
1

The New AI is General & Mathematically Rigorous

Jürgen Schmidhuber
juergen@idsia.ch - http://www.idsia.ch/˜juergen

IDSIA & University of Lugano & SUPSI, Galleria 2, 6928 Manno-Lugano, Switzerland





2

No Title Given

No Author Given

No Institute Given

Summary. Most traditional artificial intelligence (AI) systems of the past decades are ei-
ther very limited, or based on heuristics, or both. The new millennium, however, has brought
substantial progress in the field of theoretically optimal and practically feasible algorithms
for prediction, search, inductive inference based on Occam’s razor, problem solving, decision
making, and reinforcement learning in environments of a very general type. Since inductive
inference is at the heart of all inductive sciences, some of the results are relevant not only for
AI and computer science but also for physics, provoking nontraditional predictions based on
Zuse’s thesis of the computer-generated universe. We first briefly review the history of AI since
Gödel’s 1931 paper, then discuss recent post-2000 approaches that are currently transforming
general AI research into a formal science.

Key words: Prediction, Search, Inductive Inference, Occam’s razor, Speed Prior, Super-
Omega, Limit-Computability, Generalizations of Kolmogorov Complexity, Digital Physics,
Optimal Universal Problem Solvers, Gödel Machine, Artificial Creativity & Curiosity, AI as
a Formal Science

Note:Much of this work is reprinted from [70] and [72] with friendly permission by Springer-
Verlag.

2.1 Introduction

Remarkably, there is a theoreticallyoptimalway of making predictions based on observations,
rooted in the early work of Solomonoff and Kolmogorov [84, 29]. The approach reflects basic
principles of Occam’s razor: simple explanations of data are preferable to complex ones.

The theory of universal inductive inference quantifies whatsimplicity really means. Given
certain very broad computability assumptions, it providestechniques for making optimally
reliable statements about future events, given the past.

Once there is an optimal, formally describable way of predicting the future, we should
be able to construct a machine that continually computes andexecutes action sequences that
maximize expected or predicted reward, thus solving an ancient goal of AI research.

For many decades, however, AI researchers have not paid a lotof attention to the theory
of inductive inference. Why not? There is another reason besides the fact that most of them
have traditionally ignored theoretical computer science:the theory has been perceived as be-
ing associated with excessive computational costs. In fact, its most general statements refer to



4 No Author Given

methods that are optimal (in a certain asymptotic sense) butincomputable. So researchers in
machine learning and artificial intelligence have often resorted to alternative methods that lack
a strong theoretical foundation but at least seem feasible in certain limited contexts. For exam-
ple, since the early attempts at building a “General ProblemSolver” [38, 47] much work has
been done to develop mostly heuristic machine learning algorithms that solve new problems
based on experience with previous problems. Many pointers to learning by chunking, learning
by macros, hierarchical learning, learning by analogy,etc. can be found in Mitchell’s book
[36] and Kaelbling’s survey [26].

Recent years, however, have brought substantial progress in the field ofcomputableand
feasiblevariants of optimal algorithms for prediction, search, inductive inference, problem
solving, decision making, and reinforcement learning in very general environments. Many of
the results were obtained at the Swiss AI Lab IDSIA.

Outline. Section 2.2 will first provide a brief overview of the past 8 decades of AI re-
search. Sections 2.4, 2.5, 2.8 will then relate Occam’s razor and the notion of simplicity to
the shortest algorithms for computing computable objects,and concentrate on recentasymp-
totic optimality results for universal learning machines, essentially ignoring issues of practical
feasibility. Section 2.6, however, will focus on the Speed Prior, our recent non-traditional sim-
plicity measure which isnotbased on the shortest but on thefastestway of describing objects,
yielding computable optimal predictions and behaviors. Section 2.7 will use this measure to
derive non-traditional predictions concerning the futureof our universe. Sections 2.9 and 2.10
will address quite pragmatic issues and “true” time-optimality: given a problem and only so
much limited computation time, what is the best way of spending it on evaluating solution can-
didates? In particular, Section 2.10 will outline a bias-optimal way of incrementally solving
each task in a sequence of tasks with quickly verifiable solutions, given a probability distri-
bution (thebias) on programs computing solution candidates. Section 2.11 will summarize
the recent Gödel machine [79], a self-referential, theoretically optimal self-improver which
explicitly addresses the‘Grand Problem of Artificial Intelligence’[65] by optimally dealing
with limited resources in general reinforcement learning settings. Finally, Section 2.12 will
provide an overview of the simple but general formal theory of creativity and curiosity and
intrinsic motivation (1990-2010). Systems based on this theory actively create or discover
novel patterns that allow for compression progress. This explains many essential aspects of
intelligence including autonomous development, science,art, music, humor. Section 2.13 will
conclude by arguing that general AI is finally becoming a realformal science.

2.2 Highlights of AI History—From G ödel (1931) to 2010

Gödel and Lilienfeld. In 1931, just a few years after Julius Lilienfeld patented the transistor,
Kurt Gödel layed the foundations of theoretical computer science (CS) with his work on uni-
versal formal languages and the limits of proof and computation [19]. He constructed formal
systems allowing for self-referential statements that talk about themselves, in particular, about
whether they can be derived from a set of given axioms througha computational theorem
proving procedure. Gödel went on to construct statements that claim their own unprovability,
to demonstrate that traditional math is either flawed in a certain algorithmic sense or contains
unprovable but true statements.

Gödel’s incompleteness result is widely regarded as the most remarkable achievement of
20th century mathematics, although some mathematicians say it is logic, not math, and oth-
ers call it the fundamental result of theoretical computer science, a discipline that did not yet
officially exist back then but was effectively created through Gödel’s work. It had enormous



2 No Title Given 5

impact not only on computer science but also on philosophy and other fields. In particular,
since humans can “see” the truth of Gödel’s unprovable statements, some researchers mistak-
enly thought that his results show that machines and Artificial Intelligences (AIs) will always
be inferior to humans. Given the tremendous impact of Gödel’s results on AI theory, it does
make sense to date AI’s beginnings back to his 1931 publication [73, 72].

Zuse and Turing. In 1936 Alan Turing [91] introduced theTuring machineto reformu-
late Gödel’s results and Alonzo Church’s extensions thereof. TMs are often more convenient
than Gödel’s integer-based formal systems, and later became a central tool of CS theory. Si-
multaneously Konrad Zuse built the first working program-controlled computers (1935-1941),
using the binary arithmetic and thebits of Gottfried Wilhelm von Leibniz (1701) instead of
the more cumbersome decimal system used by Charles Babbage,who pioneered the con-
cept of program-controlled computers in the 1840s, and tried to build one, although without
success. By 1941, all the main ingredients of ‘modern’ computer science were in place, a
decade after Gödel’s paper, a century after Babbage, and roughly three centuries after Wil-
helm Schickard, who started the history of automatic computing hardware by constructing the
first non-program-controlled computer in 1623.

In the 1940s Zuse went on to devise the first high-level programming language (Plankalkül),
which he used to write the first chess program. Back then chess-playing was considered an in-
telligent activity, hence one might call this chess programthe first design of an AI program, al-
though Zuse did not really implement it back then. Soon afterwards, in 1948, Claude Shannon
[82] published information theory, recycling several older ideas such as Ludwig Boltzmann’s
entropy from 19th century statistical mechanics, and thebit of information(Leibniz, 1701).

Relays, Tubes, Transistors.Variants of transistors, the concept pioneered and patented by
Julius Edgar Lilienfeld (1920s) and Oskar Heil (1935), werebuilt by William Shockley, Walter
H. Brattain & John Bardeen (1948: point contact transistor)as well as Herbert F. Mataré &
Heinrich Walker (1948, exploiting transconductance effects of germanium diodes observed
in the Luftwaffeduring WW-II). Today, however, most transistors are of the old field-effect
type à la Lilienfeld & Heil. In principle a switch remains a switch no matter whether it is
implemented as a relay or a tube or a transistor, but transistors switch faster than relays (Zuse,
1941) and tubes (Colossus, 1943; ENIAC, 1946). This eventually led to significant speedups
of computer hardware, which was essential for many subsequent AI applications.

The I in AI. In 1950, some 56 years ago, Turing invented a famous subjective test to
decide whether a machine or something else is intelligent. 6years later, and 25 years af-
ter Gödel’s paper, John McCarthy finally coined the term “AI”. 50 years later, in 2006, this
prompted some to celebrate the 50th birthday of AI, but this section’s title should make clear
that its author cannot agree with this view—it is the thing that counts, not its name [72].

Roots of Probability-Based AI. In the 1960s and 1970s Ray Solomonoff combined theo-
retical CS and probability theory to establish a general theory of universal inductive inference
and predictive AI [85] closely related to the concept of Kolmogorov complexity [29]. His
theoretically optimal predictors and their Bayesian learning algorithms only assume that the
observable reactions of the environment in response to certain action sequences are sampled
from an unknown probability distribution contained in a setM of all enumerable distributions.
That is, given an observation sequence we only assume there exists a computer program that
can compute the probabilities of the next possible observations. This includes all scientific
theories of physics, of course. Since we typically do not know this program, we predict using
a weighted sumξ of all distributions inM , where the sum of the weights does not exceed 1.
It turns out that this is indeed the best one can possibly do, in a very general sense [85, 25].
Although the universal approach is practically infeasiblesinceM contains infinitely many
distributions, it does represent the first sound and generaltheory of optimal prediction based



6 No Author Given

on experience, identifying the limits of both human and artificial predictors, and providing a
yardstick for all prediction machines to come.

AI vs Astrology? Unfortunately, failed prophecies of human-level AI with just a tiny
fraction of the brain’s computing power discredited some ofthe AI research in the 1960s and
70s. Many theoretical computer scientists actually regarded much of the field with contempt
for its perceived lack of hard theoretical results. ETH Zurich’s Turing award winner and cre-
ator of the PASCAL programming language, Niklaus Wirth, didnot hesitate to compare AI
to astrology. Practical AI of that era was dominated by rule-based expert systems and Logic
Programming. That is, despite Solomonoff’s fundamental results, a main focus of that time
was on logical, deterministic deduction of facts from previously known facts, as opposed to
(probabilistic) induction of hypotheses from experience.

Evolution, Neurons, Ants. Largely unnoticed by mainstream AI gurus of that era, a
biology-inspired type of AI emerged in the 1960s when Ingo Rechenberg pioneered the
method of artificial evolution to solve complex optimization tasks [44], such as the design
of optimal airplane wings or combustion chambers of rocket nozzles. Such methods (and later
variants thereof, e.g., Holland [23] (1970s), often gave better results than classical approaches.
In the following decades, other types of “subsymbolic” AI also became popular, especially
neural networks. Early neural net papers include those of McCulloch & Pitts, 1940s (linking
certain simple neural nets to old and well-known, simple mathematical concepts such as lin-
ear regression); Minsky & Papert [35] (temporarily discouraging neural network research),
Kohonen [27], Amari, 1960s; Werbos [97], 1970s; and many others in the 1980s. Orthog-
onal approaches included fuzzy logic (Zadeh, 1960s), Rissanen’s practical variants [45] of
Solomonoff’s universal method, “representation-free” AI(Brooks [5]), Artificial Ants (Dorigo
& Gambardella [13], 1990s), statistical learning theory (in less general settings than those
studied by Solomonoff) & support vector machines (Vapnik [94] and others). As of 2006,
this alternative type of AI research is receiving more attention than “Good Old-Fashioned AI”
(GOFAI).

Mainstream AI Marries Statistics. A dominant theme of the 1980s and 90s was the
marriage of mainstream AI and old concepts from probabilitytheory. Bayes networks, Hidden
Markov Models, and numerous other probabilistic models found wide applications ranging
from pattern recognition, medical diagnosis, data mining,machine translation, robotics, etc.

Hardware Outshining Software: Humanoids, Robot Cars, Etc. In the 1990s and
2000s, much of the progress in practical AI was due to better hardware, getting roughly 1000
times faster per Euro per decade. In 1995, a fast vision-based robot car by Ernst Dickmanns
(whose team built the world’s first reliable robot cars in theearly 1980s with the help of
Mercedes-Benz, e. g., [12]) autonomously drove 1000 miles from Munich to Denmark and
back, up to 100 miles without intervention of a safety driver(who took over only rarely in
critical situations), in traffic at up to 120 mph, visually tracking up to 12 other cars simulta-
neously, automatically passing other cars. Japanese labs (Honda, Sony) and Pfeiffer’s lab at
TU Munich built famous humanoid walking robots. Engineering problems often seemed more
challenging than AI-related problems.

Another source of progress was the dramatically improved access to all kinds of data
through the WWW, created by Tim Berners-Lee at the European particle collider CERN
(Switzerland) in 1990. This greatly facilitated and encouraged all kinds of “intelligent” data
mining applications. However, there were few if any obviousfundamental algorithmic break-
throughs; improvements / extensions of already existing algorithms seemed less impressive
and less crucial than hardware advances. For example, chessworld champion Kasparov was
beaten by a fast IBM computer running a fairly standard algorithm. Rather simple but com-
putationally expensive probabilistic methods for speech recognition, statistical machine trans-



2 No Title Given 7

lation, computer vision, optimization, virtual realitiesetc. started to become feasible on PCs,
mainly because PCs had become 1000 times more powerful within a decade or so.

As noted by Stefan Artmann (personal communication, 2006),today’s AI textbooks seem
substantially more complex and less unified than those of several decades ago, e. g., [39],
since they have to cover so many apparently quite different subjects. There seems to be a need
for a new unifying view of intelligence. Today the importance of embodied, embedded AI
(real robots living in real physical environments) is almost universally acknowledged (e. g.,
[41]). While the extension of AI into the realm of the physical body seems to be a step away
from formalism, the new millennium’s formal point of view isactually taking this step into
account in a very general way, through the first mathematicaltheory of universal embedded
AI, combining “old” theoretical computer science and “ancient” probability theory to derive
optimal behavior for embedded, embodied rational agents living in unknown but learnable
environments. More on this below.

2.3 More Formally

Before we proceed, let us clarify what we are talking about. Shouldn’t researchers on Arti-
ficial Intelligence (AI) agree on basic questions such as: What is Intelligence? Interestingly
they don’t. Turing’s definition (1950, 19 years after Gödel’s paper) was totally subjective: in-
telligent is what convinces me that it is intelligent while Iam interacting with it. Fortunately,
however, there are now more formal and less subjective definitions with respect to the abilities
of universal optimal problem solvers.

What is the optimal way of predicting the future, given the past? Which is the best way to
act such as to maximize one’s future expected reward? Which is the best way of searching for
the solution to a novel problem, making optimal use of solutions to earlier problems?

Most previous work on these old and fundamental questions has focused on very limited
settings, such as Markovian environments where the optimalnext action, given past inputs,
depends on the current input only [26].

We will concentrate on a much weaker and therefore much more general assumption,
namely, that the environment’s responses are sampled from acomputable probability distribu-
tion. If even this weak assumption were not true then we couldnot even formally specify the
environment, leave alone writing reasonable scientific papers about it.

Let us first introduce some notation.B∗ denotes the set of finite sequences over the binary
alphabetB= {0,1}, B∞ the set of infinite sequences overB, λ the empty string,B♯ = B∗∪B∞.
x,y,z,z1,z2 stand for strings inB♯. If x ∈ B∗ then xy is the concatenation ofx and y (e.g.,
if x = 10000 andy = 1111 thenxy = 100001111). Forx ∈ B∗, l(x) denotes the number of
bits in x, wherel(x) = ∞ for x ∈ B∞; l(λ ) = 0. xn is the prefix ofx consisting of the first
n bits, if l(x) ≥ n, andx otherwise (x0 := λ ). log denotes the logarithm with basis 2,f ,g
denote functions mapping integers to integers. We writef (n) = O(g(n)) if there exist positive
constantsc,n0 such thatf (n) ≤ cg(n) for all n > n0. For simplicity let us consider universal
Turing Machines [91] (TMs) with input alphabetB and trinary output alphabet including the
symbols “0”, “1”, and “ ” (blank). For efficiency reasons, theTMs should have several work
tapes to avoid potential quadratic slowdowns associated with 1-tape TMs. The remainder of
this paper assumes a fixed universal reference TM.

Now suppose bitstringx represents the data observed so far. What is its most likely con-
tinuationy∈ B♯? Bayes’ theorem yields

P(xy | x) =
P(x | xy)P(xy)

P(x)
∝ P(xy) (2.1)



8 No Author Given

whereP(z2 | z1) is the probability ofz2, given knowledge ofz1, andP(x) =
∫

z∈B♯ P(xz)dz
is just a normalizing factor. So the most likely continuation y is determined byP(xy), the
prior probability of xy. But which prior measureP is plausible? Occam’s razor suggests that
the “simplest”y should be more probable. But which exactly is the “correct” definition of
simplicity? Sections 2.4 and 2.5 will measure the simplicity of a description by its length.
Section 2.6 will measure the simplicity of a description by the time required to compute the
described object.

2.4 Prediction Using a Universal Algorithmic Prior Based onthe
Shortest Way of Describing Objects

Roughly fourty years ago Solomonoff started the theory of universal optimal induction based
on the apparently harmless simplicity assumption thatP is computable [84]. While Equation
(2.1) makes predictions of the entire future, given the past, Solomonoff [85] focuses just on the
next bit in a sequence. Although this provokes surprisinglynontrivial problems associated with
translating the bitwise approach to alphabets other than the binary one — this was achieved
only recently [25] — it is sufficient for obtaining essentialinsights. Given an observed bitstring
x, Solomonoff assumes the data are drawn according to a recursive measureµ; that is, there is
a program for a universal Turing machine that readsx∈ B∗ and computesµ(x) and halts. He
estimates the probability of the next bit (assuming there will be one), using the remarkable,
well-studied, enumerable priorM [84, 101, 85, 18, 32]

M(x) = ∑
program pre f ix p computes

out put starting with x

2−l(p). (2.2)

M is universal, dominating the less general recursive measures as follows: For allx∈ B∗,

M(x) ≥ cµ µ(x) (2.3)

wherecµ is a constant depending onµ but not onx. Solomonoff observed that the conditional
M-probability of a particular continuation, given previousobservations, converges towards
the unknown conditionalµ as the observation size goes to infinity [85], and that the sum
over all observation sizes of the correspondingµ-expected deviations is actually bounded by a
constant. Hutter (on the author’s SNF research grant “”Unification of Universal Induction and
Sequential Decision Theory”) showed that the number of prediction errors made by universal
Solomonoff prediction is essentially bounded by the numberof errors made by any other
predictor, including the optimal scheme based on the trueµ [25].

Recent Loss Bounds for Universal Prediction.A more general result is this. Assume
we do know thatp is in some setP of distributions. Choose a fixed weightwq for eachq in P
such that thewq add up to 1 (for simplicity, letP be countable). Then construct the Bayesmix
M(x) = ∑q wqq(x), and predict usingM instead of the optimal but unknownp. How wrong is
it to do that? The work of Hutter provides general and sharp (!) loss bounds [25]:

Let LM(n) and Lp(n) be the total expected unit losses of theM-predictor and the p-
predictor, respectively, for the firstn events. ThenLM(n)−Lp(n) is at most of the order of
√

Lp(n). That is,M is not much worse thanp. And in general, no other predictor can do better
than that! In particular, ifp is deterministic, then theM-predictor soon won’t make any errors
any more.

If P containsall recursively computable distributions, thenM becomes the celebrated enu-
merable universal prior. That is, after decades of somewhatstagnating research we now have



2 No Title Given 9

sharp loss bounds for Solomonoff’s universal induction scheme (compare work of Merhav and
Feder [34]).

Solomonoff’s approach, however, is uncomputable. To obtain a feasible approach, reduce
M to what you get if you, say, just add up weighted estimated future finance data probabilities
generated by 1000 commercial stock-market prediction software packages. If only one of the
probability distributions happens to be close to the true one (but you do not know which) you
still should get rich.

Note that the approach is much more general than what is normally done in traditional
statistical learning theory, e.g., [94], where the often quite unrealistic assumption is that the
observations are statistically independent.

2.5 Super Omegas and Generalizations of Kolmogorov
Complexity & Algorithmic Probability

Our research generalized Solomonoff’s approach to the caseof less restrictive nonenumerable
universal priors that are still computable in the limit [60,62].

An objectX is formally describable if a finite amount of information completely describes
X and onlyX. More to the point,X should be representable by a possibly infinite bitstringx
such that there is a finite, possibly never halting programp that computesx and nothing butx in
a way that modifies each output bit at most finitely many times;that is, each finite beginning of
x eventuallyconvergesand ceases to change. This constructive notion of formal describability
is less restrictive than the traditional notion of computability [91], mainly because we do not
insist on the existence of a halting program that computes anupper bound of the convergence
time of p’s n-th output bit. Formal describability thus pushes constructivism [6, 1] to the
extreme, barely avoiding the nonconstructivism embodied by even less restrictive concepts of
describability (compare computabilityin the limit [20, 43, 17] and∆ 0

n-describability [46][32,
p. 46-47]).

The traditional theory of inductive inference focuses on Turing machines with one-way
write-only output tape. This leads to the universal enumerable Solomonoff-Levin (semi) mea-
sure. We introduced more general, nonenumerable, but stilllimit-computable measures and
a natural hierarchy of generalizations of algorithmic probability and Kolmogorov complexity
[60, 62], suggesting that the “true” information content ofsome (possibly infinite) bitstringx
actually is the size of the shortest nonhalting program thatconverges tox and nothing butx on
a Turing machine that can edit its previous outputs. In fact,this “true” content is often smaller
than the traditional Kolmogorov complexity. We showed thatthere areSuper Omegascom-
putable in the limit yet more random than Chaitin’s “number of wisdom” Omega[10] (which
is maximally random in a weaker traditional sense), and thatany approximable measure ofx
is small for anyx lacking a short description.

We also showed that there is a universal cumulatively enumerable measure ofx based on
the measure of all enumerabley lexicographically greater thanx. It is more dominant yet just
as limit-computable as Solomonoff’s [62]. That is, if we areinterested in limit-computable
universal measures, we should prefer the novel universal cumulatively enumerable measure
over the traditional enumerable one. If we include in our Bayesmix such limit-computable
distributions we obtain again sharp loss bounds for prediction based on the mix [60, 62].

Our approach highlights differences between countable anduncountable sets. Which are
the potential consequences for physics? We argue that things such asuncountable time and
space andincomputable probabilities actually should not play a role inexplaining the world,



10 No Author Given

for lack of evidence that they are really necessary [60]. Some may feel tempted to counter this
line of reasoning by pointing out that for centuries physicists have calculated with continua of
real numbers, most of them incomputable. Even quantum physicists who are ready to give up
the assumption of a continuous universe usually do take for granted the existence of continu-
ous probability distributions on their discrete universes, and Stephen Hawking explicitly said:
“Although there have been suggestions that space-time may have a discrete structure I see no
reason to abandon the continuum theories that have been so successful.”Note, however, that
all physicists in fact have only manipulated discrete symbols, thus generating finite, describ-
able proofs of their results derived from enumerable axioms. That real numbers reallyexistin
a way transcending the finite symbol strings used by everybody may be a figment of imag-
ination — compare Brouwer’s constructive mathematics [6, 1] and the Löwenheim-Skolem
Theorem [33, 83] which implies that any first order theory with an uncountable model such
as the real numbers also has a countable model. As Kronecker put it: “Die ganze Zahl schuf
der liebe Gott, alles̈Ubrige ist Menschenwerk”(“God created the integers, all else is the work
of man” [7]). Kronecker greeted with scepticism Cantor’s celebrated insight [8] about real
numbers, mathematical objects Kronecker believed did not even exist.

Assuming our future lies among the few (countably many) describable futures, we can
ignore uncountably many nondescribable ones, in particular, the random ones. Adding the
relatively mild assumption that the probability distribution from which our universe is drawn
is cumulatively enumerable provides a theoretical justification of the prediction that the most
likely continuations of our universes are computable through short enumeration procedures. In
this sense Occam’s razor is just a natural by-product of a computability assumption! But what
about falsifiability? The pseudorandomness of our universemight be effectively undetectable
in principle, because some approximable and enumerable patterns cannot be proven to be
nonrandom in recursively bounded time.

The next sections, however, will introduce additional plausible assumptions that do lead
to computableoptimal prediction procedures.

2.6 Computable Predictions through the Speed Prior Based on
the Fastest Way of Describing Objects

Unfortunately, whileM and the more general priors of Section 2.5 are computable in the limit,
they are not recursive, and thus practically infeasible. This drawback inspired less general
yet practically more feasible principles of minimum description length (MDL) [96, 45] as
well as priors derived from time-bounded restrictions [32]of Kolmogorov complexity [29,
84, 10]. No particular instance of these approaches, however, is universally accepted or has a
general convincing motivation that carries beyond rather specialized application scenarios. For
instance, typical efficient MDL approaches require the specification of a class of computable
models of the data, say, certain types of neural networks, plus some computable loss function
expressing the coding costs of the data relative to the model. This provokes numerousad-hoc
choices.

Our recent work [63], however, offers an alternative to the celebrated but noncomputable
algorithmic simplicity measure or Solomonoff-Levin measure discussed above [84, 101, 85].
We introduced a new measure (a prior on the computable objects) which is not based on the
shortestbut on thefastestway of describing objects.

Let us assume that the observed data sequence is generated bya computational process,
and that any possible sequence of observations is thereforecomputable in the limit [60]. This



2 No Title Given 11

assumption is stronger and more radical than the traditional one: Solomonoff just insists that
the probability of any sequence prefix is recursively computable, but the (infinite) sequence
itself may still be generated probabilistically.

Given our starting assumption that data are deterministically generated by a machine, it
seems plausible that the machine suffers from a computational resource problem. Since some
things are much harder to compute than others, the resource-oriented point of view suggests
the following postulate.

Postulate 1 The cumulative prior probability measure of all x incomputable within time t by
any method is at most inversely proportional to t.

This postulate leads to the Speed PriorS(x), the probability that the output of the following
probabilistic algorithm starts withx [63]:

Initialize: Sett := 1. Let the input scanning head of a universal TM point to the first
cell of its initially empty input tape.
Forever repeat:While the number of instructions executed so far exceedst: toss an
unbiased coin; if heads is up sett := 2t; otherwise exit. If the input scanning head
points to a cell that already contains a bit, execute the corresponding instruction (of
the growing self-delimiting program, e.g., [31, 32]). Elsetoss the coin again, set the
cell’s bit to 1 if heads is up (0 otherwise), and sett := t/2.

Algorithm GUESS is very similar to a probabilistic search algorithm used in previous
work on applied inductive inference [55, 57]. On several toyproblems it generalized extremely
well in a way unmatchable by traditional neural network learning algorithms.

With Scomes a computable methodAS for predicting optimally withinε accuracy [63].
Consider a finite but unknown programp computingy ∈ B∞. What if Postulate 1 holds but
p is not optimally efficient, and/or computed on a computer that differs from our reference
machine? Then we effectively do not sample beginningsyk from S but from an alternative
semimeasureS′. Can we still predict well? Yes, because the Speed PriorSdominatesS′. This
dominance is all we need to apply the recent loss bounds [25].The loss that we are expected
to receive by predicting according toAS instead of using the true but unknownS′ does not
exceed the optimal loss by much [63].

2.7 Speed Prior-Based Predictions for Our Universe

Physicists and economists and other inductive scientists make predictions based on obser-
vations. Astonishingly, however, few physicists are awareof the theory ofoptimal inductive
inference [84, 29]. In fact, when talking about the very nature of their inductive business, many
physicists cite rather vague concepts such as Popper’s falsifiability [42], instead of referring
to quantitative results.

All widely accepted physical theories, however, are accepted not because they are falsifiable—
they are not—or because they match the data—many alternative theories also match the data—
but because they are simple in a certain sense. For example, the theory of gravitation is induced
from locally observable training examples such as falling apples and movements of distant
light sources, presumably stars. The theory predicts that apples on distant planets in other
galaxies will fall as well. Currently nobody is able to verify or falsify this. But everybody be-
lieves in it because this generalization step makes the theory simpler than alternative theories



12 No Author Given

with separate laws for apples on other planets. The same holds for superstring theory [21] or
Everett’s many world theory [15], which presently also are neither verifiable nor falsifiable,
yet offer comparatively simple explanations of numerous observations. In particular, most of
Everett’s postulated many worlds will remain unobservableforever, but the assumption of
their existence simplifies the theory, thus making it more beautiful and acceptable.

In Sections 2.4 and 2.5 we have made the assumption that the probabilities of next events,
given previous events, are (limit-)computable. Here we make a stronger assumption by adopt-
ing Zuse’s thesis[99, 100, 71], namely, that the very universe is actually being computed
deterministically, e.g., on a cellular automaton (CA) [92,95]. Quantum physics, quantum
computation [3, 11, 40], Heisenberg’s uncertainty principle and Bell’s inequality [2] donot
imply any physical evidence against this possibility, e.g., [90].

But then which is our universe’s precise algorithm? The following method [56] does com-
pute it:

Systematically create and execute all programs for a universal computer, such as a
Turing machine or a CA; the first program is run for one instruction every second
step on average, the next for one instruction every second ofthe remaining steps on
average, and so on.

This method in a certain sense implements the simplest theory of everything:all computable
universes, including ours and ourselves as observers, are computed by the very short program
that generates and executesall possible programs [56]. In nested fashion, some of these pro-
grams will execute processes that again compute all possible universes, etc. [56]. Of course,
observers in “higher-level” universes may be completely unaware of observers or universes
computed by nested processes, and vice versa. For example, it seems hard to track and inter-
pret the computations performed by a cup of tea.

The simple method above is more efficient than it may seem at first glance. A bit of
thought shows that it even has the optimal order of complexity. For example, it outputs our
universe history as quickly as this history’s fastest program, save for a (possibly huge) constant
slowdown factor that does not depend on output size.

Nevertheless, some universes are fundamentally harder to compute than others. This is re-
flected by the Speed PriorSdiscussed above (Section 2.6). So let us assume that our universe’s
history is sampled fromS or a less dominant prior reflecting suboptimal computation of the
history. Now we can immediately predict:

1. Our universe will not get many times older than it is now [60, 63] — essentially, the
probability that it will last 2n times longer than it has lasted so far is at most 2−n.

2. Any apparent randomness in any physical observation must bedue to some yet un-
known butfastpseudo-random generator PRG [60, 63] which we should try to discover.2a.
A re-examination of beta decay patterns may reveal that a very simple, fast, but maybe not
quite trivial PRG is responsible for the apparently random decays of neutrons into protons,
electrons and antineutrinos.2b. Whenever there are several possible continuations of our uni-
verse corresponding to different Schrödinger wave function collapses — compare Everett’s
widely accepted many worlds hypothesis [15] — we should be more likely to end up in one
computable by a shortandfast algorithm. A re-examination of split experiment data involving
entangled states such as the observations of spins of initially close but soon distant particles
with correlated spins might reveal unexpected, nonobvious, nonlocal algorithmic regularity
due to a fast PRG.

3. Large scale quantum computation [3] will not work well, essentially because it would
require too many exponentially growing computational resources in interfering “parallel uni-
verses” [15].



2 No Title Given 13

4. Any probabilistic algorithm depending on truly random inputs from the environment
will not scale well in practice.

Prediction2 is verifiable but not necessarily falsifiable within a fixed time interval given
in advance. Still, perhaps the main reason for the current absence of empirical evidence in this
vein is that few [14] have looked for it.

In recent decades several well-known physicists have started writing about topics of com-
puter science, e.g., [40, 11], sometimes suggesting that real world physics might allow for
computing things that are not computable traditionally. Unimpressed by this trend, computer
scientists have argued in favor of the opposite: since thereis no evidence that we need more
than traditional computability to explain the world, we should try to make do without this
assumption, e.g., [99, 100, 16, 56, 63, 71].

2.8 Optimal Rational Decision Makers

So far we have talked about passive prediction, given the observations. Note, however, that
agents interacting with an environment can also use predictions of the future to compute action
sequences that maximize expected future reward. Hutter’sAIXI model[25] (established on the
author’s SNF grant 61847) does exactly this, by combining Solomonoff’s M-based universal
prediction scheme with anexpectimaxcomputation.

In cyclet actionyt results in perceptionxt and rewardrt , where all quantities may depend
on the complete history. The perceptionx′t and rewardrt are sampled from the (reactive)
environmental probability distributionµ. Sequential decision theory shows how to maximize
the total expected reward, called value, ifµ is known. Reinforcement learning [26] is used ifµ
is unknown. AIXI defines a mixture distributionξ as a weighted sum of distributionsν ∈ M ,
whereM is any class of distributions including the true environment µ.

It can be shown that the conditionalM probability of environmental inputs to an AIXI
agent, given the agent’s earlier inputs and actions, converges with increasing length of interac-
tion against the true, unknown probability [25], as long as the latter is recursively computable,
analogously to the passive prediction case.

Recent work [25] also demonstrated AIXI’s optimality in thefollowing sense. The Bayes-
optimal policypξ based on the mixtureξ is self-optimizing in the sense that the average value
converges asymptotically for allµ ∈ M to the optimal value achieved by the (infeasible)
Bayes-optimal policypµ which knowsµ in advance. The necessary condition thatM admits
self-optimizing policies is also sufficient. No other structural assumptions are made onM .
Furthermore,pξ is Pareto-optimal in the sense that there is no other policy yielding higher or
equal value inall environmentsν ∈ M and a strictly higher value in at least one [25].

We can modify the AIXI model such that its predictions are based on theε-approximable
Speed PriorS instead of the incomputableM. Thus we obtain the so-calledAIS model.Using
Hutter’s approach [25] we can now show that the conditionalSprobability of environmental
inputs to an AIS agent, given the earlier inputs and actions,converges to the true but unknown
probability, as long as the latter is dominated byS, such as theS′ above.

2.9 Optimal Universal Search Algorithms

In a sense, plain search is less general than reinforcement learning because it does not neces-
sarily involve predictions of unseen data. Still, search isa central aspect of computer science



14 No Author Given

(and any reinforcement learner needs a searcher as a submodule—see Section 2.11). Surpris-
ingly, however, many books on search algorithms do not even mention the following, very
simple asymptotically optimal, “universal” algorithm fora broad class of search problems.

Define a probability distributionP on a finite or infinite set of programs for a given com-
puter.P represents the searcher’s initial bias (e.g.,P could be based on program length, or on
a probabilistic syntax diagram).

Method LSEARCH: Set current time limit T=1. WHILE problem not solvedDO:
Test all programsq such thatt(q), the maximal time spent on creating and
running and testingq, satisfiest(q) < P(q) T. SetT := 2T.

LSEARCH(for Levin Search) may be the algorithm Levin was referring to in his 2 page paper
[30] which states that there is an asymptotically optimal universal search method for problems
with easily verifiable solutions, that is, solutions whose validity can be quickly tested. Given
some problem class, if some unknown optimal programp requiresf (k) steps to solve a prob-
lem instance of sizek, then LSEARCH will need at mostO( f (k)/P(p)) = O( f (k)) steps —
the constant factor 1/P(p) may be huge but does not depend onk. Compare [32, p. 502-505]
and [24] and the fastest way of computing all computable universes in Section 2.7.

Hutter developed a more complex asymptotically optimal search algorithm forall well-
defined problems, not just those with with easily verifiable solutions [24, 25]. HSEARCHclev-
erly allocates part of the total search time for searching the space of proofs to find provably
correct candidate programs with provable upper runtime bounds, and at any given time fo-
cuses resources on those programs with the currently best proven time bounds. Unexpectedly,
HSEARCHmanages to reduce the unknown constant slowdown factor of LSEARCHto a value
of 1+ ε, whereε is an arbitrary positive constant.

Unfortunately, however, the search in proof space introduces an unknownadditiveprob-
lem class-specific constant slowdown, which again may be huge. While additive constants
generally are preferrable over multiplicative ones, both types may make universal search meth-
ods practically infeasible.

HSEARCH and LSEARCH are nonincremental in the sense that they do not attempt to
minimize their constants by exploiting experience collected in previous searches. Our method
AdaptiveLSEARCHor ALS tries to overcome this [81] — compare Solomonoff’s related ideas
[86, 87]. Essentially it works as follows: whenever LSEARCH finds a programq that com-
putes a solution for the current problem,q’s probabilityP(q) is substantially increased using
a “learning rate,” while probabilities of alternative programs decrease appropriately. Subse-
quent LSEARCHes for new problems then use the adjustedP, etc. A nonuniversal variant of
this approach was able to solve reinforcement learning (RL)tasks [26] in partially observable
environments unsolvable by traditional RL algorithms [98,81].

Each LSEARCH invoked by ALS is optimal with respect to the most recent adjustment of
P. On the other hand, the modifications ofP themselves are not necessarily optimal. Recent
work discussed in the next section overcomes this drawback in a principled way.

2.10 Optimal Ordered Problem Solver (OOPS)

Our recent OOPS [66, 64] is a simple, general, theoretically sound, in a certain sense time-
optimal way of searching for a universal behavior or programthat solves each problem in a
sequence of computational problems, continually organizing and managing and reusing earlier
acquired knowledge. For example, then-th problem may be to compute then-th event from



2 No Title Given 15

previous events (prediction), or to find a faster way througha maze than the one found during
the search for a solution to then−1-th problem (optimization).

Let us first introduce the important concept of bias-optimality, which is a pragmatic def-
inition of time-optimality, as opposed to the asymptotic optimality of both LSEARCH and
HSEARCH, which may be viewed as academic exercises demonstrating that theO() notation
can sometimes be practically irrelevant despite its wide use in theoretical computer science.
Unlike asymptotic optimality, bias-optimality does not ignore huge constant slowdowns:

Definition 1 (BIAS-OPTIMAL SEARCHERS). Given is a problem classR, a search space
C of solution candidates (where any problem r∈ R should have a solution inC ), a task
dependent bias in form of conditional probability distributions P(q | r) on the candidates
q ∈ C , and a predefined procedure that creates and tests any given qon any r∈ R within
time t(q, r) (typically unknown in advance). A searcher is n-bias-optimal(n ≥ 1) if for any
maximal total search time Tmax > 0 it is guaranteed to solve any problem r∈ R if it has a
solution p∈ C satisfying t(p, r) ≤ P(p | r) Tmax/n. It is bias-optimalif n = 1.

This definition makes intuitive sense: the most probable candidates should get the lion’s share
of the total search time, in a way that precisely reflects the initial bias. Now we are ready to
provide a general overview of the basic ingredients ofOOPS[66, 64]:
Primitives. We start with an initial set of user-defined primitive behaviors. Primitives may
be assembler-like instructions or time-consuming software, such as, say, theorem provers, or
matrix operators for neural network-like parallel architectures, or trajectory generators for
robot simulations, or state update procedures for multiagent systems, etc. Each primitive is
represented by a token. It is essential that those primitives whose runtimes are not known in
advance can be interrupted at any time.
Task-specific prefix codes.Complex behaviors are represented by token sequences or pro-
grams. To solve a given task represented by task-specific program inputs,OOPS tries to se-
quentially compose an appropriate complex behavior from primitive ones, always obeying
the rules of a given user-defined initial programming language. Programs are grown incre-
mentally, token by token; their beginnings orprefixesare immediately executed while being
created; this may modify some task-specific internal state or memory, and may transfer control
back to previously selected tokens (e.g., loops). To add a new token to some program prefix,
we first have to wait until the execution of the prefix so farexplicitly requestssuch a pro-
longation, by setting an appropriate signal in the internalstate. Prefixes that cease to request
any further tokens are calledself-delimitingprograms or simply programs (programs are their
own prefixes).Binary self-delimiting programs were studied by [31] and [9] in thecontext of
Turing machines [91] and the theory of Kolmogorov complexity and algorithmic probability
[84, 29]. OOPS, however, uses a more practical, not necessarily binary framework.

The program construction procedure above yieldstask-specific prefix codeson program
space: with any given task, programs that halt because they have found a solution or encoun-
tered some error cannot request any more tokens. Given the current task-specific inputs, no
program can be the prefix of another one. On a different task, however, the same program may
continue to request additional tokens. This is important for our novel approach—incrementally
growing self-delimiting programs are unnecessary for the asymptotic optimality properties of
LSEARCHand HSEARCH, but essential forOOPS.
Access to previous solutions.Let pn denote a found prefix solving the firstn tasks. The
search forpn+1 may greatly profit from the information conveyed by (or the knowledge em-
bodied by)p1, p2, . . . , pn which are stored orfrozenin specialnonmodifiable memory shared
by all tasks, such that they are accessible topn+1 (this is another difference tononincremental



16 No Author Given

LSEARCHand HSEARCH). For example,pn+1 might execute a token sequence that callspn−3

as a subprogram, or that copiespn−17 into some internalmodifiabletask-specific memory, then
modifies the copy a bit, then applies the slightly edited copyto the current task. In fact, since
the number of frozen programs may grow to a large value, much of the knowledge embodied
by p j may be about how to access and edit and use olderpi (i < j).
Bias. The searcher’s initial bias is embodied by initial, user-defined, task dependent proba-
bility distributions on the finite or infinite search space ofpossible program prefixes. In the
simplest case we start with a maximum entropy distribution on the tokens, and define pre-
fix probabilities as the products of the probabilities of their tokens. But prefix continuation
probabilities may also depend on previous tokens in contextsensitive fashion.
Self-computed suffix probabilities. In fact, we permit that any executed prefix assigns a
task-dependent, self-computed probability distributionto its own possible continuations. This
distribution is encoded and manipulated in task-specific internal memory. So unlike with ALS

[81] we do not use a prewired learning scheme to update the probability distribution. Instead
we leave such updates to prefixes whose online execution modifies the probabilities of their
suffixes. By, say, invoking previously frozen code that redefines the probability distribution
on future prefix continuations, the currently tested prefix may completely reshape the most
likely paths through the search space of its own continuations, based on experience ignored
by nonincremental LSEARCHand HSEARCH. This may introduce significant problem class-
specific knowledge derived from solutions to earlier tasks.
Two searches.Essentially,OOPSprovides equal resources for two near-bias-optimalsearches
(Def. 1) that run in parallel untilpn+1 is discovered and stored in non-modifiable memory.
The first is exhaustive; it systematically tests all possible prefixes on all tasks up ton+ 1.
Alternative prefixes are tested on all current tasks in parallel while still growing; once a task
is solved, we remove it from the current set; prefixes that fail on a single task are discarded.
The second search is much more focused; it only searches for prefixes that start withpn, and
only tests them on taskn+1, which is safe, because we already know that such prefixes solve
all tasks up ton.
Bias-optimal backtracking. HSEARCH and LSEARCH assume potentially infinite storage.
Hence they may largely ignore questions of storage management. In any practical system,
however, we have to efficiently reuse limited storage. Therefore, in both searches ofOOPS, al-
ternative prefix continuations are evaluated by a novel, practical, token-oriented backtracking
procedure that can deal with several tasks in parallel, given somecode biasin the form of pre-
viously found code. The procedure always ensures near-bias-optimality(Def. 1): no candidate
behavior gets more time than it deserves, given the probabilistic bias. Essentially we conduct
a depth-first search in program space, where the branches of the search tree are program pre-
fixes, and backtracking (partial resets of partially solvedtask sets and modifications of internal
states and continuation probabilities) is triggered once the sum of the runtimes of the current
prefix on all current tasks exceeds the prefix probability multiplied by the total search time so
far.

In case of unknown, infinite task sequences we can typically never know whether we al-
ready have found an optimal solver for all tasks in the sequence. But once we unwittingly
do find one, at most half of the total future run time will be wasted on searching for alterna-
tives. Given the initial bias and subsequent bias shifts dueto p1, p2, . . . , no other bias-optimal
searcher can expect to solve then+1-th task set substantially faster thanOOPS. A by-product
of this optimality property is that it gives us a natural and precise measure of bias and bias
shifts, conceptually related to Solomonoff’sconceptual jump sizeof [86, 87].

Since there is no fundamental difference between domain-specific problem-solving pro-
grams and programs that manipulate probability distributions and thus essentially rewrite the



2 No Title Given 17

search procedure itself, we collapse both learning and metalearning in the same time-optimal
framework.
An example initial language.For an illustrative application, we wrote an interpreter for a
stack-based universal programming language inspired by FORTH [37], with initial primitives
for defining and calling recursive functions, iterative loops, arithmetic operations, and domain-
specific behavior. Optimal metasearching for better searchalgorithms is enabled through the
inclusion of bias-shifting instructions that can modify the conditional probabilities of future
search options in currently running program prefixes.
Experiments.Using the assembler-like language mentioned above, we firstteachOOPSsome-
thing about recursion, by training it to construct samples of the simple context free language
{1k2k} (k 1’s followed byk 2’s), for k up to 30 (in fact, the system discovers a universal solver
for all k). This takes roughly 0.3 days on a standard personal computer (PC). Thereafter, within
a few additional days,OOPSdemonstrates incremental knowledge transfer: it exploitsaspects
of its previously discovered universal 1k2k-solver, by rewriting its search procedure such that
it more readily discovers a universal solver for allk disk Towers of Hanoiproblems—in the
experiments it solves all instances up tok = 30 (solution size 2k−1), but it would also work
for k > 30. Previous, less general reinforcement learners andnonlearning AI planners tend to
fail for much smaller instances.
Future researchmay focus on devising particularly compact, particularly reasonable sets of
initial codes with particularly broad practical applicability. It may turn out that the most useful
initial languages are not traditional programming languages similar to the FORTH-like one, but
instead based on a handful of primitive instructions for massively parallel cellular automata
[92, 95, 100], or on a few nonlinear operations on matrix-like data structures such as those
used in recurrent neural network research [97, 48, 4]. For example, we could use the principles
of OOPSto create a non-gradient-based, near-bias-optimal variant of Hochreiter’s successful
recurrent network metalearner [22]. It should also be of interest to study probabilisticSpeed
Prior-basedOOPSvariants [63, 55, 57] and to devise applications ofOOPS-like methods as
components of universal reinforcement learners (see below).

2.11 The G̈odel Machine

The Gödel machine [69, 67, 79] explicitly addresses the‘Grand Problem of Artificial Intel-
ligence’ [65] by optimally dealing with limited resources in generalreinforcement learning
settings, and with the possibly huge (but constant) slowdowns buried by AIXI(t, l) [25] in
the somewhat misleadingO()-notation. It is designed to solve arbitrary computationalprob-
lems beyond those solvable by plainOOPS, such as maximizing the expected future reward of
a robot in a possibly stochastic and reactive environment (note that the total utility of some
robot behavior may be hard to verify—its evaluation may consume the robot’s entire lifetime).

How does it work? While executing some arbitrary initial problem solving strategy, the
Gödel machine simultaneously runs a proof searcher which systematically and repeatedly tests
proof techniques. Proof techniques are programs that may read any part of the Gödel machine’s
state, and write on a reserved part which may be reset for eachnew proof technique test. In an
example Gödel machine [79] this writable storage includesthe variablesproofandswitchprog,
whereswitchprogholds a potentially unrestricted program whose execution could completely
rewrite any part of the Gödel machine’s current software. Normally the currentswitchprog
is not executed. However, proof techniques may invoke a special subroutinecheck()which
tests whetherproof currently holds a proof showing that the utility of stoppingthe system-
atic proof searcher and transferring control to the currentswitchprogat a particular point in



18 No Author Given

the near future exceeds the utility of continuing the searchuntil some alternativeswitchprog
is found. Such proofs are derivable from the proof searcher’s axiom scheme which formally
describes the utility function to be maximized (typically the expected future reward in the
expected remaining lifetime of the Gödel machine), the computational costs of hardware in-
structions (from which all programs are composed), and the effects of hardware instructions on
the Gödel machine’s state. The axiom scheme also formalizes known probabilistic properties
of the possibly reactive environment, and also theinitial Gödel machine state and software,
which includes the axiom scheme itself (no circular argument here). Thus proof techniques
can reason about expected costs and results of all programs including the proof searcher.

Oncecheck()has identified a provably goodswitchprog, the latter is executed (some care
has to be taken here because the proof verification itself andthe transfer of control toswitch-
progalso consume part of the typically limited lifetime). The discoveredswitchprogrepresents
a globally optimal self-change in the following sense: provablynoneof all the alternative
switchprogs andproofs (that could be found in the future by continuing the proof search) is
worth waiting for.

There are many ways of initializing the proof searcher. Although identical proof tech-
niques may yield different proofs depending on the time of their invocation (due to the contin-
ually changing Gödel machine state), there is a bias-optimal and asymptotically optimal proof
searcher initialization based on a variant ofOOPS[79] (Section 2.10). It exploits the fact that
proof verification is a simple and fast business where the particular optimality notion ofOOPS

is appropriate. The Gödel machine itself, however, may have an arbitrary,typically different
and more powerfulsense of optimality embodied by its given utility function.

One practical question remains: to build a particular, especially practical Gödel machine
with small initial constant overhead, which generally useful theorems should one add to the
axiom set (as initial bias) such that the initial searcher does not have to prove them from
scratch? If our AI can execute only a fixed number of computational instructions per unit time
interval (say, 10 trillion elementary operations per second), what is the best way of using them
in the initial phase of his Gödel machine, before the first self-rewrite?

2.12 Formal Theory of Creativity for Artificial Scientists &
Artists (1990-2010)

Perhaps an answer to the question above may be found by studying curious, creative systems
that not only maximize rare external rewards but also frequent additional intrinsic rewards
for learning more about how the world works, and what can be done in it. Below we will
briefly summarize the simple but general formal theory of creativity and intrinsic motivation
(1990-2010) which explains many essential aspects of intelligence including autonomous de-
velopment, science, art, music, humor.

Since 1990 we have built agents that may be viewed as simple artificial scientists or artists
with an intrinsic desire to create / discover morenovel patterns, that is, data predictable or
compressible in hitherto unknown ways [50, 54, 52, 53, 88, 59, 61, 68, 74, 75, 78, 77, 76, 80].
The agents not only maximize rare external rewards for achieving externally posed goals, but
also invent and conduct experiments to actively explore theworld, always trying to learn new
behaviors exhibiting previously unknown regularities. Crucial ingredients are:

1. A predictor or compressor of the continually growing history of actions and sensory
inputs, reflecting what’s currently known about how the world works,



2 No Title Given 19

2. A learning algorithm that continually improves the predictor or compressor (detecting
novel spatio-temporal patterns that subsequently become known patterns),

3. Intrinsic rewards measuring the predictor’s or compressor’s improvements due to the
learning algorithm,

4. A reward optimizer or reinforcement learner, which translates those rewards into action
sequences or behaviors expected to optimize future reward -the agents are intrinsically
motivated to acquire skills leading to additional novel patterns predictable or compressible
in previously unknown ways.

There are many ways of combining algorithms for (1-4). We implemented the following vari-
ants:

A. Non-traditional reinforcement learning (RL) based on adaptive recurrent neural net-
works as predictive world models [51] is used to maximize intrinsic reward created in
proportion to prediction error (1990) [50, 54].

B. Traditional reinforcement learning (RL) [26, 89] is used tomaximize intrinsic reward
created in proportion to improvements of prediction error (1991) [52, 53].

C. Traditional RL maximizes intrinsic reward created in proportion to relative entropies
between the agent’s priors and posteriors (1995) [88].

D. Non-traditional RL [81] (without restrictive Markovian assumptions) learns probabilis-
tic, hierarchical programs and skills through zero-sum intrinsic reward games of two play-
ers, each trying to out-predict or surprise the other, taking into account the computational
costs of learning, and learningwhento learn andwhat to learn (1997-2002) [59, 61].

B-D also showed experimentally how intrinsic rewards can substantially accelerate goal-
directed learning andexternalreward intake.

Finally, we also discussed mathematically optimal,universalRL methods (as discussed in
earlier sections of this paper) for intrinsically motivated systems driven by prediction progress
or compression progress [68, 74, 78, 77] (2006-2009).

The theory is sufficiently general to explain all kinds of creative behavior, from the discov-
ery of new physical laws through active design of experiments, to the invention of jokes and
interesting works of art. It formalizes and extends previous informal ideas of developmental
psychology and aesthetics theory. Among the applications of the theory are low-complexity
artworks [58] created through human-computer interaction[68, 74, 78, 77, 76].

Artificial systems based on the theory have a bias towards exploring previously unknown
environmental regularities. This often isa priori desirable because goal-directed learning may
greatly profit from this bias, as behaviors leading to external reward may often be rather easy
to compose from previously learnt curiosity-driven behaviors. Ongoing work aims at formally
quantifying the bias towards novel patterns in form of a mixture-based prior [85, 32, 63, 25],
a weighted sum of probability distributions on sequences ofactions and resulting inputs, and
deriving precise conditions for improved expected external reward intake [80].

2.13 Conclusion: General AI Becoming a Formal Science

Recent theoretical and practical advances are currently driving a renaissance in the fields of
universal learners and optimal search. A new kind of AI is emerging. Does it really deserve
the attribute“new,” given that its roots date back to the 1930s, when Gödel published the fun-
damental result of theoretical computer science [19] and Zuse started to build the first general
purpose computer (completed in 1941), and the 1960s, when Solomonoff and Kolmogorov



20 No Author Given

published their first relevant results? An affirmative answer seems justified, since it is the re-
cent results on practically feasible computable variants of the old incomputable methods that
are currently reinvigorating the long dormant field. The “new” AI is new in the sense that it
abandons the mostly heuristic or non-general approaches ofthe past decades, offering meth-
ods that are both general and theoretically sound, and provably optimal in a sense thatdoes
make sense in the real world.

Let us briefly elaborate on this. There are at least two convincing ways of doing AI re-
search [79]:(1) construct a (possibly heuristic) machine or algorithm thatsomehow (it does
not really matter how) solves a previously unsolved interesting and cognitively challenging
problem, such as beating the best human player ofGo (success will outshine any lack of
theory). Or(2) prove that a particular novel algorithm is optimal for an important class of AI
problems. It is the nature of heuristics (case(1)) that they lack staying power, as they may soon
get replaced by next year’s even better heuristics. Theorems (case(2)), however, are for eter-
nity. That’s why formal sciences prefer theorems. For example, after a heuristics-dominated
initial phase, probability theory became a formal science centuries ago, and totally formal
in 1933 with Kolmogorov’s axioms [28], shortly after Gödel’s paper [19]. Old but provably
optimal techniques of probability theory are still in everyday’s use, and in fact highly signif-
icant for modern AI, while many initially successful heuristic approaches eventually became
unfashionable, of interest mainly to the historians of the field.

Similarly, the first decades of attempts at “general AI” and “general cognitive compu-
tation” have been dominated by heuristic approaches, e.g.,[38, 47, 93, 36]. In recent years
things have changed, however. As discussed in the present paper, the new millennium brought
the first mathematically sound, asymptotically optimal, universal problem solvers, providing
a new, rigorous foundation for the previously largely heuristic field of General AI and em-
bedded cognitive agents, identifying the limits of both human and artificial intelligence, and
providing a yardstick for any future approach to general cognitive systems [70, 73, 72]. The
field is indeed becoming a real formal science!

2.14 Acknowledgments

Over the past three decades, numerous discussions with Christof Schmidhuber (a theoretical
physicist) helped to crystallize the ideas on computable universes—compare his notion of
“mathscape” [49].

2.15 Biography

Jürgen Schmidhuber wants to build an optimal scientist, then retire. He is Director of the
Swiss Artificial Intelligence Lab IDSIA (since 1995), Professor of Artificial Intelligence at
the University of Lugano, Switzerland (since 2009), Head ofthe CogBotLab at TU Munich,
Germany (since 2004, as Professor Extraordinarius until 2009), and Professor SUPSI, Switzer-
land (since 2003). He obtained his doctoral degree in computer science from TUM in 1991
and his Habilitation degree in 1993, after a postdoctoral stay at the University of Colorado
at Boulder. He helped to transform IDSIA into one of the world’s top ten AI labs (the small-
est!), according to the ranking of Business Week Magazine. In 2008 he was elected member of
the European Academy of Sciences and Arts. He has published more than 200 peer-reviewed



2 No Title Given 21

scientific papers (some won best paper awards) on topics suchas machine learning, math-
ematically optimal universal AI, artificial curiosity and creativity, artificial recurrent neural
networks (which won several recent handwriting recognition contests), adaptive robotics, al-
gorithmic information and complexity theory, digital physics, theory of beauty, and the fine
arts.

References

1. M. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, Heidelberg,
1985.

2. J. S. Bell. On the problem of hidden variables in quantum mechanics.Rev. Mod. Phys.,
38:447–452, 1966.

3. C. H. Bennett and D. P. DiVicenzo. Quantum information andcomputation. Nature,
404(6775):256–259, 2000.

4. C. M. Bishop.Neural networks for pattern recognition. Oxford University Press, 1995.
5. R. A. Brooks. Intelligence without reason. InProceedings of the Twelveth Intarnationl

Joint Conference on Artificial Intelligence, pages 569–595, 1991.
6. L. E. J. Brouwer. Over de Grondslagen der Wiskunde. Dissertation, Doctoral Thesis,

University of Amsterdam, 1907.
7. F. Cajori.History of mathematics (2nd edition). Macmillan, New York, 1919.
8. G. Cantor. Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen.

Crelle’s Journal für Mathematik, 77:258–263, 1874.
9. G. J. Chaitin. A theory of program size formally identicalto information theory.Journal

of the ACM, 22:329–340, 1975.
10. G. J. Chaitin.Algorithmic Information Theory. Cambridge University Press, Cambridge,

1987.
11. D. Deutsch.The Fabric of Reality. Allen Lane, New York, NY, 1997.
12. E. D. Dickmanns, R. Behringer, D. Dickmanns, T. Hildebrandt, M. Maurer,

F. Thomanek, and J. Schiehlen. The seeing passenger car ’VaMoRs-P’. InProc. Int.
Symp. on Intelligent Vehicles ’94, Paris, pages 68–73, 1994.

13. M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimiza-
tion. Artificial Life, 5(2):137–172, 1999.

14. T. Erber and S. Putterman. Randomness in quantum mechanics – nature’s ultimate cryp-
togram?Nature, 318(7):41–43, 1985.

15. H. Everett III. ‘Relative State’ formulation of quantummechanics.Reviews of Modern
Physics, 29:454–462, 1957.

16. E. F. Fredkin and T. Toffoli. Conservative logic.International Journal of Theoretical
Physics, 21(3/4):219–253, 1982.

17. R. V. Freyvald. Functions and functionals computable inthe limit. Transactions of
Latvijas Vlasts Univ. Zinatn. Raksti, 210:6–19, 1977.

18. P. Gács. On the relation between descriptional complexity and algorithmic probability.
Theoretical Computer Science, 22:71–93, 1983.

19. K. Gödel.Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I.Monatshefte für Mathematik und Physik, 38:173–198, 1931.

20. E. M. Gold. Limiting recursion.Journal of Symbolic Logic, 30(1):28–46, 1965.
21. M.B. Green, J.H. Schwarz, and E. Witten.Superstring Theory. Cambridge University

Press, 1987.



22 No Author Given

22. S. Hochreiter, A. S. Younger, and P. R. Conwell. Learningto learn using gradient de-
scent. InLecture Notes on Comp. Sci. 2130, Proc. Intl. Conf. on Artificial Neural Net-
works (ICANN-2001), pages 87–94. Springer: Berlin, Heidelberg, 2001.

23. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, 1975.

24. M. Hutter. The fastest and shortest algorithm for all well-defined problems. Inter-
national Journal of Foundations of Computer Science, 13(3):431–443, 2002. (On J.
Schmidhuber’s SNF grant 20-61847).

25. M. Hutter.Universal Artificial Intelligence: Sequential Decisions based on Algorithmic
Probability. Springer, Berlin, 2004. (On J. Schmidhuber’s SNF grant 20-61847).

26. L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a survey.
Journal of AI research, 4:237–285, 1996.

27. T. Kohonen.Self-Organization and Associative Memory. Springer, second edition, 1988.
28. A. N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin,

1933.
29. A. N. Kolmogorov. Three approaches to the quantitative definition of information.Prob-

lems of Information Transmission, 1:1–11, 1965.
30. L. A. Levin. Universal sequential search problems.Problems of Information Transmis-

sion, 9(3):265–266, 1973.
31. L. A. Levin. Laws of information (nongrowth) and aspectsof the foundation of proba-

bility theory. Problems of Information Transmission, 10(3):206–210, 1974.
32. M. Li and P. M. B. Vitányi.An Introduction to Kolmogorov Complexity and its Applica-

tions (2nd edition). Springer, 1997.
33. L. Löwenheim.Über Möglichkeiten im Relativkalkül.Mathematische Annalen, 76:447–

470, 1915.
34. N. Merhav and M. Feder. Universal prediction.IEEE Transactions on Information

Theory, 44(6):2124–2147, 1998.
35. M. Minsky and S. Papert.Perceptrons. Cambridge, MA: MIT Press, 1969.
36. T. Mitchell. Machine Learning. McGraw Hill, 1997.
37. C. H. Moore and G. C. Leach. FORTH - a language for interactive computing, 1970.
38. A. Newell and H. Simon. GPS, a program that simulates human thought. In E. Feigen-

baum and J. Feldman, editors,Computers and Thought, pages 279–293. McGraw-Hill,
New York, 1963.

39. N. J. Nilsson.Principles of artificial intelligence. Morgan Kaufmann, San Francisco,
CA, USA, 1980.

40. R. Penrose.The Emperor’s New Mind.Oxford University Press, 1989.
41. R. Pfeifer and C. Scheier.Understanding Intelligence. MIT Press, 2001.
42. K. R. Popper.The Logic of Scientific Discovery. Hutchinson, London, 1934.
43. H. Putnam. Trial and error predicates and the solution toa problem of Mostowski.

Journal of Symbolic Logic, 30(1):49–57, 1965.
44. I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien

der biologischen Evolution. Dissertation, 1971. Published 1973 by Fromman-Holzboog.
45. J. Rissanen. Modeling by shortest data description.Automatica, 14:465–471, 1978.
46. H. Rogers, Jr.Theory of Recursive Functions and Effective Computability. McGraw-

Hill, New York, 1967.
47. P. S. Rosenbloom, J. E. Laird, and A. Newell.The SOAR Papers. MIT Press, 1993.
48. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by

error propagation. In D. E. Rumelhart and J. L. McClelland, editors,Parallel Distributed
Processing, volume 1, pages 318–362. MIT Press, 1986.



2 No Title Given 23

49. C. Schmidhuber. Strings from logic. Technical Report CERN-TH/2000-316, CERN,
Theory Division, 2000. http://xxx.lanl.gov/abs/hep-th/0011065.

50. J. Schmidhuber. Dynamische neuronale Netze und das fundamentale raumzeitliche
Lernproblem. Dissertation, Institut für Informatik, Technische Universität München,
1990.

51. J. Schmidhuber. An on-line algorithm for dynamic reinforcement learning and planning
in reactive environments. InProc. IEEE/INNS International Joint Conference on Neural
Networks, San Diego, volume 2, pages 253–258, 1990.

52. J. Schmidhuber. Adaptive curiosity and adaptive confidence. Technical Report FKI-
149-91, Institut für Informatik, Technische Universität München, April 1991. See also
[53].

53. J. Schmidhuber. Curious model-building control systems. In Proceedings of the Inter-
national Joint Conference on Neural Networks, Singapore, volume 2, pages 1458–1463.
IEEE press, 1991.

54. J. Schmidhuber. A possibility for implementing curiosity and boredom in model-
building neural controllers. In J. A. Meyer and S. W. Wilson,editors,Proc. of the In-
ternational Conference on Simulation of Adaptive Behavior: From Animals to Animats,
pages 222–227. MIT Press/Bradford Books, 1991.

55. J. Schmidhuber. Discovering solutions with low Kolmogorov complexity and high gen-
eralization capability. In A. Prieditis and S. Russell, editors,Machine Learning: Pro-
ceedings of the Twelfth International Conference, pages 488–496. Morgan Kaufmann
Publishers, San Francisco, CA, 1995.

56. J. Schmidhuber. A computer scientist’s view of life, theuniverse, and everything. In
C. Freksa, M. Jantzen, and R. Valk, editors,Foundations of Computer Science: Potential
- Theory - Cognition, volume 1337, pages 201–208. Lecture Notes in Computer Science,
Springer, Berlin, 1997.

57. J. Schmidhuber. Discovering neural nets with low Kolmogorov complexity and high
generalization capability.Neural Networks, 10(5):857–873, 1997.

58. J. Schmidhuber. Low-complexity art.Leonardo, Journal of the International Society for
the Arts, Sciences, and Technology, 30(2):97–103, 1997.

59. J. Schmidhuber. What’s interesting? Technical Report IDSIA-35-97, IDSIA, 1997.
ftp://ftp.idsia.ch/pub/juergen/interest.ps.gz; extended abstract in Proc. Snowbird’98,
Utah, 1998; see also [61].

60. J. Schmidhuber. Algorithmic theories of everything. Technical Report IDSIA-20-00,
quant-ph/0011122, IDSIA, Manno (Lugano), Switzerland, 2000. Sections 1-5: see [62];
Section 6: see [63].

61. J. Schmidhuber. Exploring the predictable. In A. Ghosh and S. Tsuitsui, editors,Ad-
vances in Evolutionary Computing, pages 579–612. Springer, 2002.

62. J. Schmidhuber. Hierarchies of generalized Kolmogorovcomplexities and nonenumer-
able universal measures computable in the limit.International Journal of Foundations
of Computer Science, 13(4):587–612, 2002.

63. J. Schmidhuber. The Speed Prior: a new simplicity measure yielding near-optimal com-
putable predictions. In J. Kivinen and R. H. Sloan, editors,Proceedings of the 15th
Annual Conference on Computational Learning Theory (COLT 2002), Lecture Notes in
Artificial Intelligence, pages 216–228. Springer, Sydney,Australia, 2002.

64. J. Schmidhuber. Bias-optimal incremental problem solving. In S. Becker, S. Thrun, and
K. Obermayer, editors,Advances in Neural Information Processing Systems 15 (NIPS
15), pages 1571–1578, Cambridge, MA, 2003. MIT Press.



24 No Author Given

65. J. Schmidhuber. Towards solving the grand problem of AI.In P. Quaresma, A. Dourado,
E. Costa, and J. F. Costa, editors,Soft Computing and complex systems, pages 77–97.
Centro Internacional de Mathematica, Coimbra, Portugal, 2003. Based on [70].

66. J. Schmidhuber. Optimal ordered problem solver.Machine Learning, 54:211–254, 2004.
67. J. Schmidhuber. Completely self-referential optimal reinforcement learners. In W. Duch,

J. Kacprzyk, E. Oja, and S. Zadrozny, editors,Artificial Neural Networks: Biological
Inspirations - ICANN 2005, LNCS 3697, pages 223–233. Springer-Verlag Berlin Hei-
delberg, 2005. Plenary talk.

68. J. Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music,
and the fine arts.Connection Science, 18(2):173–187, 2006.

69. J. Schmidhuber. Gödel machines: Fully self-referential optimal universal self-improvers.
In B. Goertzel and C. Pennachin, editors,Artificial General Intelligence, pages 199–226.
Springer Verlag, 2006. Variant available as arXiv:cs.LO/0309048.

70. J. Schmidhuber. The new AI: General & sound & relevant forphysics. In B. Goertzel and
C. Pennachin, editors,Artificial General Intelligence, pages 175–198. Springer, 2006.
Also available as TR IDSIA-04-03, arXiv:cs.AI/0302012.

71. J. Schmidhuber. Randomness in physics.Nature, 439(3):392, 2006. Correspondence.
72. J. Schmidhuber. 2006: Celebrating 75 years of AI - history and outlook: the next 25

years. In M. Lungarella, F. Iida, J. Bongard, and R. Pfeifer,editors,50 Years of Artifi-
cial Intelligence, volume LNAI 4850, pages 29–41. Springer Berlin / Heidelberg, 2007.
Preprint available as arXiv:0708.4311.

73. J. Schmidhuber. New millennium AI and the convergence ofhistory. In W. Duch
and J. Mandziuk, editors,Challenges to Computational Intelligence, volume 63, pages
15–36. Studies in Computational Intelligence, Springer, 2007. Also available as
arXiv:cs.AI/0606081.

74. J. Schmidhuber. Simple algorithmic principles of discovery, subjective beauty, selective
attention, curiosity & creativity. InProc. 10th Intl. Conf. on Discovery Science (DS
2007), LNAI 4755, pages 26–38. Springer, 2007. Joint invited lecture forALT 2007 and
DS 2007, Sendai, Japan, 2007.

75. J. Schmidhuber. Driven by compression progress. In I. Lovrek, R. J. Howlett, and L. C.
Jain, editors,Knowledge-Based Intelligent Information and EngineeringSystems KES-
2008, Lecture Notes in Computer Science LNCS 5177, Part I, page 11. Springer, 2008.
Abstract of invited keynote.

76. J. Schmidhuber. Art & science as by-products of the search for novel patterns, or data
compressible in unknown yet learnable ways. In M. Botta, editor, Multiple ways to de-
sign research. Research cases that reshape the design discipline, Swiss Design Network
- Et al. Edizioni, pages 98–112. Springer, 2009.

77. J. Schmidhuber. Driven by compression progress: A simple principle explains essential
aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity, cre-
ativity, art, science, music, jokes. In G. Pezzulo, M. V. Butz, O. Sigaud, and G. Baldas-
sarre, editors,Anticipatory Behavior in Adaptive Learning Systems. From Psychological
Theories to Artificial Cognitive Systems, volume 5499 ofLNCS, pages 48–76. Springer,
2009.

78. J. Schmidhuber. Simple algorithmic theory of subjective beauty, novelty, surprise, inter-
estingness, attention, curiosity, creativity, art, science, music, jokes.SICE Journal of the
Society of Instrument and Control Engineers, 48(1):21–32, 2009.

79. J. Schmidhuber. Ultimate cognitionà la Gödel. Cognitive Computation, 1(2):177–193,
2009.



2 No Title Given 25

80. J. Schmidhuber. Artificial scientists & artists based onthe formal theory of creativity.
In M. Hutter et al., editor,Proceedings of the Third Conference on Artificial General
Intelligence AGI-2010. 2010.

81. J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story al-
gorithm, adaptive Levin search, and incremental self-improvement.Machine Learning,
28:105–130, 1997.

82. C. E. Shannon. A mathematical theory of communication (parts I and II). Bell System
Technical Journal, XXVII:379–423, 1948.

83. T. Skolem. Logisch-kombinatorische Untersuchungen über Erfüllbarkeit oder Beweis-
barkeit mathematischer Sätze nebst einem Theorem über dichte Mengen.Skrifter utgit
av Videnskapsselskapet in Kristiania, I, Mat.-Nat. Kl., N4:1–36, 1919.

84. R. J. Solomonoff. A formal theory of inductive inference. Part I. Information and
Control, 7:1–22, 1964.

85. R. J. Solomonoff. Complexity-based induction systems.IEEE Transactions on Infor-
mation Theory, IT-24(5):422–432, 1978.

86. R. J. Solomonoff. An application of algorithmic probability to problems in artificial
intelligence. In L. N. Kanal and J. F. Lemmer, editors,Uncertainty in Artificial Intelli-
gence, pages 473–491. Elsevier Science Publishers, 1986.

87. R. J. Solomonoff. A system for incremental learning based on algorithmic probability. In
Proceedings of the Sixth Israeli Conference on Artificial Intelligence, Computer Vision
and Pattern Recognition, pages 515–527. Tel Aviv, Israel, 1989.

88. J. Storck, S. Hochreiter, and J. Schmidhuber. Reinforcement driven information acquisi-
tion in non-deterministic environments. InProceedings of the International Conference
on Artificial Neural Networks, Paris, volume 2, pages 159–164. EC2 & Cie, 1995.

89. R. Sutton and A. Barto.Reinforcement learning: An introduction. Cambridge, MA, MIT
Press, 1998.

90. G. ’t Hooft. Quantum gravity as a dissipative deterministic system. Technical Re-
port SPIN-1999/07/gr-gc/9903084, http://xxx.lanl.gov/abs/gr-qc/9903084, Institute for
Theoretical Physics, Univ. of Utrecht, and Spinoza Institute, Netherlands, 1999. Also
published inClassical and Quantum Gravity 16, 3263.

91. A. M. Turing. On computable numbers, with an applicationto the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society, Series 2, 41:230–267, 1936.

92. S. Ulam. Random processes and transformations. InProceedings of the International
Congress on Mathematics, volume 2, pages 264–275, 1950.

93. P. Utgoff. Shift of bias for inductive concept learning.In R. Michalski, J. Carbonell, and
T. Mitchell, editors,Machine Learning, volume 2, pages 163–190. Morgan Kaufmann,
Los Altos, CA, 1986.

94. V. Vapnik.The Nature of Statistical Learning Theory. Springer, New York, 1995.
95. J. von Neumann.Theory of Self-Reproducing Automata. University of Illionois Press,

Champain, IL, 1966.
96. C. S. Wallace and D. M. Boulton. An information theoreticmeasure for classification.

Computer Journal, 11(2):185–194, 1968.
97. P. J. Werbos.Beyond Regression: New Tools for Prediction and Analysis inthe Behav-

ioral Sciences. PhD thesis, Harvard University, 1974.
98. M.A. Wiering and J. Schmidhuber. Solving POMDPs with Levin search and EIRA. In

L. Saitta, editor,Machine Learning: Proceedings of the Thirteenth International Con-
ference, pages 534–542. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

99. K. Zuse. Rechnender Raum.Elektronische Datenverarbeitung, 8:336–344, 1967.



26 No Author Given

100. K. Zuse.Rechnender Raum. Friedrich Vieweg & Sohn, Braunschweig, 1969. English
translation:Calculating Space,MIT Technical Translation AZT-70-164-GEMIT, Mas-
sachusetts Institute of Technology (Proj. MAC), Cambridge, Mass. 02139, Feb. 1970.

101. A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the algorithmic
concepts of information and randomness.Russian Math. Surveys, 25(6):83–124, 1970.


