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Abstract—We present a new method to train the members of
a committee of one-hidden-layer neural nets. Instead of training
various nets on subsets of the training data we preprocess
the training data for each individual model such that the
corresponding errors are decorrelated. On the MNIST digit
recognition benchmark set we obtain a recognition error rate
of 0.39 %, using a committee of 25 one-hidden-layer neural
nets, which is on par with state-of-the-art recognition rates of
more complicated systems.
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I. INTRODUCTION

Whatever the approach for building a classifier to solve
visual pattern recognition tasks [1]–[8], at some stage in the
design process one has collected a set of possible classifiers.
In most studies the various classifiers are evaluated on a
benchmark data set and only the result of the best classifier
is reported. Obviously one of the classifiers yields the best
performance. Intriguingly, the sets of misclassified patterns
of the different classifiers do not necessarily overlap. This
suggests that different classifier designs offer complementary
information, which could be harnessed in a committee. An
overview of various fusion strategies can be found in [9]–
[14]. More recently [15] showed how a combination of
various classifiers can be trained faster than a single classifier
yielding the same error rate.

For a committee to work best, the aim is to produce a
group of classifiers such that their errors are not correlated.
This can be achieved using different classifiers and different
training sets. In this study we focus on the latter, training
identical classifiers on data that are preprocessed in different
ways. As long as the same output activation function is used
for all the classifiers, it is straightforward to combine them.

Currently, the best results on MNIST have been obtained
by deforming the training set [2], [5], [7]. Deformations
are a simple way to avoid over-fitting through implicit
regularization and also to introduce the desired invariance
into the classifiers. In addition to deformations we focus on
preprocessing of the data prior to training.

II. BUILDING THE COMMITTEE

Consider a pattern recognition problem where pattern x
is assigned to one of k possible classes. Using a softmax
activation for the output layer of the neural nets and a 1-
of-k coding scheme for the target data, the outputs of the
trained nets approximate the posterior class probabilities
[16]. Having n trained networks we focus on three different
methods to build the corresponding committee of networks:

1) Majority voting Committee: choose the class with
most votes from the n classifiers for a given input x
(if two classes have the same number of votes, choose
the first);

2) Average Committee: average the class probabilities
from the n classifiers and choose the class with highest
average posterior class probability for a given input x;

3) Median Committee: take the median of the class
probabilities from the n classifiers and choose the class
with highest median posterior class probability for a
given input x.

The majority voting scheme also works if the outputs of
the various networks are normalized differently, but all infor-
mation about the confidence of each prediction is discarded.
The average and median committees on the other hand
require the outputs of the various networks to be normalized
in the same way, but also provide scores/confidence levels
for each class label.

III. TRAINING THE NEURAL NETS

In all our experiments we train multilayer perceptrons
(MLPs) with one hidden layer of 800 units. We use the
standard softmax output non-linearity with cross-entropy
loss function and hyperbolic tangent hidden unit activation
function. The inputs are normalized (scaled to [0, 1]) and
the weights are initialized from a zero mean Gaussian with
standard deviation scaled by the fan-in to each unit [16]. All
MLPs are trained for 500 epochs with a stochastic conjugate
gradient algorithm (batches of 1000 images) that maintains
pairwise conjugation of gradients [17]. 10000 randomly
chosen digits of the MNIST [2] training set are used for
validation and the remaining 50000 digits for training. The
MLP with lowest error on the validation set is considered



trained and subsequently used as the classifier. If training
data are continuously deformed, elastic deformations [5],
scaling (horizontal and vertical) and rotation are used.

Preprocessing of the original MNIST data is mainly moti-
vated by practical experience. MNIST digits are normalized
such that the width or height of the bounding box equals
20 pixels. The variation of the aspect ratio for various digits
is quite large, and we normalize the width of the bounding
box to range from 8 to 20 pixels with a step-size of 2 pixels
prior to training for all digits except ones. This results in 7
different training sets. Additionally, we generate a deslanted
training set using a PCA algorithm that vertically aligns the
principal axis of the digits. The experiments performed with
these nine different data sets will henceforth be referred to
as the experiments with preprocessed data. Figure 1 shows
ten digits from MNIST preprocessed as described above
(left) and the same digits with deformations (right). The first
row are original digits. From the second row downwards
increasing bounding box normalization from 8 to 20 pixels
is applied. The last row shows the deslanted digits.

Figure 1. (Left panel) Different preprocessing for ten digits from MNIST.
From top to bottom: original, 8, 10, 12, 14, 16, 18, 20, deslanted. (Right
panel) Similar but with deformations (see text for explanation).

IV. EXPERIMENTS

We perform six experiments to test the performance
increase associated with the use of a committee. Each
committee consists of nine randomly initialized one-hidden-
layer MLPs with 800 hidden units, trained with the same
algorithm on randomly selected batches. The five commit-
tees differ only in how the data are preprocessed (or not)
prior to training and on how the data are deformed during
training.

The first two experiments are performed on undeformed
original MNIST images. We train a committee of nine MLPs
on original MNIST and we also form a committee of MLPs
trained on preprocessed data (as described in section III). In
Table I the error rates are listed for each of the individual
nets and the three committees. The improvement of the
committees with respect to the individual nets is marginal for
the first experiment. Through preprocessing the individual
experts and the corresponding committees achieve however
substantially better recognition rates.

Table I
Error rates of each individual net and three committees. For experiment 1
nine nets were trained on the original MNIST, whereas for experiment 2

nine nets were trained on preprocessed data: WN x - Width Normalization
of the bounding box to be x pixels wide; DESL - deslanted training set;

ORIG - original MNIST.

Error rate [%]
Exp. 1 Exp. 2

Net 1: init 1: 1.83 WN 8: 1.58
Net 2: init 2: 1.79 WN 10: 1.62
Net 3: init 3: 1.80 WN 12: 1.37
Net 4: init 4: 1.77 WN 14: 1.48
Net 5: init 5: 1.72 WN 16: 1.53
Net 6: init 6: 1.91 WN 18: 1.56
Net 7: init 7: 1.86 WN 20: 1.49
Net 8: init 8: 1.62 DESL: 1.80
Net 9: init 9: 1.75 ORIG: 1.79
Majority: 1.72 1.28
Average: 1.69 1.28
Median: 1.72 1.29

In order to see the combined effect of preprocessing and
deformation, we perform four additional experiments on
deformed MNIST (Tab. II). Unless stated otherwise, default
elastic deformation parameters σ = 6 and α = 36 are used.
All experiments with deformed images independent horizon-
tal and vertical scaling of maximum 12.5% and a maximum
rotation of ±12.5◦. Experiment 3 is similar to Experiment 1,
with the exception that the data are continuously deformed.
Error rates of the individual experts are much lower than
without deformation (Tab. I). More importantly, the error
rates of the committees (0.55%) are the best reported results
for such a simple architecture. In experiment 4 we randomly
reselect training and validation sets for each of the individual
experts, simulating in this way the bootstrap aggregation
technique [10]. The resulting committee does however not
perform better than that of experiment 3. In experiment 5 we
vary deformations for each individual network. Error rates of
some of the individual nets are bigger than in experiments 3
and 4, but the resulting committees have significantly lower
error rates. In the last experiment we train nine MLPs on
preprocessed images that are also continuously deformed.
The error rate of the average committee (0.40 %) equals
the best error rate obtained without pretraining but with
a dedicated architecture (i.e. a convolutional net [5]). We
also form a committee of all the 25 independent nets listed
in Table II. We exclude nets from experiment 4 because
they are trained using the same deformation as nets in
experiment 3. Net 5 from Experiment 5 and Net 9 from
experiment 6 are also excluded because these two nets are
taken from experiment 3. The error rate of the resulting
average committee (0.39 %) matches the current best result
[7], obtained with pretrained convolutional nets.

For all six experiments the average committee gives the
lowest error rates, the majority and median committees
perform nearly as well.



Table II
Error rates of each individual net and three committees. In experiments 3 and 4 nine nets were trained on deformed (σ = 6, α = 36) MNIST, the

difference being that training and validation sets were reselected in experiment 4. In experiment 5 nine nets were trained on deformed (different σ, α)
MNIST, and in experiment 6 nine nets were trained on normalized, deformed (σ = 6, α = 36) MNIST. WN x - Width Normalization of the bounding box

to be x pixels wide; DESL - deslanted training set; ORIG - original MNIST.

Error rate [%]
Exp. 3 Exp. 4 Exp. 5 Exp. 6

Net 1: init 1: 0.68 0.72 σ = 4.5 α = 30: 0.75 WN 8: 1.05
Net 2: init 2: 0.72 0.68 σ = 4.5 α = 36: 0.69 WN 10: 0.64
Net 3: init 3: 0.71 0.82 σ = 4.5 α = 42: 0.94 WN 12: 0.78
Net 4: init 4: 0.72 0.73 σ = 6.0 α = 30: 0.55 WN 14: 0.70
Net 5: init 5: 0.71 0.69 σ = 6.0 α = 36: 0.72 WN 16: 0.60
Net 6: init 6: 0.62 0.71 σ = 6.0 α = 42: 0.60 WN 18: 0.59
Net 7: init 7: 0.65 0.70 σ = 7.5 α = 30: 0.86 WN 20: 0.70
Net 8: init 8: 0.80 0.66 σ = 7.5 α = 36: 0.79 DESL: 0.63
Net 9: init 9: 0.69 0.75 σ = 7.5 α = 42: 0.61 ORIG: 0.71
Majority: 0.55 0.54 0.49 0.43
Average: 0.55 0.54 0.47 0.40
Median: 0.55 0.54 0.49 0.42

All 25 independent nets from experiment 3,5 and 6
(see text for explanation)

Majority: 0.41
Average: 0.39
Median: 0.40

The 39 missclassified digits of the best committee from
Table II are shown in Figure 2. Many of them are ambigu-
ous and/or uncharacteristic, with obviously missing parts
or strange strokes. Interestingly, the second guess of the
committee is correct for all but one digit for which the third
guess is the correct answer. For the third digit from Figure
2 for example it is even difficult for a human to tell the
digit from being a three or a five and as a matter of fact
the committee is also undecided, assigning posterior class
probabilities of p(3|x) = 0.4661 and p(5|x) = 0.5339 to
the digit three and five respectively.

Figure 2. The 39 errors of the best committee from Table II, together with
the two most likely predictions (bottom, from left to right) and the correct
label (top, right).

Why does this work so well? In order to optimally harness
the complementary information of each expert in the com-
mittee we aimed for experts whose errors are not correlated.
And indeed, performance of the committees crucially de-
pends on the percentage of the total errors that are committed
by a single expert. For experiment 1 only 16.9% of the errors
are committed by a single expert. Applying normalization
prior to training, as in experiment 2, this percentage roughly

doubles to 32.9%. Interestingly, deformations applied in
experiment 3 (33.3%) have an effect similar to preprocess-
ing. In experiment 4 no improvement was observed through
random re-selection of training and validation set (33.7%).
Choosing different deformation parameters as in experiment
5, the percentage rises to 36.8%. Combining preprocessing
with deformations, as in experiment 6, resulted in 38.3%
and also produced the best committees.

V. CONCLUSIONS

For a committee to work best, the errors of the individual
experts should not be correlated. We showed how this
is achieved by simple preprocessing of the data prior to
training. The applied preprocessing is motivated by ob-
served variations in aspect ratio and slant of handwritten
digits. Using a committee of simple, one-hidden-layer MLPs
with 800 hidden units, we are able to achieve state-of-the-
art performance on the MNIST benchmark. The two big
advantages of the proposed method are: 1) forming the
committee does not require additional training data, and 2)
through different preprocessing the individual predictors are
not strongly correlated.
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