
Long ShortLong Short--Term Memory: Term Memory:
20032003 Tutorial on LSTM Recurrent NetsTutorial on LSTM Recurrent Nets

(there is a recent, much nicer one, with many new results!)(there is a recent, much nicer one, with many new results!)

Jürgen SchmidhuberJürgen Schmidhuber

Pronounce:

You_again Shmidhoobuh

IDSIA, Manno-Lugano, Switzerland

www.idsia.ch

copyright 2003 Juergen
Schmidhuber

Tutorial covers the following LSTM journal publications:

• Neural Computation, 9(8):1735-1780, 1997

• Neural Computation, 12(10):2451--2471, 2000

• IEEE Transactions on NNs 12(6):1333-1340, 2001

• Neural Computation, 2002

• Neural Networks, in press, 2003

• Journal of Machine Learning Research, in press, 2003

• Also many conference publications: NIPS 1997, NIPS 2001, NNSP
2002, ICANN 1999, 2001, 2002, others

copyright 2003 Juergen
Schmidhuber

Even static problems may profit from recurrent
neural networks (RNNs), e.g., parity problem:
number of 1 bits odd? 9 bit feedforward NN:

copyright 2003 Juergen
Schmidhuber

Parity problem, sequential: 1 bit at a time

• Recurrent net learns
much faster - even with
random weight search:
only 1000 trials!

• many fewer parameters
• much better

generalization
• the natural solution

copyright 2003 Juergen
Schmidhuber

Other sequential problems

• Control of attention: human pattern
recognition is sequential

• Sequence recognition: speech, time
series….

• Motor control (memory for partially
observable worlds)

• Almost every real world task
• Strangely, many researchers still content with

reactive devices (FNNs & SVMs etc)

copyright 2003 Juergen
Schmidhuber

Other sequence learners?

• Hidden Markov Models: useful for speech etc. But discrete,
cannot store real values, no good algorithms for learning
appropriate topologies

• Symbolic approaches: useful for grammar learning. Not for
real-valued noisy sequences.

• Heuristic program search (e.g., Genetic Programming, Cramer
1985): no direction for search in algorithm space.

• Universal Search (Levin 1973): asymptotically optimal, but
huge constant slowdown factor

• Fastest algorithm for all well-defined problems (Hutter, 2001):
asymptotically optimal, but huge additive constant.

• Optimal ordered problem solver (Schmidhuber, 2002)

copyright 2003 Juergen
Schmidhuber

Gradient-based RNNs:
∂ wish / ∂ program

• RNN weight matrix
embodies general
algorithm space

• Differentiate objective
with respect to
program

• Obtain gradient or
search direction in
program space

copyright 2003 Juergen
Schmidhuber

1980s: BPTT, RTRL - gradients based on
“unfolding” etc. (Williams, Werbos, Robinson)

w
Ew

tdtoE s
i

sseq t o

s
i

i

∂
∂∝∆

∑ ∑ ∑ −= 2))()((

copyright 2003 Juergen
Schmidhuber

1990s: Time Lags!

• 1990: RNNs great in principle but don’t work?

• Standard RNNs: Error path integral
decays exponentially! (first rigorous analysis
due to Schmidhuber’s former PhD student Sepp Hochreiter
1991; compare Bengio et al 1994, and Hochreiter & Bengio &
Frasconi & Schmidhuber, 2001)

• netk(t) =Σiwki yi(t-1)
• Forward: yk(t)=fk (netk(t))
• Error: ek(t)=fk’(netk(t)) Σi wik ei(t+1)

copyright 2003 Juergen
Schmidhuber

Exponential Error Decay

• Lag q:

• Decay:

• Sigmoid: max f’=0.25; |weights|<4.0; vanish!
(higher weights useless - derivatives disappear)

lv

n

l u

l
vv

uvvv
u

v

w
te
qteqtnetfotherwise

qifwtnetf
te

qte

∑
= ∂

+−∂−

=−=
∂

−∂

1)(
)1())(('

1))1(('
)(

)(

q
Net

q

m

NetFW

mtNetWF
te

qte

||}))('{||max||(||

||))(('||||
)(

)(
||

1

≤−=
∂

−∂ ∏
=

copyright 2003 Juergen
Schmidhuber

Training: forget minimal time lags > 10!

• So why study RNNs at all?
• Hope for generalizing from short exemplars?

Sometimes justified, often not.

• To overcome long time lag problem: history compression in
RNN hierarchy - level n gets unpredictable inputs from level n-1
(Schmidhuber, NIPS 91, Neural Computation 1992)

• Other 1990s ideas: Mozer, Ring, Bengio, Frasconi, Giles, Omlin,
Sun, ...

copyright 2003 Juergen
Schmidhuber

Constant Error Flow!

• Best 90s idea
Hochreiter (back then an undergrad student on Schmidhuber’s

long time lag recurrent net project, since 2002 assistant professor in Berlin)

• Led to Long Short-Term Memory (LSTM):
• Time lags > 1000
• No loss of short time lag capability
• O(1) update complexity per time step and

weight

copyright 2003 Juergen
Schmidhuber

Basic LSTM unit: linear integrator

• Very simple self-connected linear unit
called the error carousel.

• Constant error flow:
e(t) = f’(net(t)) w e(t+1) = 1.0

• Most natural: f linear, w = 1.0 fixed.
• Purpose: Just deliver errors, leave

learning to other weights.

copyright 2003 Juergen
Schmidhuber

Long Short-Term Memory (LSTM)

copyright 2003 Juergen
Schmidhuber

Possible LSTM cell (original)

• Red: linear unit, self-
weight 1.0 - the error
carousel

• Green: sigmoid gates
open / protect access to
error flow

• Blue: multiplicative
openings or shut-downs

copyright 2003 Juergen
Schmidhuber

LSTM cell (current standard)

• Red: linear unit, self-
weight 1.0 - the error
carousel

• Green: sigmoid gates
open / protect access to
error flow;
forget gate (left) resets

• Blue: multiplications

copyright 2003 Juergen
Schmidhuber

forgetw ⋅= 0.1

)(outnetfout =

∑=
i

ikik ywnet

)(innetfin =

)(INnetfIN =

inIN ⋅

outOUT ⋅

OUTnetOUT =
)(forgetnetf

forget =

copyright 2003 Juergen
Schmidhuber

Mix LSTM cells and others

copyright 2003 Juergen
Schmidhuber

Mix LSTM cells and others

copyright 2003 Juergen
Schmidhuber

Also possible: LSTM memory blocks:
error carousels may share gates

copyright 2003 Juergen
Schmidhuber

Example: no forget gates;
2 connected blocks, 2 cells each

copyright 2003 Juergen
Schmidhuber

Example with forget gates

copyright 2003 Juergen
Schmidhuber

Next: LSTM Pseudocode

• Typically: truncate errors
once they have changed
incoming weights

• Local in space and time:
O(1) updates per weight
and time step

• Download: www.idsia.ch

copyright 2003 Juergen
Schmidhuber

Download LSTM code: www.idsia.ch/~juergen/rnn.html

copyright 2003 Juergen
Schmidhuber

Experiments: first some LSTM limitations

• Was tested on classical time series that feedforward
nets learn well when tuned (MackeyGlass...)

• LSTM: 1 input unit, 1 input at a time (memory overhead)

FNN: 6 input units (no need to learn what to store)

• LSTM extracts basic wave; but best FNN better!

• Parity: random weight search outperforms all!

• So: use LSTM only when simpler approaches fail!
Do not shoot sparrows with cannons.

• Experience: LSTM likes sparse coding.

copyright 2003 Juergen
Schmidhuber

“True” Sequence Experiments
LSTM in a league by itself

• Noisy extended sequences
• Long-term storage of real numbers
• Temporal order of distant events
• Info conveyed by event distances
• Stable smooth and nonsmooth trajectories, rhythms
• Simple regular, context free, context sensitive

grammars (Gers, 2000)
• Music composition (Eck, 2002)
• Reinforcement Learning (Bakker, 2001)
• Metalearning (Hochreiter, 2001)
• Speech (vs HMMs)? One should try it….

copyright 2003 Juergen
Schmidhuber

Regular Grammars: LSTM vs Simple RNNs
(Elman 1988) & RTRL / BPTT (Zipser & Smith)

copyright 2003 Juergen
Schmidhuber

Contextfree / Contextsensitive Languages

AnBn
Train[n] % Sol. Test[n]

Wiles &
Elman 95

1…11 20% 1…18

LSTM

AnBnCn

1…10 100% 1…1000

LSTM 1…50 100% 1…500

copyright 2003 Juergen
Schmidhuber

What this means:

• ---------------------LEGAL:---------------------
• aaaaa…..aaabbbbb…..bbbccccc…..ccc

500 500 500
• --------------------ILLEGAL:-------------------

aaaaa…..aaabbbbb…..bbbccccc…..ccc
500 499 500

• LSTM + Kalman: up to n=22,000,000 (Perez, 2002)!!!

copyright 2003 Juergen
Schmidhuber

Typical evolution of activations

copyright 2003 Juergen
Schmidhuber

Storing & adding real values

• T=100: 2559/2560; 74,000 epochs
• T=1000: 2559/2560; 850,000 epochs

copyright 2003 Juergen
Schmidhuber

Noisy temporal order

• T=100: 2559/2560 correct;
• 32,000 epochs on average

copyright 2003 Juergen
Schmidhuber

Noisy temporal order II

• Noisy sequences such as
aabab...dcaXca...abYdaab...bcdXdb….

• 8 possible targets after 100 steps:
• X,X,X → 1; X,X,Y → 2; X,Y,X → 3;

X,Y,Y → 4; Y,X,X → 5; Y,X,Y → 6;
Y,Y,X → 7; Y,Y,Y → 8;

• 2558/2560 correct (error < 0.3)
• 570,000 epochs on average

copyright 2003 Juergen
Schmidhuber

Learning to compose music with RNNs?

• Previous work by Mozer, Todd, others…
• Train net to produce probability distribution on

next notes, given past
• Traditional RNNs do capture local structure,

such as typical harmony sequences
• RNNs fail to extract global structure
• Result: “Bach Elevator Muzak” :-)
• Question: does LSTM find global structure?

copyright 2003 Juergen
Schmidhuber

• Yes, can learn to make sharp nonlinear spikes every
n steps (Gers, 2001)

• For instance: n = 1,…,50,…. nonvariable

• Or: n = 1…30... variable, depending on a special
stationary input

• Can also extract info from time delays:
Target = 1.0 if delay between spikes in input
sequence = 20, else target = 0.0

• Compare HMMs which ignore delays

Step 1: can LSTM learn precise timing?

copyright 2003 Juergen
Schmidhuber

Self-sustaining Oscillation

copyright 2003 Juergen
Schmidhuber

Step 2: Learning the Blues (Eck, 2002)

• Training form (each bar = 8 steps, 96 steps in total)

• Representative LSTM composition: 0:00 start; 0:28 -1:12: freer improvisation;

1:12: example of the network repeating a motif not found in the training set.

copyright 2003 Juergen
Schmidhuber

Speech Recognition

• NNs already show promise (Boulard,
Robinson, Bengio)

• LSTM may offer a better solution by
finding long-timescale structure

• At least two areas where this may help:
– Time warping (rate invariance)
– Dynamic, learned model of phoneme

segmentation (with little apriori knowledge)

copyright 2003 Juergen
Schmidhuber

Speech Set 2: Phoneme
Identification

• “Numbers 95” database. Numeric street
addresses and zip codes (from Bengio)

• 13 MFCC values plus first derivative =
26 inputs

• 27 possible phonemes
• ~=4500 sentences

~=77000 phonemes
~= 666,000 10ms frames

copyright 2003 Juergen
Schmidhuber

copyright 2003 Juergen
Schmidhuber

Task B: frame-level phoneme recognition

• Assign all frames to one of 27 phonemes.
• Use entire sentence
• For later phonemes, history can be exploited
• Benchmark ~= 80%
• LSTM ~= 78%*
• Nearly as good, despite early stage of LSTM-

based speech processing - compare to many
man-years of HMM-based speech research.

copyright 2003 Juergen
Schmidhuber

State trajectories suggest a use of history.

copyright 2003 Juergen
Schmidhuber

Discussion

• Anecdotal evidence suggests that
LSTM learns a dynamic representation
of phoneme segmentation

• Performance already close to state-of-
art HMMs, but very preliminary results

• Much more analysis and simulation
required - ongoing work!

copyright 2003 Juergen
Schmidhuber

Learning to LearnLearning to Learn??

copyright 2003 Juergen
Schmidhuber

Learning to learn

• Schmidhuber (1993): a self-referential weight matrix.
RNN can read and actively change its own weights;
runs weight change algorithm on itself; uses gradient-
based metalearning algorithm to compute better
weight change algorithm.

• Did not work well in practice, because standard
RNNs were used instead of LSTM.

• But Hochreiter recently used LSTM for metalearning
(2001) and obtained astonishing results.

copyright 2003 Juergen
Schmidhuber

LSTM metalearner (Hochreiter, 2001)

• LSTM, 5000 weights, 5 months training:
metalearns fast online learning algorithm for
quadratic functions f(x,y)=a1x2+a2y2+a3xy+a4x+a5y+a6
Huge time lags.

• After metalearning, freeze weights.

• Now use net: Select new f, feed training exemplars
...data/target/data/target/data... into input units, one
at a time. After 30 exemplars the net predicts target
inputs before it sees them.
No weight changes! How?

copyright 2003 Juergen
Schmidhuber

LSTM metalearner: How?

• On the frozen net runs a sequential learning
algorithm which computes something like error
signals from inputs recognized as data and targets.

• Parameters of f, errors, temporary variables,
counters, computations of f and of parameter updates
are all somehow represented in form of circulating
activations.

copyright 2003 Juergen
Schmidhuber

LSTM metalearner

• New learning algorithm much faster than standard
backprop with optimal learning rate: O(30) : O(1000)

• Gradient descent metalearns online learning
algorithm that outperforms gradient descent.

• Metalearning automatically avoids overfitting, since it
punishes overfitting online learners just like slow
ones: more cumulative errors!

copyright 2003 Juergen
Schmidhuber

Learning to LearnLearning to Learn??

copyright 2003 Juergen
Schmidhuber

Some Some
dayday

copyright 2003 Juergen
Schmidhuber

Reinforcement Learning with RNNs

• Forward model
(Werbos, Jordan & Rumelhart,
Nguyen & Widrow)

• Train model, freeze it,
use it to compute
gradient for controller

• Recurrent Controller &
Model (Schmidhuber 1990)

copyright 2003 Juergen
Schmidhuber

Reinforcement Learning RNNs II

• Use RNN as function approximator for
standard RL algorithms
(Schmidhuber, IJCNN 1990, NIPS 1991, Lin, 1993)

• Use LSTM as function approximator for
standard RL (Bakker, NIPS 2002)

• Fine results

Using LSTM for POMDPs (Bakker, 2001)

reward

To the the robot, all T-
junctions look the
same. Needs short-
term memory to
disambiguate them!

LSTM to approximate value function of
reinforcement learning (RL) algorithm

Network outputs correspond to values of various actions,
learned through Advantage Learning RL algorithm

In contrast with supervised learning tasks, now LSTM determines
its own subsequent inputs, by means of its outputs!

environment

action

observation

Test problem 1: Long-term dependency
T-maze with noisy observations

observation

a and b
random in
[0,1]

010

a0b

110 (011)

Test problem 2: partially observable, multi-
mode pole balancing

• State of the
environment:

w Observation:
w must be learned
w 1st second of episode (50 it.): “mode of operation”

• mode A: action 1 is left, action 2 is right
• mode B: action 2 is left, action 1 is right

w Requires combination of continuous & discrete internal state, and to
remember “mode of operation” indefinitely

θθ && ,,, xx

θθ &&,:, xsox

Results

• BPTT never reached satisfactory solution
• LSTM learned perfect solution in 2 out of 10 runs

(after 6,250,000 it.). In 8 runs the pole balances
in both modes for hundreds or thousands of
timesteps (after 8,095,000 it.).

mode A mode B

Internal state evolution of memory cells after learning

copyright 2003 Juergen
Schmidhuber

Ongoing: Reinforcement Learning Robots Using LSTM

Goal / Application
• Robots that learn complex

behavior, based on rewards
• Behaviors that are hard to

program, e.g. navigation in
offices, object recognition and
manipulation

Approach
• Collect data from robot, learn

controller in simulation, and
fine tune again on real robot.

• Hierarchical control
• Exploit CSEM visual sensors

?

Bram Bakker, IDSIA Postdoc

copyright 2003 Juergen
Schmidhuber

copyright 2003 Juergen
Schmidhuber

