
REINFORCEMENT DRIVEN INFORMATION
ACQUISITION IN NONDETERMINISTIC

ENVIRONMENTS

Jan Storck∗ Sepp Hochreiter†

Fakultät für Informatik
Technische Universität München

80290 München, Germany

Jürgen Schmidhuber‡

IDSIA
Corso Elvezia 36

6900 Lugano, Switzerland

Abstract

For an agent living in a nondeterministic Markov environment (NME), what is, in
theory, the fastest way of acquiring information about its statistical properties? The
answer is: to design “optimal” sequences of “experiments” by performing action sequences
that maximize expected information gain. This notion is implemented by combining
concepts from information theory and reinforcement learning. Experiments show that
the resulting method, reinforcement driven information acquisition, can explore certain
NMEs much faster than conventional random exploration.

Keywords: Exploration, reinforcement learning, Q-learning, information gain, maximum
likelihood models, nondeterministic Markovian environments, reinforcement directed in-
formation acquisition.

INTRODUCTION

Efficient reinforcement learning requires to model the environment. What is an efficient strat-
egy for acquiring a model of a nondeterministic Markov environment (NME)? Reinforcement
driven information acquisition (RDIA), the method described in this paper (first presented
in [11]), extends previous work on “query learning” and “experimental design” (see e.g. [4]
for an overview, see [1, 7, 5, 8, 3] for more recent contributions) and “active exploration”,
e.g. [10, 9, 13]. The method combines the notion of information gain with the notion of re-
inforcement learning. The latter is used to devise exploration strategies that maximize the
former. Experiments demonstrate significant advantages of RDIA in certain NMEs.

Basic set-up / Q-Learning. An agent lives in a NME. At a given discrete time step t,
the environment is in state S(t) (one of n possible states S1, S2, ...Sn), and the agent executes
action a(t) (one of m possible actions a1, a2, ...am). This affects the environmental state: If
S(t) = Si and a(t) = aj, then with probability pijk, S(t + 1) = Sk. At certain times t,
there is reinforcement R(t). At time t, the goal is to maximize the discounted sum of future
reinforcement

∑m
k=0 γ

kR(t + k + 1) (where 0 < γ < 1). We use Watkins’ Q-learning [14] for

∗storck@informatik.tu-muenchen.de
†hochreit@informatik.tu-muenchen.de
‡juergen@idsia.ch - Proc. ICANN’95, vol. 2, pages 159-164. EC2 & CIE, Paris, 1995

this purpose: Q(S, a) is the agent’s evaluation (initially zero) corresponding to the state/action
pair (S, a). The central loop of the algorithm is as follows:
1. Observe current state S(t). Randomly choose p ∈ [0, 1]. If p ≤ µ ∈ [0, 1], randomly pick
a(t). Otherwise pick a(t) such that Q(S(t), a(t)) is maximal.
2. Execute a(t), observe S(t+ 1) and R(t).
3. Q(S(t), a(t))← (1− β)Q(S(t), a(t)) + β(R(t) + γ maxbQ(S(t+ 1), b)),
where 0 < γ < 1, 0 < β < 1. Goto 1.

MODEL BUILDING WITH RDIA

Our agent’s task is to build a model of the transition probabilities pijk. The problem is studied
in isolation from goal-directed reinforcement learning tasks: RDIA embodies a kind of “un-
supervised reinforcement learning”. It extends recent previous work on “active exploration”
(e.g. [10, 9, 13]). Previous approaches (1) were limited to deterministic environments (they did
not address the general problem of learning a model of the statistical properties of a nondeter-
ministic NME), and (2) were based on ad-hoc elements instead of building on concepts from
information theory.

Collecting ML estimates. For each state/action pair (or experiment) (Si, aj), the agent
has a counter cij whose value at time t, cij(t), equals the number of the agent’s previous
experiences with (Si, aj). In addition, for each state/action pair (Si, aj), there are n counters
cijk, k = 1...n. The value of cijk at time t, cijk(t), equals the number of the agent’s previous
experiences with (Si, aj), where the next state was Sk. Note that cij(t) =

∑
k cijk(t). At time t,

if cij(t) > 0, then

p∗ijk(t) =
cijk(t)

cij(t)

denotes the agent’s current unbiased estimate of pijk. If cij(t) = 0, then we define (somewhat
arbitrarily) p∗ijk(t) = 0. Note that, as a consequence, before the agent has conducted any exper-
iments of the type (Si, aj), the p∗ijk do not satisfy the requirements of a probability distribution.
For cij(t) > 0, the p∗ijk(t) build a maximum likelihood model (consistent with the previous
experiences of the agent) of the probabilities of the possible next states.

Measuring information gain. If the agent performs an experiment by executing action
a(t) = aj in state S(t) = Si, and the new state is S(t+ 1) = Sk, then in general p∗ijk(t) will be
different from p∗ijk(t+ 1). By observing the outcome of the experiment, the agent has acquired
a piece of information increasing the estimators’ accuracy. In what follows, we will list three
related variants of quantifying the agent’s progress. In all three cases, the agent’s progress
will be taken as its reinforcement.

1. Standard statistics tells us that the approximative confidence region of a multinomial

distribution satisfies P (E2(p∗ijk, pijk) <
χ2
n−1,α

cij
) = 1 − α, where α is a given confidence level

(e.g. [2], p. 301), and E2(p∗ijk, pijk) =
∑n
k=1

(p∗ijk−pijk)
2

pijk
is the p∗ijk estimators’ weighted squared

error (Pearson’s χ2-distance for multinomial distributions is a standard way of measuring the
estimators’ deviations from the true probabilities, e.g. [2], p. 233, 301). Note that with con-
fidence level α, E2’s upper bound is χ2

n−1,α (the α-quantile of the χ2
n−1-distribution, which is

independent of cij!) divided by cij. This upper bound is proportional to 1
cij

. Decreasing E2’s

upper bound reduces the dispersions of the estimators, which is a central goal of optimal experi-
ment design (e.g. [3, 4]). Hence, when it comes to choosing a new experiment, state/action pairs
with small counters cij are preferable. However, in the case of partly deterministic environments
it would be smarter to conduct less “deterministic” experiments than nondeterministic ones.
To take this additional aspect into account, the information gain (the agent’s current progress)

may be simply measured by

D(t) =
∑
k

| p∗ijk(t+ 1)− p∗ijk(t) | (1)

for cij(t) > 0, and D(t) = 0 for cij(t) = 0. Note that p∗ijk(t + 1)− p∗ijk(t) is proportional to 1
cij

for large cij, but (unlike 1
cij

itself) these differences are zero for deterministic state/action pairs.

2. Since the estimators represent probability distributions over the next states Sk, we may
measure the agent’s progress by measuring probability distribution changes, e.g. by using the
entropy difference of the probability distributions represented by the p∗ijk(t+ 1) values and the
p∗ijk(t) values. We may redefine:

D(t) =|
∑
k

p∗ijk(t+ 1) ln p∗ijk(t+ 1)−
∑
k

p∗ijk(t) ln p
∗
ijk(t) | (2)

for cij(t) > 0. (For p∗ijk = 0, we define p∗ijk ln p∗ijk = 0). If cij(t) = 0 (before the agent has
conducted any experiments of type (Si, aj)), the entropy of the corresponding MLM is taken to
be zero. In this case, D(t) will be zero, too. Again, it can be shown that D(t) is proportional
to 1

cij
for large cij (and zero in the deterministic case). Probability distributions with high

entropy cause high D(t), which is precisely what is desired: high entropy distributions should
be explored more than low entropy distributions (bias towards “nondeterministic” state/action
pairs).

3. A related way for measuring probability distribution changes is to use the Kullback-
Leibler distance. We may redefine D(t) =

∑
k dk(t), where dk(t) = 0 if p∗ijk(t + 1) = 0 or

p∗ijk(t) = 0, and dk(t) = p∗ijk(t+ 1)ln
p∗ijk(t+1)

p∗
ijk

(t)
otherwise. This measure has properties similar to

those of the entropy difference above but is more sensitive to increases of the largest p∗ijk values
(emphasis on changes of probability distributions tending towards determinism).

The clue is: in all cases, the agent’s progress D(t) is used as the reinforcement
R(t) for the Q-Learning algorithm from the introduction. Since an experiment at time
t affects only n estimates (the n p∗ijk(t+ 1) associated with aj = a(t) and Si = S(t)), and since
D(t) can always be computed within O(n) operations, the algorithm’s overall complexity per
time step is bounded by O(n).

Since all three D(t) variants not only prefer nondeterminism but also are proportional to
1
cij

for large cij, the particular definition of D(t) should not make an essential difference. This

is confirmed by initial experiments (see next section).

SIMULATIONS OF RDIA

We compared the performance of several RDIA variants as described above to the performance
of conventional random exploration (variants of random exploration are the methods employed
by most authors).

A small environment. The first test environment consists of n = 10 states. There are
m = 10 possible actions, and 100 possible experiments. The transition probabilities are:

pijk = 1 for i = 1, ...9; j = 1, ...9; k = i;

pijk = 1 for i = 1, ...9; j = 10; k = i+ 1;

pijk =
1

10
for i = 10; j = 1, ...10; k = 1, ...10;

and pijk = 0 otherwise. The only state that allows for acquiring a lot of information is S10.
After a while, RDIA (with parameters β = 0.5, γ = 0.9, µ = 0.1) discovers this and establishes

Experiments Random Search RDIA (entropy) RDIA (prob. diff.)

1 204.93 204.93 204.93
1024 2.97 67.73 65.49
2048 3.40 40.59 21.98
4096 2.74 10.57 5.30
8192 3.72 4.08 3.88
16384 4.11 2.44 2.30
32768 3.43 1.27 1.44
65536 2.03 0.76 0.88
131072 1.58 0.54 0.59
262144 1.07 0.35 0.35

Table 1: For random search and two RDIA variants, the evolutions of the sum of Kullback-
Leibler distances between estimated and true probability distributions are shown. In the begin-
ning, RDIA takes a while to find out where it can expect to learn something. But then it quickly
surpasses random search.

a policy that causes the agent to move as quickly as possible to S10 from every other state.
Random exploration, however, wastes most of the time on the soon useless (uninformative)
examination of the states S1 ... S9. This can be seen from table 1, which compares random
search and the two RDIA variants that worked best: RDIA based on changes in entropy
(equation (2)), RDIA based on probability changes (equation (1)). In the beginning, RDIA
takes a while to find out where it can expect to learn something. Then it quickly catches
on and surpasses random search.

A bigger environment. The second test environment consists of n = 100 states. There
are m = 100 possible actions, and 10000 possible experiments. The transition probabilities are:

pijk = 1 for i = 1, ...99; j = 1, ...99; k = i;

pijk = 1 for i = 1, ...99; j = 100; k = i+ 1;

pijk =
1

100
for i = 100; j = 1, ...100; k = 1, ...100;

and pijk = 0 otherwise. The information content of the second environment (the sum of the
entropies of the true transition probability distributions associated with all state/action pairs)
is 460.517019.

For random search and for RDIA based on entropy changes (with parameters β = 0.5,
γ = 0.9, µ = 0.1), table 2 shows the number of time steps required to achieve given entropy
values. The only state allowing for acquisition of a lot of information is S100. RDIA quickly
discovers this and establishes a policy that causes the agent to move as quickly as possible
to S100 from every other state. Random exploration, in contrast, wastes much of its time on
the states S1 ... S99. Again, for small entropy margins, the advantage of reinforcement driven
information acquisition is not as pronounced as in later stages, because Q-learning needs some
time to fix the strategy for performing experiments. As the entropy margin approaches the
optimum, however, reinforcement driven information acquisition becomes much faster, by at
least an order of magnitude.

Future work. 1. “Exploitation/exploration trade-off”. In this paper, exploration was
studied in isolation from exploitation. Is there an “optimal” way of combining both? For which
kinds of goal-directed learning should RDIA be recommended? It is always possible to design

Goal entropy # Experiments: Random Search #Experiments: RDIA

170.0 3.0 ∗ 106 1.1 ∗ 106

370.0 2.9 ∗ 107 2.5 ∗ 106

459.0 1.6 ∗ 109 2.6 ∗ 107

460.0 unknown 6.8 ∗ 107

Table 2: For random search and for RDIA based on entropy differences, this table shows the
number of time steps required to achieve given entropy values. The optimal value (the true
information content of the environment) is 460.517019. As the entropy margin approaches the
optimum, RDIA becomes much faster. The entry marked “unknown” was not computed due to
limited computation time.

environments where “curiosity” (the drive to explore the world) may “kill the cat”, or at least
may have a negative influence on exploitation performance. This is illustrated by additional
experiments presented in [12]: in one environment described therein, exploration helps to speed
up exploitation. But with a different environment, curiosity slows down exploitation. The
“exploitation/exploration trade-off” remains an open problem.

2. Additional experimental comparisons. It will be interesting to compare RDIA to better
competitors than random exploration, like e.g. Kaelbling’s Interval Estimation algorithm [6].

3. Function approximators. It also will be interesting to replace the Q-table by function
approximators like backprop networks. Previous experimental work by various authors indicates
that in certain environments this might improve performance, despite the fact that theoretical
foundations of combinations of Q-learning and function approximators are still weak.

References

[1] E. B. Baum. Neural nets that learn in polynomial time from examples and queries. IEEE
Transactions on Neural Networks, 2(1):5–19, 1991.

[2] K. Behnen and G. Neuhaus. Grundkurs Stochastik. B. G. Teubner, Stuttgart, 1984.

[3] D. A. Cohn. Neural network exploration using optimal experiment design. In J. Cowan,
G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems
(NIPS) 6, pages 679–686. Morgan Kaufmann, 1994.

[4] V. V. Fedorov. Theory of optimal experiments. Academic Press, 1972.

[5] J. Hwang, J. Choi, S. Oh, and R. J. Marks II. Query-based learning applied to partially
trained multilayer perceptrons. IEEE Transactions on Neural Networks, 2(1):131–136,
1991.

[6] L. P. Kaelbling. Learning in Embedded Systems. MIT Press, 1993.

[7] D. J. C. MacKay. Information-based objective functions for active data selection. Neural
Computation, 4(2):550–604, 1992.

[8] M. Plutowski, G. Cottrell, and H. White. Learning Mackey-Glass from 25 examples, plus
or minus 2. In J. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural
Information Processing Systems (NIPS) 6, pages 1135–1142. Morgan Kaufmann, 1994.

[9] J. Schmidhuber. Curious model-building control systems. In Proceedings of the Interna-
tional Joint Conference on Neural Networks, Singapore, volume 2, pages 1458–1463. IEEE
press, 1991.

[10] J. Schmidhuber. A possibility for implementing curiosity and boredom in model-building
neural controllers. In J. A. Meyer and S. W. Wilson, editors, Proc. of the International
Conference on Simulation of Adaptive Behavior: From Animals to Animats, pages 222–
227. MIT Press/Bradford Books, 1991.

[11] J. Schmidhuber and J. Storck. Reinforcement driven information acquisition in nondeter-
ministic environments, 1993. Report.

[12] J. Storck. Reinforcement-Lernen und Modellbildung in nicht-deterministischen Umgebun-
gen. Fortgeschrittenenpraktikum, Fakultät für Informatik, Lehrstuhl Prof. Brauer, Tech-
nische Universität München, 1994.

[13] S. Thrun and K. Möller. Active exploration in dynamic environments. In D. S. Lippman,
J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing
Systems (NIPS) 4, pages 531–538. Morgan Kaufmann, 1992.

[14] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Oxford,
1989.

