An effective Procedure for Speeding up Algorithms

Marcus Hutter

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale
IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
marcus@idsia.ch, http://www.idsia.ch/~marcus

2001
Table of Contents

- Blum’s Speed-up Theorem and Levin’s Theorem.
- The Fastest Algorithm M_p^* (Main New Result).
- Applicability of Levin Search and M_p^*.
- Time Analysis of M_p^*.
- Extension of Kolmogorov Complexity to Functions.
- The Fastest and Shortest Algorithm.
- Generalizations.
- Summary & Outlook.
Introduction

• Searching for fast algorithms to solve certain problems is a central and difficult task in computer science.

• Positive results usually come from explicit constructions of efficient algorithms for specific problem classes.

• A wide class of problems can be phrased in the following way:

• Find a fast algorithm computing \(f : X \to Y \), where \(f \) is a formal specification of the problem depending on some parameter \(x \).

• The specification can be formal (logical, mathematical), it need not necessarily be algorithmic.

• Ideally, we would like to have the fastest algorithm, maybe apart from some small constant factor in computation time.
Blum’s Speed-up Theorem (Negative Result)

There are problems for which an (incomputable) sequence of speed-improving algorithms (of increasing size) exists, but no fastest algorithm.

[Blum, 1967, 1971]

Levin’s Theorem (Positive Result)

Within a (large) constant factor, Levin search is the fastest algorithm to invert a function \(g : Y \to X \), if \(g \) can be evaluated quickly.

[Levin 1973]
Simple is as fast as Search

- **Simple**: run all programs $p_1p_2p_3$... one step at a time according to the following scheme: p_1 is run every second step, p_2 every second step in the remaining unused steps, ... $time_{\text{SIMPLE}}(x) \leq 2^k time_{p_k}^+(x) + 2^{k-1}$.

- **Search**: run all p of length less than i for $2^i 2^{-l(p)}$ steps in phase $i = 1, 2, 3, \ldots$. $time_{\text{SEARCH}}(x) \leq 2^{K(k) + O(1)} time_{p_k}^+(x)$, $K(k) \ll k$.

- **Refined analysis**: Search itself is an algorithm with some index $k_{\text{SEARCH}} = O(1)$

 \implies SIMPLE executes SEARCH every $2^{k_{\text{SEARCH}}}$-th step

 \implies $time_{\text{SIMPLE}}(x) \leq 2^{k_{\text{SEARCH}}} time_{\text{SEARCH}}^+(x)$

 \implies SIMPLE and SEARCH have the same asymptotics also in k.

- **Practice**: SEARCH should be favored because the constant $2^{k_{\text{SEARCH}}}$ is rather large.
Main New Result (The Fast Algorithm M_{p^*})

- Let $p^* : X \rightarrow Y$ be a given algorithm or specification.
- Let p be any algorithm, computing provably the same function as p^*
- with computation time provably bounded by the function $t_p(x)$.
- $time_{t_p}(x)$ is the time needed to compute the time bound $t_p(x)$.
- Then the algorithm M_{p^*} computes $p^*(x)$ in time
 \[time_{M_{p^*}}(x) \leq 5 \cdot t_p(x) + d_p \cdot time_{t_p}(x) + c_p\]
- with constants c_p and d_p depending on p but not on x.
- Neither p, t_p, nor the proofs need to be known in advance for the construction of $M_{p^*}(x)$.

[Hutter, 2000]
Applicability

- Prime factorization, graph coloring, truth assignments, ... are Problems suitable for Levin search, if we want to find a solution, since verification is quick.
- Levin search cannot decide the corresponding decision problems.
- Levin search cannot speedup matrix multiplication, since there is no faster method to verify a product than to calculate it.
- Strassen’s algorithm p' for $n \times n$ matrix multiplication has time complexity $\text{time}_{p'}(x) \leq t_{p'}(x) := c \cdot n^{2.81}$.
- The time-bound function (cast to an integer) can, as in many cases, be computed very fast, $\text{time}_{t_{p'}}(x) = O(\log^2 n)$.
- Hence, also M_{p^*} is fast, $\text{time}_{M_{p^*}}(x) \leq 5c \cdot n^{2.81} + O(\log^2 n)$, even without known Strassen’s algorithm.
- If there exists an algorithm p'' with $\text{time}_{p''}(x) \leq d \cdot n^2 \log n$, for instance, then we would have $\text{time}_{M_{p^*}}(x) \leq 5d \cdot n^2 \log n + O(1)$.
- Problems: Large constants c, c_p, d_p.
The Fast Algorithm \(M_{p^*} \)

\[
M_{p^*}(x)
\]

Initialize the shared variables
\[L := \{\}, \quad t_{fast} := \infty, \quad p_{fast} := p^*. \]
Start algorithms \(A, B, \) and \(C \)
in parallel with 10\%, 10\% and 80\%
computational resources, respectively.

\[
A
\]
Run through all proofs.
if a proof proves for some \((p, t)\) that
\(p(\cdot)\) is equivalent to (computes) \(p^*(\cdot)\)
and has time-bound \(t(\cdot)\)
then add \((p, t)\) to \(L\).

\[
B
\]
Compute all \(t(x)\) in parallel
for all \((p, t) \in L\) with
relative computation time \(2^{-l(p) - l(t)}\).
if for some \(t\), \(t(x) < t_{fast}\),
then \(t_{fast} := t(x)\) and \(p_{fast} := p\).
continue

\[
C
\]
for \(k:=1,2,4,8,16,32,\ldots\) do
run current \(p_{fast}\) for \(k\) steps
(without switching).
if \(p_{fast}\) halts in less than \(k\) steps,
then print result and abort \(A, B\) and \(C\).
else continue with next \(k\).
Fictitious Sample Execution of M_{p^*}

- content of shared variable t_{fa_5}
- time-bound for p executed by C
- number of executed steps of p in C
- guaranteed stopping point

Diagram:

- t: time
- p_3, p_{314}, p_{42}, p_{100}: programs
- t_3, t_9, t_{314}, t_{42}, t_{100}: times
- M_{p^*} stops
- t_{total}: total time
Time Analysis

\[T_A \leq \frac{1}{10\%} \cdot 2^{l(\text{proof}(p'))} \cdot O(l(\text{proof}(p'))^2) \]

\[T_B \leq T_A + \frac{1}{10\%} \cdot 2^{l(p') + l(t_{p'})} \cdot \text{time}_{t_{p'}}(x) \]

\[T_C \leq \begin{cases}
4T_B & \text{if } C \text{ stops not using } p' \text{ but on some earlier program} \\
\frac{1}{80\%} \cdot 4t_{p'} & \text{if } C \text{ computes } p'.
\end{cases} \]

\[\text{time}_{M_{p^*}}(x) = T_C \leq 5 \cdot t_p(x) + d_p \cdot \text{time}_{t_p}(x) + c_p \]

\[d_p = 40 \cdot 2^{l(p) + l(t_p)}, \quad c_p = 40 \cdot 2^{l(\text{proof}(p))} + 1 \cdot O(l(\text{proof}(p))^2) \]
Kolmogorov Complexity

Kolmogorov Complexity is a universal notion of the information content of a string. It is defined as the length of the shortest program computing string x.

$$K(x) := \min_p \{l(p) : U(p) = x\}$$

[Kolmogorov 1965 and others]

Universal Complexity of a Function

The length of the shortest program provably equivalent to p^*

$$K''(p^*) := \min_p \{l(p) : \text{a proof of } \forall y : u(p, y) = u(p^*, y) \text{ exists}\}$$

[Hutter, 2000]

K and K'' can be approximated from above (are co-enumerable), but not finitely computable. The provability constraint is important.
The Fastest and Shortest Algorithm for p^*

Let p^* be a given algorithm or formal specification of a function.

There exists a program \tilde{p}, equivalent to p^*, for which the following holds

\begin{itemize}
 \item [i)] $l(\tilde{p}) \leq K''(p^*) + O(1)$
 \item [ii)] $\text{time}_{\tilde{p}}(x) \leq 5 \cdot t_p(x) + d_p \cdot \text{time}_{t_p}(x) + c_p$
\end{itemize}

where p is any program provably equivalent to p^* with computation time provably less than $t_p(x)$. The constants c_p and d_p depend on p but not on x.

[Hutter, 2000]

Proof

Insert the shortest algorithm p' provably equivalent to p^* into M, that is $\tilde{p} := M_{p'}$.

$$l(\tilde{p}) = l(p') + O(1) = K''(p^*) + O(1)$$
Generalizations

- If p^* has to be evaluated repeatedly, algorithm A can be modified to remember its current state and continue operation for the next input (A is independent of x!). The large offset time c_p is only needed on the first call.

- M_{p^*} can be modified to handle i/o streams, definable by a Turing machine with monotone input and output tapes (and bidirectional working tapes) receiving an input stream and producing an output stream.

- The construction above also works if time is measured in terms of the current output rather than the current input x (e.g. for computing π).
Summary & Outlook

• Under certain provability constraints, M_{p^*} is the asymptotically fastest algorithm for computing p^* apart from a factor 5 in computation time.

• The fastest program computing a certain function is also among the shortest programs provably computing this function.

• To quantify this statement we defined a novel natural measures for the complexity of a function, related to Kolmogorov complexity.

• The large constants c_p and d_p seem to spoil a direct implementation of M_{p^*}.

• On the other hand, Levin search has been successfully applied even though it suffers from a large multiplicative factor [Schmidhuber 1997]

• More elaborate theorem-provers could lead to smaller constants.

• Transparent or holographic proofs allow under certain circumstances an exponential speed up for checking proofs [Babai et al. 1991].

• Will the ultimate search for asymptotically fastest programs typically lead to fast or slow programs for arguments of practical size?