Long Short-Term Memory:
2003 Tutorial on LSTM Recurrent Nets

(there is a recent, much nicer one, with many new results!)

Jurgen Schmidhuber

Pronounce:

You_again Shmidhoobuh

IDSIA, Manno-Lugano, Switzerland

www.idsia.ch —

Tutorial covers the following LSTM journal publications:

* Neural Computation, 9(8):1735-1780, 1997

* Neural Computation, 12(10):2451--2471, 2000
 |EEE Transactions on NNs 12(6):1333-1340, 2001
* Neural Computation, 2002

* Neural Networks, in press, 2003

« Journal of Machine Learning Research, in press, 2003

» Also many conference publications: NIPS 1997, NIPS 2001, NNSP
2002, ICANN 1999, 2001, 2002, others

copyright 2003 Juergen
Schmidhuber

Even static problems may profit from recurrent

, parity problem:

number of 1 bits odd? 9 bit feedforward NN:

neural networks (RNNs), e.g.

e
e
e

T

éﬂ ol DS
S 0
&A«%ﬂ%ﬁ& 3 A

; . ¥ ﬁ_”r _J..r
TR A o)
V T SN, /
i/ %ﬁﬁhﬁfﬁw |
AL L7 NN

X RS0
N

A

copyright 2003 Juergen

Schmidhuber

Parity problem, sequential: 1 bit at a time

Recurrent net learns .
much faster - even with |
random weight search:
only 1000 trials!

many fewer parameters

much better
generalization

the natural solution

copyright 2003 Juergen
Schmidhuber

Other sequential problems

Control of attention: human pattern
recognition is sequential

Seguence recognition: speech, time
series....

Motor control (memory for partially
observable worlds)

Almost every real world task

Strangely, many researchers still content with
reactive devices (FNNs & SVMs etc)

copyright 2003 Juergen
Schmidhuber

Other sequence learners?

Hidden Markov Models: useful for speech etc. But discrete,
cannot store real values, no good algorithms for learning
appropriate topologies

Symbolic approaches: useful for grammar learning. Not for
real-valued noisy sequences.

Heuristic program search (e.g., Genetic Programming, Cramer
1985): no direction for search in algorithm space.

Universal Search (Levin 1973): asymptotically optimal, but
huge constant slowdown factor

Fastest algorithm for all well-defined problems (Hutter, 2001):
asymptotically optimal, but huge additive constant.

Optimal ordered problem solver (Schmidhuber, 2002)

copyright 2003 Juergen
Schmidhuber

Gradient-based RNNSs:
ffwish / § program

 RNN weight matrix
embodies general
algorithm space

« Differentiate objective
with respect to
program

e Obtain gradient or
search direction In
program space

copyright 2003 Juerg,
Schmidhuber

- gradients based on

etc. (Williams, Werbos, Robinson)

1980s: BPTT, RTRL

“unfolding

AUSGREBE vi4)

TR

for A
o

‘?‘%ﬁ

.'M&r-ﬁ

TN

TR)
ARV

X
RO
N

ik

N

N

A

~—~
~~
)

—r

S

(1) -d,

(o
1=
W

a a
1l
.

= Q
Seq s
Dw

E

~

EIITGABE = (0)

Schmidhuber

copyrigl

1990s: Time Lags!

1990: RNNs great in principle but don’t work?

Standard RNNSs: Error path integral

decays exponentially! (first rigorous analysis

due to Schmidhuber’s former PhD student Sepp Hochreiter
1991; compare Bengio et al 1994, and Hochreiter & Bengio &
Frasconi & Schmidhuber, 2001)

net,(t) =Sw,; yi(t-1)
Forward: y, (t)=f, (net,(t))
Error: e (t)=f./(net.(t)) S;w, e(t+1)

copyright 2003 Juergen
Schmidhuber

Exponential Error Decay

e Lag q: fle(t- g = f,'(net,(t- D)w, if q=1

Te, (1)
. , ¢ Te(t- g+
h f -
otherwise f,’(net,(t OI))l’dl:l fle () W,
Telt-) o 1 AWe:]
. Decay: | e() II—IIE?lWF (Net(t- m)| £

(W I max o { | F* (Net) [[})*

e Sigmoid: max f'=0.25; |weights|<4.0; vanish!

(higher weights useless - derivatives disappear)
copyright 2003 Juergen
Schmidhuber

Training: forget minimal time lags > 10!

« S0 why study RNNs at all?

 Hope for generalizing from short exemplars?
Sometimes justified, often not.

 To overcome long time lag problem: history compression in
RNN hierarchy - level n gets unpredictable inputs from level n-1
(Schmidhuber, NIPS 91, Neural Computation 1992)

e Other 1990s ideas: Mozer, Ring, Bengio, Frasconi, Giles, Omlin,
sun, ...

copyright 2003 Juergen
Schmidhuber

Constant Error Flow!

 Best 90s idea
Hochreiter (back then an undergrad student on Schmidhuber’s

long time lag recurrent net project, since 2002 assistant professor in Berlin)

 Led to Long Short-Term Memory (LSTM):
 Time lags > 1000
* No loss of short time lag capability

 O(1) update complexity per time step and
weight

copyright 2003 Juergen
Schmidhuber

Basic LSTM unit: linear integrator

* Very simple self-connected linear unit
called the error carousel.

e Constant error flow:
e(t) = f'(net(t)) w e(t+1) = 1.0
e Most natural: f linear, w = 1.0 fixed.

 Purpose: Just deliver errors, leave
learning to other weights.

copyright 2003 Juergen
Schmidhuber

Long Short-Term Memory (LSTM)

<
MV «
J 1.0
- nonlinear ,‘ nonlinear |
> stuff > stuff / »
‘ :
A
v
nonlinear
stuff .
copyright 2003 Juergen

Schmidhuber

Possible LSTM cell (original)

 Red: linear unit, self-
weight 1.0 - the error
carousel

« Green: sigmoid gates
open / protect access to
error flow

« Blue: multiplicative
openings or shut-downs

copyright 2003 Juergen
Schmidhuber

LSTM cell (current standard)

* Red: linear unit, self-
weight 1.0 - the error
carousel

« Green: sigmoid gates
open / protect access to

error flow;
forget gate (left) resets

e Blue: multiplications

copyright 2003 Juergen
Schmidhuber

O
net, = a Wi Yi

OUT >out out = f (net,,)

'S
forget =

f (net forget)

OUT = nety;

w =1.0> forget

IN :In

Al
—w_In= f(net,)

¥ IN = f (net,,)

Mix LSTM cells and others

Schmidhuber

Mix LSTM cells and others

 Schmidhuber

Also possible: LSTM memory blocks:
error carousels may share gates

1 2 3
output to other units
PN /N i
AN
™~
—za-@ o & »
7 7

e "G
So+—1—1

/"\”\ /‘T\ /‘T’\

input from other units

Example: no forget gates;
2 connected blocks, 2 cells each

output

hidden

input

copyright 2003 Juergen
Schmidhuber

Example with forget gates

Output

e Hidden

e

I, PR TN Fn PEN e
1\)\ &) o)\ Input

copyright 2003 Juergen
Schmidhuber

Next: LSTM Pseudocode

« Typically: truncate errors
once they have changed
Incoming weights

* Local in space and time:
O(1) updates per weight
and time step

e Download: www.idsia.ch

copyright 2003 Juergen
Schmidhuber

Download LSTM code: www.idsia.ch

init network:
reset: CECs: Ser =‘“c;.-=0; partials: d5=0; activations: y=g=0;
forward pass:
input units: y = current external input;
roll over: activations: ij=y; cell states: .Qc.:r:.-s.-_;-;
loop over memory blocks, imdexed j {
Step la: input gates (5. 1)
netin; =3, Winem §7 + Z L) Wingey fers ¥ = fong (neta)s
Step 1b: forget gates (5. 2}
nety, = 3. Weem I+ Zb 1Weer Bers Y = fo(nety;);
Step lc: CECs, i.e the cell states (5.3):
loop over the S; cells in block j, indexed v {
neter = Em‘m,_;m ™ S =y¥ b + g g{i‘w!',::); 1
Step 2:
output gate activation: (5.4):
netout; = 2 Woutsm U + Zf’=1 Wout;c? 8eTi Y = four; (Nt)5

cell outputs (5.5):

loop over the §; cells in block j, indexed v { y":' = g™t B

} end loop over memory blocks
output units (2.9): nety =3 wi, 4™ v* = filnety)s
partial derivatives:
loop over memory blocks, indexed j {
loop over the S; cells in block j, indexed v {

: Bagr
cells (5.8), (4505 1= —o):

2 (L SR T
4

dSts, = dSt, ¥%i + ' (netg) ¥ 4™

e & d5.0
input gates (8.7), (8.Tb), (S}, 1= g + 45,y = 55)
sCy 111:“;-

de: LT de: sm y-'p, iy g(ﬂ,f’ﬁ.;-) .ﬁn_.l (Tlﬂf,-";)]:-lm;
loop over peephole connections from all cells, indexed »' {

dslv = de:.c‘." v +glnetes) fi, (netin;) 1
=

a6 w a0
forget gates (5.8), (5.8b), (dS%Y, := m ; dé‘;:.a =)
3 soJﬁ_;-

dSfs, = dSfe, ¥ +5er £} (net,) §™
loop over peephole connections from all cells, indexed v' {
dSit, =dSit, P+ f(nety) &5)

"wu i

} } end loops over cells and memory blocks

4

200
nidh

backward pass (if error injected):

errors and ds:

injection error: ¢, =tf — y*;

ds of output units (5.10): d; = f(nety) ex;

loop over memory blocks, indexed j

ds of output gates (5.11b):

g
60 wl g — ﬁ-’; uf {netuul‘f:l (Eu J='| *?c;-‘ Z_k 1”)::; Jk) 3

internal state error (5.15):

loop over the S; cells in block j, indexed v

€y = ot (Ekiukn;' &k); }

} end loop over memory blocks

weight updates:

output units (5.9): Auym = o 5 y™;

loop over memory blocks, indexed j

output gates (5.11a):

&“Jﬂll:l,ﬂl. =0 '6;»:! ﬂ-m; ai”nu.!,n: =a dout 1!47:3

input gates (5.13):

5 j
£ . — t L -
Ij“i“!u,vn = Z.,-:'[ﬁ'n,._: d‘gin,m ¥

loop over peephole connections from all cells, indexed o'

A, o —QZU 1 Er dgi

forget gates (5.14):
Auwpm =a Z:”ﬂ F.',ﬁ,, dSi‘;L;

loop owver peephole connections from all cells, indexed v’

ln.r“

'\'_fl-
A, e —7125—1 €y dbw;‘

cells (5.12):

loop over the S5; cells in block j, indexed v

.-':'L‘ch;m =a e, A8 .

} end loop over memory blocks

IE

1

1

[~Juergen/rnn.htm|

{

{

{

{

Experiments: first some LSTM limitations

Was tested on classical time series that feedforward
nets learn well when tuned (MackeyGlass...)

LSTM: 1 input unit, 1 input at a time (memory overhead)
FNN: 6 input units (no need to learn what to store)

LSTM extracts basic wave; but best FNN better!
Parity: random weight search outperforms all!

So: use LSTM only when simpler approaches fail!
Do not shoot sparrows with cannons.

Experience: LSTM likes sparse coding.

copyright 2003 Juergen
Schmidhuber

“True” Sequence Experiments

LSTM in a league by itself
Noisy extended seguences

Long-term storage of real numbers

Temporal order of distant events

Info conveyed by event distances

Stable smooth and nonsmooth trajectories, rhythms

Simple regular, context free, context sensitive
grammars (Gers, 2000)

Music composition (Eck, 2002)
Reinforcement Learning (Bakker, 2001)
Metalearning (Hochreiter, 2001)

Speech (vs HMMs)? One should try it....

copyright 2003 Juergen
Schmidhuber

Regular Grammars: LSTM vs Simple RNNs
(Elman 1988) & RTRL / BPTT (Zipser & Smith)

recitrrent comection for continucus prediction

Reber
Grammar
T
P Reber
Grammar

Schmidhuber

mcthod | hidden onita # wrights | learning rate % of sncoras anccead after
RTRL 3 == L) 0.5 “aomac fraction™ 173,000
RTERL 12 = 414 0.1 “aomic fraction™ 25, 000
ELM L5 = 435 0 =200, (00
RGG -9 = 119-1048 Ll 12 (00
L5TM | 4 hlocks, sizc 1 264 0.1 100 39, 740
L5TM | J hlocks, sizc 2 276 0.1 1010 21, 73
L5TM | 3 hlocka, sizc 2 276 0.2 qy 14,060
L5TM | 4 hlocks, sizc 1 26 0.5 a7 9500
L5TM | 5 hlocks, sizc 2 276 0.5 10 H.440
copyright 2003 Juergen

Contextfree / Contextsensitive Languages

Train[n] % Sol.

A"B"
Wiles & 1...11 20%
Elman 95

LSTM 1...10 100%
A"B"C"
LSTM 1...50 100%

copyright 2003 Juergen
Schmidhuber

Test|n]
1...18

1...1000

1...500

What this means:

® e LEGAL: ===

e aaaaa.....aaabbbbb.....bbbcccce.....ccc
500 500 500

® - ILLEGAL:-------====mmmmm--

aaaaa.....aaabbbbb.....bbbccccc.....ccc
500 499 500

e LSTM + Kalman: up to n=22,000,000 (Perez, 2002)!!!

copyright 2003 Juergen
Schmidhuber

Typical evolution of activations

S aaaaaabbbbbbccceccc :input
%%%%%%%bbbbhccccccT . target
1?—&%%”’ V—%‘%%(Hm-—i—-— a &
><

0 f 44—1—;—&;4;1‘?&1—;—.;—& -. E'
-

g 5 10 15 Time

copyright 2003 Juergen
Schmidhuber

Storing & adding real values

t., t; and t. are randomly chosen.

time t 0 1 --- -1 t, t4+l --- t-1 t, t+l --- t-1 t.

Xl XZ
input I, [O5—H09}---{01—H06—03} - {0701 —H05} - {o1+—T04]

input I, [+—0}+---{0}+—{1T+—0}---{O0}—1T 0} ---{0 —-1]

output ? ? ? ? ? ? ? ? 2 054 XX
g\

target of this example: 0.625

e T=100: 2559/2560; 74,000 epochs
e T=1000: 2559/2560; 850,000 epochs

copyright 2003 Juergen
Schmidhuber

Noisy temporal order

t,. t, and t. are randomly chosen. At time t, and t, an input is randomly chosen from {X.Y}.

time t 0 | I T § t, t+l == t-1 t, t+1 -+ t-1 t.

input (at—d}---{ap—xn}—¢}---H¢ —x¥}—bl---{d—b]

XX->0
X.Y->R
2 2 2 2 2 2
output : : ! 3 : : YX 58
Y. ¥Y->U

e T=100: 2559/2560 correct;
32,000 epochs on average

copyright 2003 Juergen
Schmidhuber

Noisy temporal order Il

Noisy sequences such as

aabab...dcaXca...abYdaab...bcdXdb....

8 possible targets after 100 steps:
XX X® 1; XX Y® 2; XY, X® 3;
X,YY® 4;YXX® 5;Y,X,Y® 6;
YYX® 7;Y,Y,Y® 8;

2558/2560 correct (error < 0.3)

570,000 epochs on average

copyright 2003 Juergen
Schmidhuber

Learning to compose music with RNNs?

Previous work by Mozer, Todd, others...

Train net to produce probability distribution on
next notes, given past

Traditional RNNs do capture local structure,
such as typical harmony sequences

RNNSs fail to extract global structure
Result: “Bach Elevator Muzak” -)
Question: does LSTM find global structure?

copyright 2003 Juergen
Schmidhuber

Step 1. can LSTM learn precise timing?

Yes, can learn to make sharp nonlinear spikes every
n steps (Gers, 2001)

For instance: n=1,...,50,.... nonvariable

Or:. n=1...30... variable, depending on a special
stationary input

Can also extract info from time delays:
Target = 1.0 if delay between spikes in input
sequence =20, else target =0.0

Compare HMMs which ignore delays

copyright 2003 Juergen
Schmidhuber

Self-sustaining Oscillation

Periods 12.4 18.0 2530 232 344461591 6556 113.3 162.2

ak T I — T X =]
o | 1| K| | 1| 1 | bi| A
% i} L | I | L1 [|] | | L1 iA
E_D X | | 1 | | | | | | | A | X [X |
-E o 1 | [] I | 1 1 [] L1 X ! | B | | [I | 1 | |]
8,3 F-od S 4 - - J= - %% F TN F J FF 3
L] oA TR B | N N T O P . Y Y Y)
G 0
W EFFFFFNFEFEENPEENEEENENENNEFFFEFRFEFENRREREENEEE NN NN NN
a mmmmmmmmﬂ
a 100 200 300 400 500 500 700 800 200 1000
copyright 2003 Juergen

Schmidhuber

Step 2: Learning the Blues (Eck, 2002)

e Training form (each bar = 8 steps, 96 steps in total)

A C Ef £

Gmy F7 Fdimg EmA7? Dm G

a A7 Dma7

gy g

ERF s T

FES

melod i

= . [
chords .

= oo R

* Representative LSTM composition:

0:00 start; 0:28 -1:12: freer improvisation;

1:12: example of the network repeating a motif not found in the training set.

copyright 2003 Juergen
Schmidhuber

Speech Recognition

 NNs already show promise (Boulard,
Robinson, Bengio)

« LSTM may offer a better solution by
finding long-timescale structure

» At least two areas where this may help:

— Time warping (rate invariance)

— Dynamic, learned model of phoneme
segmentation (with little apriori knowledge)

copyright 2003 Juergen
Schmidhuber

Speech Set 2: Phoneme
|dentification

“Numbers 95" database. Numeric street
addresses and zip codes (from Bengio)

13 MFCC values plus first derivative =
26 Inputs

27 possible phonemes

~=4500 sentences

~=77000 phonemes
~= 666,000 10ms frames

copyright 2003 Juergen
Schmidhuber

MFCC and MFCC first derivs

"Seventy two"

a0.0

250

200

[y}
[

10.0

m
o

0.0

P G T e e s N
(TNIES SR

_5D 1 1 1 1 1 1 1
oo 100 200 500 400 &00 BOO VOO 800 300

h# s eh v ah n fcl t iy h# tcl t uw h#
copyright 2003 Juergen
Schmidhuber

Task B: frame-level phoneme recognition

« Assign all frames to one of 27 phonemes.

e Use entire sentence

 For later phonemes, history can be exploited
 Benchmark ~=80%

e LSTM ~= 78%*

 Nearly as good, despite early stage of LSTM-

based speech processing - compare to many
man-years of HMM-based speech research.

copyright 2003 Juergen
Schmidhuber

Output Predictions

30.0
2650
o N
I,
200 N e i
e
i
3
— 180
=
e
3
© e
10.0
20 A W
0o i LT e i] i i i
0o 10.0 200 300 40.0 a0.0 60.0 70.0 B0.0 ap.0

h# s eh v ah n fcl t iy h# tcl t uw h#

states

LSTM Linear States

30.0

2801

2001

152.0

10.0

5.0

0.0

-5.0

a.

o 100 200 300 400 S00 600 700 800
h# s ehv ah n tcl t iy h# tcl t uw h#

State trajectories suggest a use of history.

copyright 2003 Juergen

Schmidhuber

90.0

Discussion

* Anecdotal evidence suggests that
LSTM learns a dynamic representation
of phoneme segmentation

* Performance already close to state-of-
art HMMs, but very preliminary results

 Much more analysis and simulation
required - ongoing work!

copyright 2003 Juergen
Schmidhuber

Learning to Learn?

copyright 2003 Juergen
Schmidhuber

Learning to learn

o Schmidhuber (1993): a self-referential weight matrix.
RNN can read and actively change its own weights;
runs weight change algorithm on itself; uses gradient-
based metalearning algorithm to compute better
weight change algorithm.

« Did not work well in practice, because standard
RNNSs were used instead of LSTM.

e But Hochreiter recently used LSTM for metalearning
(2001) and obtained astonishing results.

copyright 2003 Juergen
Schmidhuber

LSTM metalearner (Hochreiter, 2001)

LSTM, 5000 weights, 5 months training:

metalearns fast online learning algorithm for
quadratic functions f(x,y)=a,x?+a,y?+a,xy+a,x+azy+as
Huge time lags.

o After metalearning, freeze weights.

Now use net: Select new f, feed training exemplars

...data/target/data/target/data... into input units, one

at a time. After 30 exemplars the net predicts target
Inputs before it sees them.

No weight changes! How?

copyright 2003 Juergen
Schmidhuber

LSTM metalearner: How?

 On the frozen net runs a sequential learning
algorithm which computes something like error
signals from inputs recognized as data and targets.

« Parameters of f, errors, temporary variables,
counters, computations of f and of parameter updates
are all somehow represented in form of circulating
activations.

copyright 2003 Juergen
Schmidhuber

LSTM metalearner

 New learning algorithm much faster than standard
backprop with optimal learning rate: O(30) : O(1000)

e Gradient descent metalearns online learning
algorithm that outperforms gradient descent.

 Metalearning automatically avoids overfitting, since it
punishes overfitting online learners just like slow
ones: more cumulative errors!

copyright 2003 Juergen
Schmidhuber

Learning to Learn?

copyright 2003 Juergen
Schmidhuber

Some

Reinforcement Learning with RNNs

Forward model

EVA_E
RO 3
XESRHRK

Jordan & Rumelhart, &

Nguyen & Widrow)

(Werbos

A EERED

=

JAPSE KL

freeze it,

Train model

use it to compute

gradient for controller

CONTROL NN K v |

Recurrent Controller &

Model (Schmidhuber 1990)

copyright 20C

Schmidhuber

Reinforcement Learning RNNSs Il

 Use RNN as function approximator for

standard RL algorithms
(Schmidhuber, IJCNN 1990, NIPS 1991, Lin, 1993)

e Use LSTM as function approximator for
standard RL (Bakker, NIPS 2002)

e Fine results

copyright 2003 Juergen
Schmidhuber

Using LSTM for POMDPs (Bakker, 2001)

To the the robot, all T-
junctions look the
same. Needs short-
term memory to
disambiguate them!

LSTM to approximate value function of
reinforcement learning (RL) algorithm

Network outputs correspond to values of various actions,
learned through Advantage Learning RL algorithm

action

environment

memory cells

‘ observation

In contrast with supervised learning tasks, now LSTM determines
its own subsequent inputs, by means of its outputs!

Test problem 1: Long-term dependency
T-maze with noisy observations

observation

[cIII 010

alb

aandb
random in
[0,1]

1))
-
=
i
=
y—
)]
)]
Q
o
o
-
w
[P
o
-
Q
e
£
3
Pl

LSTM
BPTT
¥—x Memory hits

B
B
B
B
B
B
B
B
B

1 1 O (O 1 1) Leﬁth oft%rridfro

Test problem 2: partially observable, multi-
mode pole balancing

e State of the
environment:

X, %,0,0

push left

+ Observation: .
« X,J: S0 X, mustbe learned
+ 1st second of episode (50 it.): “mode of operation”
« mode A: action 1 is left, action 2 is right
« mode B: action 2 is left, action 1 is right

+ Requires combination of continuous & discrete internal state, and to
remember “mode of operation” indefinitely

Results

« BPTT never reached satisfactory solution

« LSTM learned perfect solution in 2 out of 10 runs
(after 6,250,000 it.). In 8 runs the pole balances
In both modes for hundreds or thousands of
timesteps (after 8,095,000 it.).

Internal state evolution of memory cells after learning

fl: Time Series [_ (3] x] fl: Time Series [_ O] x]
s cli s cli
511 5_c11
s cl? s cl2
s cl3 5.0+ 5 13 B0+
5_c14 s cl4
s clh s clh
5.0+ 5.0+
R R L r— T © ©* [°t ©T T* [" ©t T [T T T [T T T]
3840 3860 3880 3900 3920 4000 4020 4040 4060 4080 4100
© MNone ¢ AutaR Coord® Pan ¢ Zoom © ZoomP (" ZoomDrag ™ Grid Mone ¢ AutoR(Coord® Pan ¢ Zoom ¢ ZoomP (" ZoomDrag I~ Grid

mode A mode B

Bram Bakker, IDSIA Postdoc

Ongoing: Reinforcement Learning Robots Using LSTM

Goal / Application abstact_concepts h;”f 1 sine HIGH
 Robots that learn complex | =
behavior, based on rewards K omr—— | 9
« Behaviors that are hard to a o[F s lawer > cormans |2
program, e.g. navigation in i Sl e
offices, object recognition and .
ENVIRONMENT «

manipulation

Approach

 Collect data from robot, learn
controller in simulation, and
fine tune again on real robot.

 Hierarchical control

copyright 3003 Juqiygp|oit CSEM visual sensors
Schmidhuber

copyright 2003 Juergen
Schmidhuber

=

copyright 2003 Juergen
Schmidhuber

