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Tutorial covers the following LSTM journal publications:

• Neural Computation, 9(8):1735-1780, 1997

• Neural Computation, 12(10):2451--2471, 2000

• IEEE Transactions on NNs 12(6):1333-1340, 2001

• Neural Computation, 2002

• Neural Networks, in press, 2003

• Journal of Machine Learning Research, in press, 2003

• Also many conference publications: NIPS 1997, NIPS 2001, NNSP 
2002, ICANN 1999, 2001, 2002, others
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Even static problems may profit from recurrent 
neural networks (RNNs), e.g., parity problem:
number of 1 bits odd?    9 bit feedforward NN:
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Parity problem, sequential: 1 bit at a time

• Recurrent net learns 
much faster - even with 
random weight search: 
only 1000 trials!

• many fewer parameters
• much better 

generalization
• the natural solution
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Other sequential problems

• Control of attention: human pattern 
recognition is sequential

• Sequence recognition: speech, time 
series….

• Motor control (memory for partially 
observable worlds)

• Almost every real world task
• Strangely, many researchers still content with 

reactive devices (FNNs & SVMs etc)
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Other sequence learners?

• Hidden Markov Models: useful for speech etc. But discrete, 
cannot store real values, no good algorithms for learning 
appropriate topologies

• Symbolic approaches: useful for grammar learning. Not for 
real-valued noisy sequences.

• Heuristic program search (e.g., Genetic Programming, Cramer 
1985): no direction for search in algorithm space.

• Universal Search (Levin 1973): asymptotically optimal, but 
huge constant slowdown factor

• Fastest algorithm for all well-defined problems (Hutter, 2001):
asymptotically optimal, but huge additive constant.

• Optimal ordered problem solver (Schmidhuber, 2002)
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Gradient-based RNNs:                
∂ wish /  ∂ program

• RNN weight matrix 
embodies general 
algorithm space

• Differentiate objective 
with respect to 
program

• Obtain gradient or 
search direction in 
program space
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1980s: BPTT, RTRL - gradients based on 
“unfolding” etc. (Williams, Werbos, Robinson)
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1990s: Time Lags!

• 1990: RNNs great in principle but don’t work?

• Standard RNNs: Error path integral 
decays exponentially! (first rigorous analysis 
due to Schmidhuber’s former PhD student Sepp Hochreiter
1991; compare Bengio et al 1994, and Hochreiter & Bengio & 
Frasconi & Schmidhuber, 2001)

• netk(t) =Σiwki yi(t-1)
• Forward: yk(t)=fk (netk(t)) 
• Error: ek(t)=fk’(netk(t)) Σi wik ei(t+1)
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Exponential Error Decay

• Lag q:

• Decay:

• Sigmoid: max f’=0.25; |weights|<4.0; vanish!
(higher weights useless - derivatives disappear)
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Training: forget minimal time lags > 10!

• So why study RNNs at all?
• Hope for generalizing from short exemplars?

Sometimes justified, often not.

• To overcome long time lag problem: history compression in 
RNN hierarchy - level n gets unpredictable inputs from level n-1
(Schmidhuber, NIPS 91, Neural Computation 1992)

• Other 1990s ideas: Mozer, Ring, Bengio, Frasconi, Giles, Omlin, 
Sun, ...
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Constant Error Flow!

• Best  90s idea                              
Hochreiter (back then an undergrad student on Schmidhuber’s

long time lag recurrent net project, since 2002 assistant professor in Berlin)

• Led to Long Short-Term Memory (LSTM):
• Time lags > 1000
• No loss of short time lag capability
• O(1) update complexity per time step and 

weight 
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Basic LSTM unit: linear integrator

• Very simple self-connected linear unit 
called the error carousel.

• Constant error flow:
e(t) = f’(net(t)) w e(t+1) = 1.0

• Most natural: f linear, w = 1.0 fixed.
• Purpose: Just deliver errors, leave 

learning to other weights.
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Long Short-Term Memory (LSTM)
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Possible LSTM cell (original)

• Red: linear unit, self-
weight 1.0 - the error 
carousel

• Green: sigmoid gates 
open / protect access to 
error flow

• Blue: multiplicative 
openings or shut-downs
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LSTM cell  (current standard)

• Red: linear unit, self-
weight 1.0 - the error 
carousel

• Green: sigmoid gates 
open / protect access to 
error flow;                
forget gate (left) resets

• Blue: multiplications
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Mix LSTM cells and others
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Mix LSTM cells and others
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Also possible: LSTM memory blocks:
error carousels may share gates
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Example: no forget gates; 
2 connected blocks, 2 cells each
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Example with forget gates
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Next: LSTM Pseudocode

• Typically: truncate errors 
once they have changed 
incoming weights

• Local in space and time:
O(1) updates per weight 
and time step

• Download: www.idsia.ch
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Download LSTM code: www.idsia.ch/~juergen/rnn.html
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Experiments: first some LSTM limitations 

• Was tested on classical time series that feedforward
nets learn well when tuned (MackeyGlass...)

• LSTM: 1 input unit,  1 input at a time (memory overhead)

FNN:   6 input units (no need to learn what to store)

• LSTM extracts basic wave; but best FNN better!

• Parity: random weight search outperforms all!

• So: use LSTM only when simpler approaches fail!        
Do not shoot sparrows with cannons.

• Experience: LSTM likes sparse coding.
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“True” Sequence Experiments
LSTM in a league by itself

• Noisy extended sequences
• Long-term storage of real numbers 
• Temporal order of distant events
• Info conveyed by event distances
• Stable smooth and nonsmooth trajectories, rhythms
• Simple regular, context free, context sensitive 

grammars (Gers, 2000)
• Music composition (Eck, 2002)
• Reinforcement Learning (Bakker, 2001)
• Metalearning (Hochreiter, 2001)
• Speech (vs HMMs)? One should try it….
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Regular Grammars: LSTM vs Simple RNNs
(Elman 1988) & RTRL / BPTT (Zipser & Smith)
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Contextfree / Contextsensitive Languages

AnBn
Train[n] % Sol. Test[n]

Wiles &
Elman 95

1…11 20% 1…18

LSTM

AnBnCn

1…10 100% 1…1000

LSTM 1…50 100% 1…500
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What this means:

• ---------------------LEGAL:---------------------
• aaaaa…..aaabbbbb…..bbbccccc…..ccc

500 500 500
• --------------------ILLEGAL:-------------------

aaaaa…..aaabbbbb…..bbbccccc…..ccc
500 499 500

• LSTM + Kalman: up to n=22,000,000 (Perez, 2002)!!!
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Typical evolution of activations
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Storing & adding real values

• T=100:   2559/2560; 74,000 epochs
• T=1000: 2559/2560; 850,000 epochs



copyright 2003 Juergen 
Schmidhuber                   

Noisy temporal order

• T=100:   2559/2560 correct;
• 32,000   epochs on average
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Noisy temporal order II

• Noisy sequences such as 
aabab...dcaXca...abYdaab...bcdXdb….

• 8 possible targets after 100 steps:
• X,X,X → 1; X,X,Y → 2; X,Y,X → 3;             

X,Y,Y → 4; Y,X,X → 5; Y,X,Y → 6;              
Y,Y,X → 7; Y,Y,Y → 8;

• 2558/2560 correct (error < 0.3)
• 570,000  epochs on average
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Learning to compose music with RNNs? 

• Previous work by Mozer, Todd, others…
• Train net to produce probability distribution on 

next notes, given past
• Traditional RNNs do capture local structure, 

such as typical harmony sequences
• RNNs fail to extract global structure
• Result: “Bach Elevator Muzak”                :-)
• Question: does LSTM find global structure?
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• Yes, can learn to make sharp nonlinear spikes every 
n steps                                                    (Gers, 2001)

• For instance: n = 1,…,50,…. nonvariable

• Or: n = 1…30... variable, depending on a special 
stationary input

• Can also extract info from time delays:
Target  = 1.0 if delay between spikes in input 
sequence  = 20,  else target = 0.0 

• Compare HMMs which ignore delays

Step 1: can LSTM learn precise timing?
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Self-sustaining Oscillation
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Step 2: Learning the Blues   (Eck, 2002)

• Training form (each bar = 8 steps, 96 steps in total)

• Representative LSTM composition: 0:00 start; 0:28 -1:12: freer improvisation; 

1:12: example of the network repeating a motif not found in the training set.
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Speech Recognition

• NNs already show promise (Boulard, 
Robinson, Bengio)

• LSTM may offer a better solution by 
finding long-timescale structure 

• At least two areas where this may help:
– Time warping (rate invariance)
– Dynamic, learned model of phoneme 

segmentation (with little apriori knowledge)
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Speech Set 2: Phoneme 
Identification

• “Numbers 95” database. Numeric street 
addresses and zip codes (from Bengio) 

• 13 MFCC values plus first derivative =  
26 inputs

• 27 possible phonemes
• ~=4500 sentences

~=77000 phonemes
~= 666,000 10ms frames
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Task B: frame-level phoneme recognition

• Assign all frames to one of 27 phonemes. 
• Use entire sentence 
• For later phonemes, history can be exploited
• Benchmark ~= 80%
• LSTM ~= 78%*  
• Nearly as good, despite early stage of LSTM-

based speech processing - compare to many 
man-years of HMM-based speech research.
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State trajectories suggest a use of history. 
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Discussion

• Anecdotal evidence suggests that 
LSTM learns a dynamic representation 
of phoneme segmentation

• Performance already close to state-of-
art HMMs, but very preliminary results

• Much more analysis and simulation 
required - ongoing work!
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Learning to LearnLearning to Learn??
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Learning to learn

• Schmidhuber (1993): a self-referential weight matrix.
RNN can read and actively change its own weights; 
runs weight change algorithm on itself; uses gradient-
based metalearning algorithm to compute better 
weight change algorithm.

• Did not work well in practice, because standard 
RNNs were used instead of LSTM.

• But Hochreiter recently used LSTM for metalearning
(2001) and obtained astonishing results.
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LSTM metalearner (Hochreiter, 2001)

• LSTM, 5000 weights, 5 months training:        
metalearns fast online learning algorithm for 
quadratic functions f(x,y)=a1x2+a2y2+a3xy+a4x+a5y+a6
Huge time lags.

• After metalearning, freeze weights. 

• Now use net: Select new f, feed training exemplars 
...data/target/data/target/data... into input units, one 
at a time. After  30 exemplars the net predicts target 
inputs before it sees them.                                     
No weight changes! How?
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LSTM metalearner: How?

• On the frozen net runs a sequential learning 
algorithm which  computes something like error 
signals from inputs recognized as data and targets. 

• Parameters of f, errors, temporary variables, 
counters, computations of f and of parameter updates 
are all somehow represented in form of circulating 
activations. 
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LSTM metalearner

• New learning algorithm much faster than standard 
backprop with optimal learning rate: O(30) : O(1000)

• Gradient descent metalearns online learning 
algorithm that outperforms gradient descent.

• Metalearning automatically avoids overfitting, since it 
punishes overfitting online learners just like slow 
ones: more cumulative errors!
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Learning to LearnLearning to Learn??
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Some Some 
dayday
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Reinforcement Learning with RNNs

• Forward model
(Werbos, Jordan & Rumelhart, 
Nguyen & Widrow)

• Train model, freeze it, 
use it to compute 
gradient for controller

• Recurrent Controller & 
Model (Schmidhuber 1990)
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Reinforcement Learning RNNs II 

• Use RNN as function approximator for 
standard RL algorithms                       
(Schmidhuber, IJCNN 1990, NIPS 1991, Lin, 1993)

• Use LSTM as function approximator for 
standard RL (Bakker, NIPS 2002)

• Fine results



Using LSTM for POMDPs (Bakker, 2001)

reward

To the the robot, all T-
junctions look the 
same. Needs short-
term memory to 
disambiguate them!



LSTM to approximate value function of 
reinforcement learning (RL) algorithm

Network outputs correspond to  values of various actions,
learned through Advantage Learning RL algorithm

In contrast with supervised learning tasks, now  LSTM determines
its own subsequent inputs, by means of its outputs!

environment

action

observation



Test problem 1: Long-term dependency 
T-maze with noisy observations

observation

a and b 
random in 
[0,1]

010

a0b

110 (011)



Test problem 2: partially observable, multi-
mode pole balancing

• State of the 
environment:

w Observation:
w must be learned
w 1st second of episode (50 it.): “mode of operation”

• mode  A: action 1 is left, action 2 is right
• mode  B: action 2 is left, action 1 is right

w Requires combination of continuous & discrete internal state, and to 
remember “mode of operation” indefinitely

θθ && ,,, xx

θθ &&,:, xsox



Results

• BPTT never reached satisfactory solution 
• LSTM learned perfect solution in 2 out of 10 runs 

(after 6,250,000 it.). In 8 runs the pole balances 
in both modes for hundreds or thousands of 
timesteps (after 8,095,000 it.).

mode A mode B

Internal state evolution of memory cells after learning
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Ongoing: Reinforcement Learning Robots Using LSTM

Goal / Application
• Robots that learn complex 

behavior, based on rewards
• Behaviors that are hard to 

program, e.g. navigation in 
offices, object recognition and 
manipulation

Approach
• Collect data from robot, learn 

controller in simulation, and 
fine tune again on real robot.

• Hierarchical control
• Exploit CSEM visual sensors

?

Bram Bakker, IDSIA Postdoc
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