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Abstract. Recurrent neural networks serve as black-box models for
nonlinear dynamical systems identification and time series prediction.
Training of recurrent networks typically minimizes the quadratic differ-
ence of the network output and an observed time series. This implicitely
assumes that the dynamics of the underlying system is deterministic,
which is not a realistic assumption in many cases. In contrast, state-
space models allow for noise in both the internal state transitions and
the mapping from internal states to observations. Here, we consider re-
current networks as nonlinear state space models and suggest a train-
ing algorithm based on Expectation-Maximization. A nonlinear transfer
function for the hidden neurons leads to an intractable inference prob-
lem. We investigate the use of a Particle Smoother to approximate the
E-step and simultaneously estimate the expectations required in the M-
step. The method is demonstrated for a sythetic data set and a time
series prediction task arising in radiation therapy where it is the goal to
predict the motion of a lung tumor during respiration.
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1 Introduction

Recurrent neural networks (RNNs) represent dynamical systems. With a large
enough number of hidden neurons, a given dynamical system can in principle be
approximated to arbitrary precision. Hence, recurrent networks have been used
as black-box models for dynamical systems, e.g. in the context of time series
prediction [1].

When using recurrent neural networks for dynamical system identification,
it is typically assumed that the dynamics of the system to be modeled is deter-
ministic. RNNs do not model process noise, i.e. uncertainty in the internal state
transition between two time steps. Hence, RNNs may not be suitable models for
systems exhibiting process noise as a characterizing feature.

In contrast, state space models allow for noise in both the internal state
transitions and the mapping from internal states to observations, and therefore
represent a richer class of probabilistic models for sequential data. In the special
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case of linear-gaussian state space models [2, chapter 13.3], the parameters of the
model can be learned using an instantiation of the Expectation-Maximization
(EM) algorithm [3]. However, computationally tractable algorithms for exact
inference in the E-step are limited to the linear-gaussian case. Nonlinear, non-
gaussian models require approximation.

Here, we consider RNNs as nonlinear state space models and suggest a train-
ing algorithm based on Expectation-Maximization. We investigate the use of a
sequential sampling method, the Particle Smoother [4], to approximate the E-
step and simultaneously estimate the expectations required in the M-step. In the
M-step, the similarity of linear-gaussian state space models and simple recurrent
networks can be exploited.

The proposed method has the advantage that the RNN can model dynamical
systems characterized by process noise, and that it represents a generative model
of the data. This is not the case for conventionally trained RNNs, e.g. using a
quadratic objective function minimized through gradient descent.

Stochasticity in recurrent networks has been introduced before in the context
of training algorithms based on Extended Kalman Filtering [5]. However, this
work did not aim at training a recurrent network as a generative model for a
stochastic dynamical system, but at further developing training algorithms for
conventional recurrent networks.

Related work includes inference and learning in nonlinear state space models
in general. For example, Ghahramani [6] addresses learning in nonlinear state
space models where the nonlinearity is represented by radial basis functions.
The E-step is approximated via Extended Kalman Filtering. The M-step can be
solved in closed form for this model.

Our algorithm is demonstrated for a synthetic data set and a time series pre-
diction task arising in radiation therapy. Lung tumors move during respiration
due to expansion and contraction of the lungs. Online adjustment of the radi-
ation beam for tumor tracking during treatment requires the prediction of the
tumor motion for about half a second. The variability of the breathing pattern
is characterized by process noise rather than measurement noise.

The remainder of this paper is organized as follows: Section 2 reviews Linear
Dynamical Systems1 and Recurrent neural networks as black-box models for
dynamical systems. Section 3 describes the EM-based training algorithm for
recurrent networks, where subsection 3.1 details the sampling method used in
the E-step. Section 4 discusses two applications of the method.

2 Dynamical system identification

Given is a sequence Y = {yt}T
t=1, where yt is a vector of observations at time step

t. We wish to find a model of the underlying dynamical system that generated
the sequence, e.g. for the purpose of time series prediction. Below, we introduce

1 Linear Dynamical System and Linear-gaussian state space models refer to the same
model.
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notation, review linear dynamical systems (LDS) and recurrent neural networks,
and address the parameter learning problem in these models.

2.1 Linear Dynamical Systems

A stochastic linear dynamical system is described by

xt = Axt−1 + η
p
t (1)

yt = Bxt + ηm
t (2)

where x is an internal state vector, y is an observation vector, A and B are
matrices with constant coefficients, ηp is zero mean gaussian process noise with
covariance matrix Γ , and ηm is zero mean gaussian measurement noise with
covariance matrix Σ.

The stochastic LDS can be formulated as a probabilistic model with observed
variables yt and latent variables xt. The model is defined via the conditional
probabilities

P (xt|xt−1) = N (xt|Axt−1, Γ ) (3)

P (yt|xt) = N (yt|Bxt, Σ) (4)

Hence, the hidden variables xt form a markov chain.

2.2 Learning in linear dynamical systems

In LDS the model parameters θ = (A, B, Γ, Σ) can be learned using maximum
likelihood through an instantiation of the EM algorithm [2, chapter 13.3.2]. In
the E-step, we need to solve the inference problem and calculate the marginal
probabilities of the hidden variables conditioned on the observation sequence:

P (X |Y ; θ) (5)

where X = {xt}T
t=1 and Y = {yt}T

t=1 denote the entire sequence of hidden states
and observations, respectively. For LDS, the inference problem can be solved ex-
actly as P (X |Y ; θ) remains a Gaussian. It’s mean and covariance matrix can be
calculated with a forward-backward algorithm. Given the posterior distributions
over the latent variables, the M-step can also be performed analytically2.

2.3 Recurrent neural networks

If we model the sequence of observations with a recurrent neural network3, equa-
tions 1 and 2 are replaced by

xt = Af (xt−1) + η
p
t (6)

yt = Bf (xt) + ηm
t (7)

2 Here, we assume for simplicity that x0 = 0. However, it is straight forward to learn
the mean and covariance matrix of a Gaussian distribution over the initial internal
state.

3 This type of network is also referred to as an Elman network.
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where x is now interpreted as the vector of net inputs of the hidden neurons,
f = tanh is the transfer function of the hidden neurons so that f(x) is the vector
of hidden neuron activations, y is the network output, A is the weight matrix
for the recurrent connections, and B is the output weight matrix. Hence, the
structure of the RNN model is very similar to LDS. The measurement equation
7 represents a linear output layer. The network has no external inputs in this
formulation (except the process noise which can be interpreted as an unknown
external influence).

2.4 Conventional learning in recurrent neural networks

When training recurrent networks, the process noise ηp is typically neglected. In
addition, the measurement noise ηm is assumed to be uncorrelated and of the
same variance in all components of y. In this case, maximizing the likelihood of
the data corresponds to minimizing a quadratic cost function:

minimize
A,B

1

2

T
∑

t=1

[yt − Bf (xt)]
2

(8)

Minimization of the cost function can be performed via gradient descent. Back-
propagation through time (BPTT) and Real time recurrent learning (RTRL)
are well-known algorithms to calculate the gradient [7]. Alternative methods in-
clude Evolino [8], where the matrix A is determined via evolutionary methods
whereas B is determined through linear regression. In Echo-State networks [9],
A is chosen to be a fixed sparse random matrix and B is determined via linear
regression.

3 EM based learning in recurrent neural networks

Here, we wish to train recurrent networks without neglecting the process noise
term. The RNN is considered as a nonlinear state-space model. We exploit the
similarities of RNNs and LDS to obtain an EM-based training algorithm.

We wish to maximize the following likelihood function with respect to the
model parameters θ = (A, B, Γ, Σ):

maximize
θ

L =

∫

P (X, Y |θ) dX (9)

where
∫

dX denotes the integration over all latent variables X = {xt}
T
t=1. The

complete data Likelihood is given by

P (X, Y |θ) =

T
∏

t=1

P (xt|xt−1; A, Γ )P (yt|xt; B, Σ) (10)
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so that the complete data log-Likelihood is given by

lnP (X, Y |θ) =
T

∑

t=1

lnN (xt|Af(xt−1), Γ ) +
T

∑

t=1

lnN (yt|Bf(xt), Σ) (11)

In the M-step, we maximize the following Q-function with respect to the
model parameters θ:

maximize
θ

Q(θ|θold) =

∫

P
(

X |Y ; θold
)

lnP (X, Y |θ) dX (12)

The structure of the Q-function is, apart from the non-linear transfer function
f , identical to the one for linear dynamical systems [2, chapter 13.3.2]. This
similarity can be exploited in the M-step as detailed in section 3.2.

In the E-step, we need to determine the joint probability distribution over
the latent variables X conditioned on the observation sequence Y , given the
current parameter values θold:

P
(

X |Y ; θold
)

(13)

Since exact inference is intractable, we employ a sampling method, the Particle
Smoother, to approximate the distribution 13 as detailed in section 3.1.

3.1 The Particle Smoother for approximate inference

In the E-step of the Expectation-Maximization algorithm, we wish to approx-
imate the probability density of the latent variables X conditioned on the ob-
served sequence Y . However, inspecting the structure of the log-Likelihood func-
tion 11 shows that we only need the marginals P (xt|Y ; θ) and P (xt, xt−1|Y ; θ).

To start, we consider P (xt|Yt), i.e. the probability of xt given the observations
Yt = {y(t′)}t

t′=1 until time step t. This can be approximated via a sequential
Monte Carlo method, the particle filter. At each time step t, the distribution is
approximated by

P̂ (xt|Yt) =
N

∑

i=1

wi
tδ

(

xt − xi
t

)

(14)

where xi
t is the position of particle i at time t, wi

t is the particle weight, δ denotes
the delta-function, and N is the number of particles. To proceed to the next time
step, we sample new particles x

j
t+1 from a mixture of Gaussians:

x
j
t+1 ∼

N
∑

i=1

wi
t N

(

x
j
t+1|Af(xi

t), Γ
)

(15)

The new particles are weighted according to the probability of generating the
next obsevation yt+1:

w
j
t+1 =

P
(

yt+1|x
j
t+1

)

∑N

k=1
P

(

yt+1|xk
t+1

)
(16)
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An approximation of the probability density P (xt|Y ), now conditioned on
the entire observation sequence Y , can be obtained using a forward-backward
smoother [4]. Following this method, we first approximate P (xt|Yt) for every
time step using a particle filter, and in a second step, correct the particle weights
via a backwards recursion. The smoothed distribution P (xt|Y ) is then approx-
imated via

P̂ (xt|Y ) =

N
∑

i=1

vi
tδ

(

xt − xi
t

)

(17)

with modified weights vi
t. To derive the backward recursion, we consider the

following identity:

P (xt|Y ) =

∫

P (xt+1|Y )P (xt+1|xt, Y ) dxt+1

=

∫

P (xt|Yt)
P (xt+1|Y )P (xt+1|xt)

∫

P (xt+1|xt)P (xt|Yt) dxt

dxt+1 (18)

By inserting equations 14 and 17 into 18, we obtain the backward recursion for
the corrected weights vi

t:

vi
t = wi

t





N
∑

j=1

v
j
t+1

P
ji
t

∑N
k=1

wk
t P

jk
t



 (19)

where P
ji
t = P (xj

t+i|x
i
t) is the transition probability from particle i at time t to

particle j at time t + 1. The backward recursion is initialized as vi
T = wi

T . After
obtaining particle weights wi

t in the forward pass and weights vi
t in the backward

pass, equation 18 gives also rise to an approximation of the joint probability for
xt and xt+1:

P̂ (xt, xt+1|Y ) =

N
∑

i=1

N
∑

j=1

[

wi
tv

j
t+1P

ji
t

∑N
k=1

wk
t P

jk
t

δ(xt − xi
t)δ(xt+1 − x

j
t+1)

]

(20)

3.2 The M-step

In the M-step, we need to maximize the Q-function 12 with respect to the model
parameters θ = (A, B, Γ, Σ). Here, we can make use of the fact that the structure
of the dynamic equation describing the RNN is similar to those for LDS. This
leads to similar update equations for the parameters. Exemplarily, we consider
the update equation for the recurrent weight matrix A which we obtain by setting
the Q-function derivative with respect to A to zero:

Anew =

[

T
∑

t=1

E
[

xtf(xt−1)
⊤

]

] [

T
∑

t=1

E
[

f(xt−1)f(xt−1)
⊤

]

]−1

(21)

where E denotes the expectation with respect to the distribution P (X |Y ; θold).
The expectations in equation 21 are approximated through the particle smoother
as
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E
[

f(xt−1)f(xt−1)
⊤

]

=

N
∑

i=1

vi
t−1f(xi

t−1)f(xi
t−1)

⊤ (22)

E
[

xtf(xt−1)
⊤

]

=
N

∑

i=1

N
∑

j=1

wi
t−1v

j
t P

ji
t−1

∑N

k=1
wk

t P
jk
t−1

xi
tf(xi

t−1)
⊤ (23)

The update equations for the parameters B, Γ and Σ are obtained in analogy
to the update equations for linear-gaussian models as described in [2, chapter
13.3.2]. They are obmitted here due to space limitations.

4 Applications

The method is demonstrated for a synthetic data set and a real data set describ-
ing irregular breathing motion of a lung cancer patient.

4.1 Synthetic data

We consider synthetic data generated by a recurrent network with two hidden
neurons with parameters

A =

(

1 1
−0.05 0.98

)

B =
(

1 0
)

Γ =

(

0.001 0
0 0.001

)

Σ = (0.01)

These parameters were chosen so that the system outputs an oscillation which
is perturbed by both process and measurement noise. Without noise, the system
generates an (almost harmonic) oscillating output signal with a period of 28 time
steps. Figure 1 shows a sample sequence generated by the system with noise. A
recurrent network with 5 hidden neurons4 was trained on a data set containing
1000 time steps. Figure 1 shows parts of a test data set, together with predictions
of the trained RNN (blue circles). Every 20 time steps, the network prediction
for the next 10 time steps is shown. For prediction, a particle filter is used to
estimate the mean of the posterior distribution over the hidden state. Then the
deterministic dynamics of the network (without noise) is used for prediction,
starting from the estimated hidden state5. In order to compare the predictions
of the RNN, figure 1 also shows the predictions based on the true dynamical
system (green dots). In this example, the prediction performance of the RNN is
similar to the best possible prediction where the true generative process of the
data is known6.

Figure 2 shows the internal, noise free dynamics of the network. The network
output is shown as the thick red line, whereas the blue thin lines show the

4 Similar results are obtained with 2 or more hidden neurons.
5 A prediction method where all particles were propagated forward in time and aver-

aged at each time step, yields almost identical results.
6 The mean squared errors of the trained network are 0.145/0.259/0.327 for

the 1/5/10-step prediction. The corresponding values for the true system are
0.142/0.240/0.307. The standard deviation of the test data is 0.380.
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dynamics of the internal state. The network was able to learn the underlying
harmonic oscillation of the dynamical system and estimate the amount of process
and measurement noise.

500 550 600 650 700 750 800 850 900 950 1000

−0.5

0

0.5

Fig. 1. Synthetic time series (red line). Every 20 time steps, the network predictions for
the next 10 time steps are shown (blue circles), together with the predictions obtained
using the true dynamical system (green dots).

20 40 60 80 100 120 140 160

−0.5

0

0.5

Fig. 2. Deterministic dynamics of the network trained on the noisy data set. Red thick
line: network output; Blue thin lines: internal states

4.2 Breathing motion data

Figure 3 (red line) shows a surrogate for breathing motion for a lung cancer pa-
tient7. The signal is roughly periodic, but has substantial variations in amplitude
and period. In radiation therapy practice, the goal is to predict the breathing
pattern for about 500 milliseconds (5 time steps), where the length of one breath-
ing cycle is around 3 seconds. It is also of interest to have a generative model of
the breathing signal in order to simulate the effect of breathing on the accuracy
of a radiation treatment.

A recurrent network with 10 hidden neurons was trained on a sequence of
1000 time steps. Figure 4 shows the intrinsic dynamics of the trained network, i.e.
the dynamics without noise. Figure 3 shows samples of the network prediction
on the test data. Every 20 time steps, the network predictions for the next 10
time steps are shown. Like in the synthetic data example above, the training

7 The expansion of the abdomen was measured as a function of time.
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algorithm is able to find solutions that model the oscillatory behaviour of the
system. However, it failed to model the dynamics very precisely. Consequently,
in order to explain the deviation of data and network output, the estimated
amount of measurement noise Σ is too large, and the trained network does not
represent an adequate generative model.

1200 1250 1300 1350 1400 1450 1500 1550 1600

−1

0

1

2

3

Fig. 3. Breathing signal time series (red line). Every 20 time steps, the next 10 time
steps predicted by a trained network are shown (blue circles).

10 20 30 40 50 60 70 80 90 100

−1

0

1

Fig. 4. Deterministic, noise free dynamics of a trained network. Red thick line: network
output; Blue thin lines: internal states

4.3 Remarks

Initialization of parameters: The weight matrix A was initialized to a diago-
nal matrix plus random values with a standard deviation of 0.1. The components
of B were initialized to random values with mean one and standard deviation
0.1. These values led to solutions qualitatively similar to those shown above.

Local minima: Dynamical system identification tends to be a difficult task. For
the breathing motion data set, the network did not learn details of the dynamics.
However, the same problem applies to linear-gaussian state space models and
RNNs trained with gradient descent.

Number of particles: The results presented above were generated with N =
100 particles. However, similar results were obtained for only 10 particles –



10 Jan Unkelbach, Sun Yi, and Jürgen Schmidhuber

although particle numbers that low are not expected to provide an adequate
characterization of the posterior distribution at a given time step. This aspect
will be investigated in future work.

5 Conclusion

We address the problem of training recurrent neural networks as black box mod-
els for stochastic nonlinear dynamical systems. In conventional training algo-
rithms based on a quadratic objective function, it is assumed that the underly-
ing dynamics to be modelled is deterministic, i.e. process noise is neglected. In
this paper, we generalize RNNs to model stochastic dynamical systems charac-
terized by process noise. We suggest a training algorithm based on Expectation-
Maximization, exploiting the similarities between RNNs and linear dynamical
systems. We apply a particle smoother for approximate inference in the E-step
and simultaneously estimate expectations required in the M-step. The algorithm
is sucessfully demonstrated for one synthetic and one realistic data set. Further
characterization of the performance of the training algorithm, the influence of
the number of particles, and comparison to standard training methods for RNNs
are subject to current studies.
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