thatoes
make sense in the real world.

Let us briefly elaborate on this. There are at least two caminways of doing Al re-
search [79](1) construct a (possibly heuristic) machine or algorithm $@hehow (it does
not really matter how) solves a previously unsolved intiémgsand cognitively challenging
problem, such as beating the best human playeBof{success will outshine any lack of
theory). Or(2) prove that a particular novel algorithm is optimal for an ortant class of Al
problems. Itis the nature of heuristics (c§%p that they lack staying power, as they may soon
get replaced by next year’s even better heuristics. Theo(easg2)), however, are for eter-
nity. That's why formal sciences prefer theorems. For eXemafter a heuristics-dominated
initial phase, probability theory became a formal scienesturies ago, and totally formal
in 1933 with Kolmogorov’s axioms [28], shortly after Gotepaper [19]. Old but provably
optimal techniques of probability theory are still in evelgy's use, and in fact highly signif-
icant for modern Al, while many initially successful hetigsapproaches eventually became
unfashionable, of interest mainly to the historians of tbélfi

Similarly, the first decades of attempts at “general Al” awgrieral cognitive compu-
tation” have been dominated by heuristic approaches, [88).47, 93, 36]. In recent years
things have changed, however. As discussed in the preseat, pae new millennium brought
the first mathematically sound, asymptotically optimalivarsal problem solvers, providing
a new, rigorous foundation for the previously largely hsticifield of General Al and em-
bedded cognitive agents, identifying the limits of both laumand artificial intelligence, and
providing a yardstick for any future approach to generalnitbge systems [70, 73, 72]. The
field is indeed becoming a real formal science!
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ematically optimal universal Al, artificial curiosity andeativity, artificial recurrent neural

networks (which won several recent handwriting recognitontests), adaptive robotics, al-
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