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Abstract
The purpose of this paper is to show that neural networks are promising tools for data
compression without loss of information. We combine predictive neural nets and statistical
coding techniques to compress text files. We apply our methods to short newspaper articles
and obtain compression ratios exceeding those of widely used Lempel-Ziv algorithms (which
build the basis of the UNIX functions “compress” and “gzip”). The main disadvantage of our
methods is that they are three orders of magnitude slower than standard methods.

I. INTRODUCTION

Text compression is important (e.g. [1]). It is cheaper to communicate compressed text files
instead of original text files. Moreover, compressed files are cheaper to store.

For such reasons, various text encoding algorithms have been developed, plus the correspond-
ing decoding algorithms. A text encoding algorithm takes a text file and generates a shorter
compressed file from it. The compressed file contains all the information necessary to restore
the original file, which can be done by calling the corresponding decoding algorithm (unlike with
image compression, text compression typically requires loss-free compression). The most widely
used text compression algorithms are based on Lempel-Ziv techniques, e.g. [13]. Lempel-Ziv com-
presses symbol strings sequentially, essentially replacing substrings by pointers to equal substrings
encountered earlier. As the file size goes to infinity, Lempel-Ziv becomes asymptotically optimal
in a certain information theoretic sense [12].

The average ratio between the lengths of original and compressed files is called the average
compression ratio. We cite a statement from Held’s book [2], where he refers to text represented
by 8 bits per character:

”In general, good algorithms can be expected to achieve an average compression ratio
of 1.5, while excellent algorithms based upon sophisticated processing techniques will
achieve an average compression ratio exceeding 2.0.”

This paper will show that neural networks can be used to design “excellent” text compression
algorithms.

Outline of paper. Section II describes the basic approach combining neural nets and the
technique of predictive coding. Section III focuses on the details of a neural predictor of conditional
probabilities. In addition, section III describes three alternative coding techniques to be used in
conjunction with the predictor. Section IV presents comparative simulations. Section V discusses
limitations and extensions.
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II. BASIC APPROACH

We combine neural nets, standard statistical compression methods like Huffman-Coding (e.g. [2])
and Arithmetic Coding (e.g. [11]), and variants of the “principle of history compression” [7] [5].
The main ideas of the various alternatives will be explained in section III.

All our methods are instances of a strategy known as “predictive coding” or “model-based
coding”. We use a neural predictor network P which is trained to approximate the conditional
probability distribution of possible characters, given previous characters. P’s outputs are fed
into coding algorithms that generate short codes for characters with low information content
(characters with high predicted probability) and long codes for characters conveying a lot of
information (highly unpredictable characters).

Why not use a look-up table instead of a network? Because look-up tables tend to be extremely
inefficient. A look-up table requires k"' entries for all the conditional probabilities of k possible
characters, given n previous characters. In addition, a special procedure is required for dealing
with previously unseen combinations of input characters. In contrast, the size of a neural net
typically grows in proportion to n? (assuming the number of hidden units grows in proportion
to the number of inputs), and its inherent “generalization capability” is going to take care of
previously unseen combinations of input characters (hopefully by coming up with good predicted
probabilities).

We will make the distinction between on-line and off-line variants of our approach. With
off-line methods, P is trained on a separate set F' of training files. After training, the weights are
frozen and copies of P are installed at all machines functioning as message receivers or senders.
From then on, P is used to encode and decode unknown files without being changed any more.
The weights become part of the code of the compression algorithm. The storage occupied by the
network weights does not have to be taken into account to measure the performance on unknown
files — just like the code for a conventional data compression algorithm does not have to be taken
into account.

The on-line variants are based on the insight that even if the predictor learns during compres-
sion, the modified weights need not be sent from the sender to the receiver across the commu-
nication channel — as long as the predictor employed for decoding uses exactly the same initial
conditions and learning algorithm as the predictor used for encoding (this observation goes back
to Shannon). Since on-line methods can adapt to the statistical properties of specific files, they
promise significantly better performance than off-line methods. But there is a price to pay: on-line
methods tend to be computationally more expensive.

Section IV will show that even off-line methods can achieve excellent results. We will briefly
come back to on-line methods in the final section of this paper.

ITI. OFF-LINE METHODS

In what follows, we will first describe the training phase of the predictor network P (a strictly
layered feed-forward net trained by back-propagation [10][4]). The training phase is based on a
set I of training files. Then we will describe three working off-line variants of “compress” and
“uncompress” functions based on P. All methods are guaranteed to encode and decode arbitrary
unknown text files without loss of information.

A. THE PREDICTOR NETWORK P

Assume that the alphabet contains k possible characters 21, 22, . .., 2zx. The (local) representation
of z; is a binary k-dimensional vector r(z;) with exactly one non-zero component (at the i-th
position). P has nk input units and k output units. n is called the “time-window” size. We insert
n default characters zy at the beginning of each file. The representation of the default character,
r(20), is the k-dimensional zero-vector. The m-th character of file f (starting from the first default
character) is called ¢/, .



For all f € F and all possible m > n, P receives as an input
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where o is the concatenation operator for vectors. P produces as an output PJ, a k-dimensional
output vector. Using back-propagation [10][4], P is trained to minimize
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for all f and for all appropriate m > n, where (P}) j denotes the j-th component of the vector
P!

In practical applications, the (P]); will not always sum up to 1. To obtain outputs satisfying
the properties of a proper probability distribution, we normalize by defining
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B. METHOD 1

With the help of a copy of P, an unknown file f can be compressed as follows: Again, n default
characters are inserted at the beginning. For each character ¢/, (m > n), the predictor emits its
output P/ based on the n previous characters. There will be a k such that ¢/, = z;,. The estimate
of Pr(cl, =z, | ¢/ ..., cfnfl) is given by PJ (k). The code of ¢, the bitstring code(cf,), is
generated by feeding P/ (k) into the Huffman Coding algorithm (see below). code(cf,) is written
into the compressed file.

Huffman Coding

With a given probability distribution on a set of possible characters, Huffman Coding (e.g. [2])
encodes characters by bitstrings as follows.

Characters correspond to terminal nodes of a binary tree to be built in an incremental fashion.
The probability of a terminal node is defined as the probability of the corresponding character.
The probability of a non-terminal node is defined as the sum of the probabilities of its sons.
Starting from the terminal nodes, a binary tree is built as follows:

Repeat as long as possible:

Among those nodes that are not children of any non-terminal nodes created earlier, pick
two with lowest associated probabilities. Make them the two sons of a newly generated
non-terminal node.

The branch to the “left” son of each non-terminal node is labeled by a 0. The branch to its “right”
son is labeled by a 1. The code of a character ¢, code(c), is the bitstring obtained by following
the path from the root to the corresponding terminal node. Obviously, if ¢ # d, then code(c)
cannot be the prefix of code(d). This makes the code uniquely decipherable. Note that characters
with high associated probability are encoded by short bitstrings. Characters with low associated
probability are encoded by long bitstrings.

The probability distribution on the characters is not required to remain fixed. This allows for
using “time-varying” conditional probability distributions as generated by the neural predictor.



How to decode

The information in the compressed file is sufficient to reconstruct the original file. This is done
with the “uncompress” algorithm, which works as follows: Again, for each character cf, (m > n),
the predictor (sequentially) emits its output PJ, based on the n previous characters, where the clf
with n < I < m were gained sequentially by feeding the approximations Plf (k) of the probabilities
Pr(clf =z | clf_n, .. .,clf_l) into the inverse Huffman Coding procedure. The latter is able to

correctly decode c{ from code(clf ). Note that to correctly decode some character, we first need to
decode all previous characters.

C. METHOD 2

Like METHOD 1, but with Arithmetic Coding (see below) replacing the non-optimal Huffman-
Coding (a comparison of alternative coding schemes will be given in subsection III E).

Arithmetic Coding

The basic idea of Arithmetic Coding is: a message is encoded by an interval of real numbers
from the unit interval [0,1[. The output of Arithmetic Coding is a binary representation of the
boundaries of the corresponding interval. This binary representation is incrementally generated
during message processing. Starting with the unit interval, for each observed character the interval
is made smaller, essentially in proportion to the probability of the character. A message with low
information content (and high corresponding probability) is encoded by a comparatively large
interval, whose precise boundaries can be specified with comparatively few bits. A message with
a lot of information content (and low corresponding probability) is encoded by a comparatively
small interval, whose boundaries require comparatively many bits to be specified.

Although the basic idea is elegant and simple, additional technical considerations are necessary
to make Arithmetic Coding practicable. See [11] for details.

D. METHOD 3

This section presents another alternative way of “predicting away” redundant information in
sequences. Again, we pre-process input sequences by a network that tries to predict the next input,
given previous inputs. The input vector corresponding to time step ¢ of sequence p is denoted
by aP(t). The networks real-valued output vector is denoted by y?(¢). Among the possible input
vectors, there is one with minimal Euclidean distance to y?(¢). This one is denoted by 2P (¢). zP(¢)
is interpreted as the deterministic vector-valued prediction of P(t + 1).

It is important to observe that all information about the input vector aP(tx) (at time tg) is
conveyed by the following data: the time ¢z, a description of the predictor and its initial state,
and the set

{(ts,2P(ts)) with 0 <ty <ty,2P(ts — 1) # 2P(ts)}.

In what follows, this observation will be used to compress text files.

Application to Text Compression

Like with METHODs 1 and 2, the “time-window” corresponding to the predictor input is sequen-
tially shifted across the unknown text file. The PJ, however, are used in a different way. The
character z; whose representation r(z;) has minimal Euclidean distance to P}, is taken as the
predictor’s deterministic prediction (if there is more than one character with minimal distance to
the output, then we take the one with lowest ASCII value). If ¢/, does not match the prediction,
then it is stored in a second file, together with a number indicating how many characters were
processed since the last non-matching character [7][5]. Expected characters are simply ignored —
they represent redundant information. To avoid confusions between unexpected numbers from the
original file and numbers indicating how many correct predictions went by since the last wrong



prediction, we introduce an escape character to mark unexpected number characters in the second
file. The escape character is used to mark unexpected escape characters, too. Finally we apply
Huffman-Coding (as embodied by the UNIX function pack) to the second file and obtain the final
compressed file.

The “uncompress” algorithm works as follows: we first unpack the compressed file by inverse
Huffman-Coding (as employed by the UNIX function unpack). Then, starting from n default
characters, the predictor sequentially tries to predict each character of the original file from the
n previous characters (deterministic predictions are obtained like with the compression procedure
above.) The numbers in the unpacked file contain all information about which predictions are
wrong, and the associated characters tell us how to correct wrong predictions: if the unpacked file
indicates that the current prediction is correct, it is fed back to the predictor input and becomes
part of the basis for the next prediction. If the unpacked file indicates that the current prediction
is wrong, the corresponding entry in the unpacked file (the correct character associated with the
number indicating how many correct predictions went by since the last unexpected character)
replaces the prediction and is fed back to the predictor input where it becomes part of the basis
for the next prediction.

E. COMPARISON OF METHODS 1, 2, 3

With a given probability distribution on the characters, Huffman Coding guarantees minimal
expected code length, provided all character probabilities are integer powers of % In general,
however, Arithmetic Coding works slightly better than Huffman Coding. For sufficiently long
messages, Arithmetic Coding achieves expected code lengths arbitrarily close to the information-
theoretic lower bound. This is true even if the character probabilities are not powers of 3 (see e.g.
11]).

METHOD 3 is of interest if typical files contain long sequences of predictable characters.
Among the methods above, it is the only one that explicitly encodes strings of characters (as
opposed to single characters). It does not make use of all the information about conditional
probabilities, however.

Once the current conditional probability distribution is known, the computational complexity
of Huffman Coding is O(klogk). The computational complexity of Arithmetic Coding is O(k). So
is the computational complexity of METHOD 3. In practical applications, however, the compu-
tational effort required for all three variants is negligible in comparison to the effort required for
the predictor updates.

IV. SIMULATIONS

Our current computing environment prohibits extensive experimental evaluations of the three
methods above. On an HP 700 workstation, the training phase for the predictor turns out to
be quite time consuming, taking days of computation time. Once the predictor is trained, the
method still tends to be on the order of 1000 times slower than standard methods. In many
data transmission applications, communication is not expensive enough to justify this in absence
of specialized hardware (given the current state of workstation technology). This leads us to
recommending special neural net hardware for our approach. The software simulations presented
in this section, however, will show that “neural” compression techniques can achieve excellent
compression ratios.

We applied our off-line methods to German newspaper articles. We compared the results
to those obtained with standard encoding techniques provided by the operating system UNIX|
namely “pack”, “compress”, and “gzip”. The corresponding decoding algorithms are “unpack”,
“uncompress”, and “gunzip”, respectively. “pack” is based on Huffman-Coding (e.g. [2]), while
“compress” and “gzip” are based on asymptotically “optimal” Lempel-Ziv techniques, e.g. [13].
It should be noted that “pack”, “compress”, and “gzip” ought to be classified as on-line methods
— they adapt to the specific text file they see. In contrast, the competing “neural” methods ran



off-line, due to time limitations. Therefore our comparison was unfair in the sense that it was
biased against the “neural” methods. See section V, however, for on-line “neural” alternatives.

The training set for the predictor was given by a set of 40 articles from the newspaper Minchner
Merkur, each containing between 10000 and 20000 characters. The alphabet consisted of & = 80
possible characters, including upper case and lower case letters, ciphers, interpunction symbols,
and special German letters like “6”, “0”, “4”. P had 430 hidden units. A “true” unit with
constant activation 1.0 was connected to all hidden and output units. The learning rate was 0.2.
The training phase consisted of 25 sweeps through the training set, taking 3 days of computation
time on an HP 700 station. Why just 25 sweeps? On a separate test set, numbers of sweeps
between 20 and 40 were empirically found to lead to acceptable performance. Note that a single
sweep actually provides many different training examples for the predictor.

The test set consisted of 20 newspaper articles (from the same newspaper), each containing
between 10000 and 20000 characters. Of course, the test set did not overlap with the training
set. Table 1 lists the average compression ratios and the corresponding variances. Our methods
achieved “excellent” performance (according to Held’s statement quoted in the introduction).
Even METHOD 3 led to an “excellent” compression ratio, although it does not make use of all
the information about the conditional probabilities. The best performance was obtained with
METHOD 2, which clearly outperformed the strongest conventional competitor, the UNIX “gzip”
function based on an asymptotically optimal Lempel-Ziv algorithm. Note that variance goes up
(but always remains within acceptable limits) as compression performance improves.

INSERT TABLE 1 HERE

The hidden units were actually necessary to achieve good performance. A network without
hidden units was not able to achieve average compression ratios exceeding 2.0. The precise number
of hidden units appeared to be not very important, though. A network with 300 hidden units
achieved performance similar to the one of the network above.

How does a neural net trained on articles from Miinchner Merkur perform on articles from
other sources? Without retraining the neural predictor, we applied all competing methods to 10
articles from another German newspaper (the Frankenpost). The results are given in table 2.

INSERT TABLE 2 HERE

The Frankenpost articles were harder to compress for all algorithms. But relative performance
remained comparable.

Note that we used quite a small time-window (n = 5). In general, larger time windows will
make more information available to the predictor. In turn, this will improve the prediction quality
and increase the compression ratio. Therefore we expect to obtain even better results for n > 5
and for recurrent predictor networks (note that recurrent nets are less limited to time window
approach — in principle they can emit predictions based on all previous characters). Another
reason for optimism is given by a performance comparison with three human subjects who had
to predict characters (randomly selected from the test files) from n preceding characters. With
n = 5, the humans were able to predict 52 percent of all characters, while our predictor predicted
49 percent (the character with the highest predicted probability was taken as the prediction). With
n = 10, humans were able to predict about 59 percent of all characters. With n = 15, humans
were able to predict about 63 percent of all characters. We expect that P will remain close to
human performance for n > 5. More training data, however, are required to avoid overfitting.



V. DISCUSSION

Our results show that neural networks are promising tools for loss-free data compression. It
was demonstrated that even off-line methods based on small time windows can lead to excellent
compression ratios. We have hardly begun, however, to exhaust the potential of the basic approach.

A disadvantage of the off-line technique is that it is off-line: the predictor does not adapt to
the specific text file it sees. Instead it relies on regularities extracted during the training phase,
and on its ability to generalize. This tends to make it language specific. English texts or C-code
should be compressed with a predictor different from the one used for German texts (unless one
takes the effort and trains the predictor on texts from many different sources, of course).

As mentioned in section II, this limitation is not essential. It is straight-forward to construct
on-line variants of all three methods described in the previous sections. With these on-line variants,
the predictor continues to learn during compression. A typical on-line variant proceeds like this:
both the sender and the receiver start with ezactly the same initial predictor. Whenever the sender
sees a new character, it encodes it using its current predictor. The code is sent to the receiver
who decodes it. Both the sender and the receiver use ezxactly the same learning protocol to modify
their weights (for instance: after processing every 1000th character, take the last 10000 symbols
to retrain the predictor). The modified weights need not be sent from the sender to the receiver
and do not have to be taken into account to compute the average compression ratio. Especially
with long unknown text files, the on-line variant should make a big difference. Initial experiments
with on-line variants of METHODs 2 and 3 led to additional significant improvements of the
compression ratio.

The main disadvantage of both on-line and off-line variants, however, is their computational
complexity. Our current off-line implementations are clearly slower than conventional standard
techniques, by a factor of about 1000 (but we did not attempt to optimize our systems with
respect to speed). And the complexity of an on-line method is typically even worse than the one
of the corresponding off-line method (the precise slow-down factor depends on the nature of the
learning protocol, of course). For this reason, especially the promising on-line variants can be
recommended only if special neural net hardware is available. Note, however, that there are many
commercial data compression applications which rely on specialized electronic chips.

There are a few obvious directions for future experimental research: (1) Use larger time windows
or recurrent nets — they seem to be very promising even for off-line methods (see the last paragraph
of section IV). (2) Thoroughly test the potential of on-line methods. Both (1) and (2) should
greatly benefit from fast hardware.

Finally we mention that there are additional interesting applications of neural predictors of
conditional probabilities. See [8] for a method that uses a predictor of conditional probabilities to
modulate the sequence processing strategy of a separate recurrent network R. This can greatly
improve R’s ability to detect correlations between events separated by long time lags. See [6] for a
method that uses predictors of conditional probabilities to develop factorial codes of environmental
input patterns — codes with the property that the code components are statistically independent
(see [9] and [3] for applications). This can be useful in conjunction with statistical classifiers that
assume statistical independence of their input variables.
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LIST OF TABLE CAPTIONS

Table 1: Average compression ratios (and corresponding variances) of various compression al-
gorithms tested on short German text files (< 20000 Bytes) from the unknown test set from
Miinchner Merkur.

Table 2: Average compression ratios and variances for the Frankenpost. The neural predictor was
not retrained.



Method \ Av. compression ratio \ Variance ‘

Huffman Coding (UNIX: pack) 1.74 0.0002
Lempel-Ziv Coding (UNIX: compress) 1.99 0.0014
METHOD 3, n =5 2.20 0.0014
Improved Lempel-Ziv ( UNIX: gzip -9) 2.29 0.0033
METHOD 1, n =5 2.70 0.0158
METHOD 2, n =5 2.72 0.0234

Table 1:

Method \ Av. compression ratio | Variance

Huffman Coding (UNIX: pack) 1.67 0.0003
Lempel-Ziv Coding (UNIX: compress) 1.71 0.0036
METHOD 3, n=5 1.99 0.0013
Improved Lempel-Ziv ( UNIX: gzip -9) 2.03 0.0099
METHOD 1,n =5 2.25 0.0077
METHOD 2, n =5 2.20 0.0112

Table 2:




