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Overview

• Setup: Given (non)iid data D = (x1, ..., xn), predict xn+1

• Ultimate goal is to maximize profit or minimize loss

• Consider Models/Hypothesis Hi ∈M
• Max.Likelihood: Hbest = arg maxi p(D|Hi) (overfits if M large)

• Bayes: Posterior probability of Hi is p(Hi|D) ∝ p(D|Hi)p(Hi)

• MDL: Hbest = arg minHi{CodeLength(D|Hi)+CodeLength(Hi)}
(Complexity penalization)

• Bayes needs prior(Hi), MDL needs CodeLength(Hi)

• Occam+Epicurus: High prior for simple models with short codes.

• Kolmogorov/Solomonoff: Quantification of simplicity/complexity

• MDL & Bayes work if D is sampled from Htrue ∈M
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Philosophical Issues: Contents

• On the Foundations of Machine Learning

• Example 1: Probability of Sunrise Tomorrow

• Example 2: Digits of a Computable Number

• Example 3: Number Sequences

• Occam’s Razor to the Rescue

• Foundations of Induction

• Dichotomies in Machine Learning

• Sequential/online Prediction – Setup
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Philosophical Issues: Abstract

I start by considering the philosophical problems concerning machine

learning in general and induction in particular. I illustrate the problems

and their intuitive solution on various (classical) induction examples.

The common principle to their solution is Occam’s simplicity principle.

Based on Occam’s and Epicurus’ principle, Bayesian probability theory,

and Turing’s universal machine, Solomonoff developed a formal theory

of induction. I describe the sequential/online setup considered in this

lecture series and place it into the wider machine learning context.
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On the Foundations of Machine Learning

• Example: Algorithm/complexity theory: The goal is to find fast

algorithms solving problems and to show lower bounds on their

computation time. Everything is rigorously defined: algorithm,

Turing machine, problem classes, computation time, ...

• Most disciplines start with an informal way of attacking a subject.

With time they get more and more formalized often to a point

where they are completely rigorous. Examples: set theory, logical

reasoning, proof theory, probability theory, infinitesimal calculus,

energy, temperature, quantum field theory, ...

• Machine learning: Tries to build and understand systems that learn

from past data, make good prediction, are able to generalize, act

intelligently, ... Many terms are only vaguely defined or there are

many alternate definitions.
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Example 1: Probability of Sunrise Tomorrow
What is the probability p(1|1d) that the sun will rise tomorrow?

(d = past # days sun rose, 1 =sun rises. 0 = sun will not rise)

• p is undefined, because there has never been an experiment that

tested the existence of the sun tomorrow (ref. class problem).

• The p = 1, because the sun rose in all past experiments.

• p = 1− ε, where ε is the proportion of stars that explode per day.

• p = d+1
d+2 , which is Laplace rule derived from Bayes rule.

• Derive p from the type, age, size and temperature of the sun, even

though we never observed another star with those exact properties.

Conclusion: We predict that the sun will rise tomorrow with high

probability independent of the justification.
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Example 2: Digits of a Computable Number

• Extend 14159265358979323846264338327950288419716939937?

• Looks random?!

• Frequency estimate: n = length of sequence. ki= number of

occured i =⇒ Probability of next digit being i is i
n . Asymptotically

i
n → 1

10 (seems to be) true.

• But we have the strong feeling that (i.e. with high probability) the

next digit will be 5 because the previous digits were the expansion

of π.

• Conclusion: We prefer answer 5, since we see more structure in the

sequence than just random digits.



MH - 9 - How to Predict with Bayes and MDL

Example 3: Number Sequences

Sequence: x1, x2, x3, x4, x5, ...
1, 2, 3, 4, ?, ...

• x5 = 5, since xi = i for i = 1..4.

• x5 = 29, since xi = i4 − 10i3 + 35i2 − 49i + 24.

Conclusion: We prefer 5, since linear relation involves less arbitrary

parameters than 4th-order polynomial.

Sequence: 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,?

• 61, since this is the next prime

• 60, since this is the order of the next simple group

Conclusion: We prefer answer 61, since primes are a more familiar

concept than simple groups.

On-Line Encyclopedia of Integer Sequences:

http://www.research.att.com/∼njas/sequences/
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Occam’s Razor to the Rescue

• Is there a unique principle which allows us to formally arrive at a

prediction which

- coincides (always?) with our intuitive guess -or- even better,

- which is (in some sense) most likely the best or correct answer?

• Yes! Occam’s razor: Use the simplest explanation consistent with

past data (and use it for prediction).

• Works! For examples presented and for many more.

• Actually Occam’s razor can serve as a foundation of machine

learning in general, and is even a fundamental principle (or maybe

even the mere definition) of science.

• Problem: Not a formal/mathematical objective principle.

What is simple for one may be complicated for another.
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Foundations of Induction

Ockhams’ razor (simplicity) principle
Entities should not be multiplied beyond necessity.

Epicurus’ principle of multiple explanations
If more than one theory is consistent with the observations, keep
all theories.

Bayes’ rule for conditional probabilities
Given the prior belief/probability one can predict all future prob-
abilities.

Turing’s universal machine
Everything computable by a human using a fixed procedure can
also be computed by a (universal) Turing machine.

Solomonoff’s universal prior=Ockham+Epicurus+Bayes+Turing
Solves the question of how to choose the prior if nothing is known.
⇒ universal induction, formal Occam, AIT,MML,MDL,SRM,...
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Problem Setup

• Every induction problem can be phrased as a sequence prediction

task.

• Classification is a special case of sequence prediction.

(With some tricks the other direction is also true)

• This lecture focusses on maximizing profit (minimizing loss).

We’re not (primarily) interested in finding a (true/predictive/causal)

model.

• Separating noise from data is not necessary in this setting!
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Dichotomies in Machine Learning

scope of my lecture ⇔ scope of other lectures

online learning ⇔ offline/batch learning

passive prediction ⇔ active learning

Bayes ⇔ MDL ⇔ Expert

noninformative and universal prior ⇔ informed or problem-specific prior

conceptual/mathematical issues ⇔ computational issues

exact/principled ⇔ heuristic

supervised learning ⇔ unsupervised ⇔ RL learning

exploitation ⇔ exploration
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Sequential/online predictions

In sequential or online prediction, for times t = 1, 2, 3, ...,

our predictor p makes a prediction yp
t ∈ Y

based on past observations x1, ..., xt−1.

Thereafter xt ∈ X is observed and p suffers Loss(xt, y
p
t ).

The goal is to design predictors with small total loss or cumulative

Loss1:T (p) :=
∑T

t=1 Loss(xt, y
p
t ).

Applications are abundant, e.g. weather or stock market forecasting.

Example:
Loss(x, y) X = {sunny , rainy}

Y =
{

umbrella
sunglasses

}
0.1 0.3
0.0 1.0

Setup also includes: Classification and Regression problems.
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Bayesian Sequence Prediction: Contents
• Uncertainty and Probability

• Frequency Interpretation: Counting

• Objective Interpretation: Uncertain Events

• Subjective Interpretation: Degrees of Belief

• Bayes’ and Laplace’s Rules

• Envelope and Confirmation Paradoxes

• The Bayes-mixture distribution

• Relative Entropy and Bound

• Posterior Convergence

• Sequential Decisions and Loss Bounds

• Generalization: Continuous Probability Classes

• Summary
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Bayesian Sequence Prediction: Abstract

The aim of probability theory is to describe uncertainty. There are

various sources and interpretations of uncertainty. We compare the

frequency, objective, and subjective probabilities, and show that they all

respect the same rules. We derive Bayes’ and Laplace’s famous and

fundamental rules and present two brain-teasing paradoxes. Then we

concentrate on general sequence prediction tasks. We define the Bayes

mixture distribution and show that the posterior converges rapidly to the

true posterior by exploiting some bounds on the relative entropy. Finally

we show that the mixture predictor is also optimal in a decision-theoretic

sense w.r.t. any bounded loss function.
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Uncertainty and Probability

The aim of probability theory is to describe uncertainty.

Sources/interpretations for uncertainty:

• Frequentist: probabilities are relative frequencies.

(e.g. the relative frequency of tossing head.)

• Objectivist: probabilities are real aspects of the world.

(e.g. the probability that some atom decays in the next hour)

• Subjectivist: probabilities describe an agent’s degree of belief.

(e.g. it is (im)plausible that extraterrestrians exist)
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Frequency Interpretation: Counting

• The frequentist interprets probabilities as relative frequencies.

• If in a sequence of n independent identically distributed (i.i.d.)

experiments (trials) an event occurs k(n) times, the relative

frequency of the event is k(n)/n.

• The limit limn→∞ k(n)/n is defined as the probability of the event.

• For instance, the probability of the event head in a sequence of

repeatedly tossing a fair coin is 1
2 .

• The frequentist position is the easiest to grasp, but it has several

shortcomings:

• Problems: definition circular, limited to i.i.d, reference class

problem.
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Objective Interpretation: Uncertain Events

• For the objectivist probabilities are real aspects of the world.

• The outcome of an observation or an experiment is not

deterministic, but involves physical random processes.

• The set Ω of all possible outcomes is called the sample space.

• It is said that an event E ⊂ Ω occurred if the outcome is in E.

• In the case of i.i.d. experiments the probabilities p assigned to

events E should be interpretable as limiting frequencies, but the

application is not limited to this case.

• (Some) probability axioms:

p(Ω) = 1 and p({}) = 0 and 0 ≤ p(E) ≤ 1.

p(A ∪B) = p(A) + p(B)− p(A ∩B).
p(B|A) = p(A∩B)

p(A) is the probability of B given event A occurred.
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Subjective Interpretation: Degrees of Belief

• The subjectivist uses probabilities to characterize an agent’s degree

of belief in something, rather than to characterize physical random

processes.

• This is the most relevant interpretation of probabilities in AI.

• We define the plausibility of an event as the degree of belief in the

event, or the subjective probability of the event.

• It is natural to assume that plausibilities/beliefs Bel(·|·) can be repr.

by real numbers, that the rules qualitatively correspond to common

sense, and that the rules are mathematically consistent. ⇒
• Cox’s theorem: Bel(·|A) is isomorphic to a probability function

p(·|·) that satisfies the axioms of (objective) probabilities.

• Conclusion: Beliefs follow the same rules as probabilities
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Bayes’ Famous Rule
Let D be some possible data (i.e. D is event with p(D) > 0) and

{Hi}i∈I be a countable complete class of mutually exclusive hypotheses

(i.e. Hi are events with Hi ∩Hj = {} ∀i 6= j and
⋃

i∈I Hi = Ω).

Given: p(Hi) = a priori plausibility of hypotheses Hi (subj. prob.)

Given: p(D|Hi) = likelihood of data D under hypothesis Hi (obj. prob.)

Goal: p(Hi|D) = a posteriori plausibility of hypothesis Hi (subj. prob.)

Solution: p(Hi|D) =
p(D|Hi)p(Hi)∑
i∈I p(D|Hi)p(Hi)

Proof: From the definition of conditional probability and
∑

i∈I

p(Hi|...) = 1 ⇒
∑

i∈I

p(D|Hi)p(Hi) =
∑

i∈I

p(Hi|D)p(D) = p(D)



MH - 22 - How to Predict with Bayes and MDL

Example: Bayes’ and Laplace’s Rule

Assume data is generated by a biased coin with head probability θ, i.e.

Hθ :=Bernoulli(θ) with θ ∈ Θ := [0, 1].

Finite sequence: x = x1x2...xn with n1 ones and n0 zeros.

Sample infinite sequence: ω ∈ Ω = {0, 1}∞

Basic event: Γx = {ω : ω1 = x1, ..., ωn = xn} = set of all sequences

starting with x.

Data likelihood: pθ(x) := p(Γx|Hθ) = θn1(1− θ)n0 .

Bayes (1763): Uniform prior plausibility: p(θ) := p(Hθ) = 1
(
∫ 1

0
p(θ) dθ = 1 instead

∑
i∈I p(Hi) = 1)

Evidence: p(x) =
∫ 1

0
pθ(x)p(θ) dθ =

∫ 1

0
θn1(1− θ)n0 dθ = n1!n0!

(n0+n1+1)!
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Example: Bayes’ and Laplace’s Rule

Bayes: Posterior plausibility of θ after seeing x is:

p(θ|x) =
p(x|θ)p(θ)

p(x)
=

(n + 1)!
n1!n0!

θn1(1− θ)n0

Laplace: What is the probability of seeing 1 after having observed x?

p(xn+1 = 1|x1...xn) =
p(x1)
p(x)

=
n1 + 1
n + 2
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Exercise 1: Envelope Paradox

• I offer you two closed envelopes, one of them contains twice the

amount of money than the other. You are allowed to pick one and

open it. Now you have two options. Keep the money or decide for

the other envelope (which could double or half your gain).

• Symmetry argument: It doesn’t matter whether you switch, the

expected gain is the same.

• Refutation: With probability p = 1/2, the other envelope contains

twice/half the amount, i.e. if you switch your expected gain

increases by a factor 1.25=1/2*2+1/2*1/2.

• Present a Bayesian solution.



MH - 25 - How to Predict with Bayes and MDL

Exercise 2: Confirmation Paradox
(i) R → B is confirmed by an R-instance with property B

(ii) ¬B → ¬R is confirmed by a ¬B-instance with property ¬R.

(iii) Since R → B and ¬B → ¬R are logically equivalent,
R → B is also confirmed by a ¬B-instance with property ¬R.

Example: Hypothesis (o): All ravens are black (R=Raven, B=Black).

(i) observing a Black Raven confirms Hypothesis (o).

(iii) observing a White Sock also confirms that all Ravens are Black,
since a White Sock is a non-Raven which is non-Black.

This conclusion sounds absurd.

Present a Bayesian solution.
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Notation: Strings & Probabilities

Strings: x=x1x2...xn with xt∈X and x1:n := x1x2...xn−1xn and

x<n := x1...xn−1.

Probabilities: ρ(x1...xn) is the probability that an (infinite) sequence

starts with x1...xn.

Conditional probability:

ρn := ρ(xn|x<n) = ρ(x1:n)/ρ(x<n),

ρ(x1...xn) = ρ(x1)·ρ(x2|x1)·...·ρ(xn|x1...xn−1).

True data generating distribution: µ
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The Bayes-Mixture Distribution ξ
• Assumption: The true (objective) environment µ is unknown.

• Bayesian approach: Replace true probability distribution µ by a
Bayes-mixture ξ.

• Assumption: We know that the true environment µ is contained in
some known countable (in)finite set M of environments.

• The Bayes-mixture ξ is defined as

ξ(x1:m) :=
∑

ν∈M
wνν(x1:m) with

∑

ν∈M
wν = 1, wν > 0 ∀ν

• The weights wν may be interpreted as the prior degree of belief that
the true environment is ν, or kν = ln w−1

ν as a complexity penalty
(prefix code length) of environment ν.

• Then ξ(x1:m) could be interpreted as the prior subjective belief
probability in observing x1:m.
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Relative Entropy

Relative entropy: D(p||q) :=
∑

i pi ln pi

qi

Properties: D(p||q) ≥ 0 and D(p||q) = 0 ⇔ p = q

Instantaneous relative entropy: dt(x<t) :=
∑

xt∈X
µ(xt|x<t) ln

µ(xt|x<t)
ξ(xt|x<t)

Total relative entropy: Dn :=
∑n

t=1 E[dt] ≤ ln w−1
µ

E[f ] =Expectation of f w.r.t. the true distribution µ, e.g.

If f : Xn → IR, then E[f ] :=
∑

x1:n
µ(x1:n)f(x1:n).

Proof based on dominance or universality: ξ(x) ≥ wµµ(x).
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Proof of the Entropy Bound

Dn ≡
n∑

t=1

∑
x<t

µ(x<t)·dt(x<t)
(a)
=

n∑
t=1

∑
x1:t

µ(x1:t) ln
µ(xt|x<t)
ξ(xt|x<t)

=

(b)
=

∑
x1:n

µ(x1:n) ln
n∏

t=1

µ(xt|x<t)
ξ(xt|x<t)

(c)
=

∑
x1:n

µ(x1:n) ln
µ(x1:n)
ξ(x1:n)

(d)

≤ ln w−1
µ

(a) Insert def. of dt and used chain rule µ(x<t)·µ(xt|x<t)=µ(x1:t).

(b)
∑

x1:t
µ(x1:t) =

∑
x1:n

µ(x1:n) and argument of log is independent

of xt+1:n. The t sum can now be exchanged with the x1:n sum and

transforms to a product inside the logarithm.

(c) Use chain rule again for µ and ξ.

(d) Use dominance ξ(x) ≥ wµµ(x).
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Posterior Convergence

Theorem: ξ(xt|x<t) → µ(xt|x<t) rapid w.p.1 for t →∞

Proof: D∞ ≡ ∑∞
t=1 E[dt] ≤ ln w−1

µ and dt ≥ 0

=⇒ dt
t→∞−→ 0 ⇐⇒ ξt → µt.

Fazit: ξ is excellent universal predictor if unknown µ belongs to M.

How to choose M and wµ? Both as large as possible?! More later.
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Sequential Decisions
A prediction is very often the basis for some decision. The decision

results in an action, which itself leads to some reward or loss.

Let Loss(xt, yt) ∈ [0, 1] be the received loss when taking action yt∈Y
and xt∈X is the tth symbol of the sequence.

For instance, decision Y={umbrella, sunglasses} based on weather

forecasts X ={sunny, rainy}. Loss sunny rainy

umbrella 0.1 0.3

sunglasses 0.0 1.0

The goal is to minimize the µ-expected loss. More generally we define

the Λρ prediction scheme, which minimizes the ρ-expected loss:

y
Λρ

t := arg min
yt∈Y

∑
xt

ρ(xt|x<t)Loss(xt, yt)
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Loss Bounds
• Definition: µ-expected loss when Λρ predicts the tth symbol:

Losst(Λρ)(x<t) :=
∑

xt
µ(xt|x<t)Loss(xt, y

Λρ

t )

• Losst(Λµ/ξ) made by the informed/universal scheme Λµ/ξ.

Losst(Λµ) ≤ Losst(Λ) ∀t, Λ.

• Theorem: 0≤ Losst(Λξ)−Losst(Λµ) ≤ ∑
xt
|ξt−µt|≤

√
2dt

w.p.1−→ 0

• Total Loss1:n(Λρ) :=
∑n

t=1 E[Losst(Λρ)].

• Theorem: Loss1:n(Λξ)− Loss1:n(Λµ) ≤ 2Dn + 2
√

Loss1:n(Λµ)Dn

• Corollary: If Loss1:∞(Λµ) is finite, then Loss1:∞(Λξ) is finite, and
Loss1:n(Λξ)/Loss1:∞(Λµ) → 1 if Loss1:∞(Λµ) →∞.

• Remark: Holds for any loss function ∈ [0, 1] with no assumptions
(like i.i.d., Markovian, stationary, ergodic, ...) on µ ∈M.
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Proof of Instantaneous Loss Bounds

Abbreviations: X = {1, ..., N}, N = |X |, i = xt, yi = µ(xt|x<t),
zi = ξ(xt|x<t), m = y

Λµ

t , s = y
Λξ

t , `xy = Loss(x, y).

This and definition of y
Λµ

t and y
Λξ

t and
∑

i zi`is ≤
∑

i zi`ij ∀j implies

Losst(Λξ)− Losst(Λµ) ≡
∑

i

yi`is−
∑

i

yi`im

(a)

≤
∑

i

(yi − zi)(`is − `im)

≤
∑

i

|yi−zi|·|`is−`im|
(b)

≤
∑

i

|yi − zi|
(c)

≤
√∑

i

yi ln
yi

zi
≡

√
2dt(x<t)

(a) We added
∑

i zi(`im − `is) ≥ 0.

(b) |`is − `im| ≤ 1 since ` ∈ [0, 1].

(c) Pinsker’s inequality (elementary, but not trivial)
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Generalization: Continuous Probability Classes M
In statistical parameter estimation one often has a continuous

hypothesis class (e.g. a Bernoulli(θ) process with unknown θ∈ [0, 1]).

M := {µθ : θ ∈ IRd}, ξ(x1:n) :=
∫

IRd

dθ w(θ)µθ(x1:n),
∫

IRd

dθ w(θ) = 1

We only used ξ(x1:n)≥wµ ·µ(x1:n) which was obtained by dropping the

sum over µ. Here, restrict integral over IRd to a small vicinity Nδ of θ.

For sufficiently smooth µθ and w(θ) we expect

ξ(x1:n) >∼ |Nδn |·w(θ)·µθ(x1:n) =⇒ Dn
<∼ ln w−1

µ + ln |Nδn |−1

Average Fisher information ̄n measures curvature (parametric

complexity) of ln µθ. Weak regularity conditions on ̄n ⇒
Theorem: Dn ≤ ln w−1

µ + d
2 ln n

2π + 1
2 ln det ̄n + o(1)

i.e. Dn grows only logarithmically with n.
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Bayesian Sequence Prediction: Summary

• The aim of probability theory is to describe uncertainty.

• Various sources and interpretations of uncertainty:

frequency, objective, and subjective probabilities.

• They all respect the same rules.

• General sequence prediction: Use known (subj.) Bayes mixture

ξ =
∑

ν∈M wνν in place of unknown (obj.) true distribution µ.

• Bound on the relative entropy between ξ and µ.

⇒ posterior of ξ converges rapidly to the true posterior µ.

• ξ is also optimal in a decision-theoretic sense w.r.t. any bounded

loss function.

• No structural assumptions on M and ν ∈M.
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Minimum Description Length: Contents

• Questions left open by Bayes

• Indifference=Symmetry and Maximum Entropy Principles

• Occam’s Razor – The Simplicity Principle

• Priors from Prefix Sets/Codes – Kraft Inequality

• A Universal Choice of ξ and M
• Optimality of the Universal Predictor

• The Minimum Description Length Principle

• Application: Sequence Prediction

• Application: Regression / Polynomial Fitting

• Summary
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Minimum Description Length: Abstract

The Minimum Description/Message Length principle is one of the most

important concepts in Machine Learning, and serves as a scientific

guide, in general. The motivation is as follows: To make predictions

involves finding regularities in past data, regularities in data allows for

compression, hence short descriptions of data should help in making

predictions. In this lecture series we approach MDL from a Bayesian

perspective and relate it to a MAP (maximum a posteriori) model

choice. The Bayesian prior is chosen in accordance with Occam and

Epicurus and the posterior is approximated by the MAP solution. We

reconsider (un)fair coin flips and compare the M(D)L to Bayes-Laplace’s

solution, and similarly for general sequence prediction tasks. Finally I

present an application to regression / polynomial fitting.
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When is a Sequence Random?

a) Is 0110010100101101101001111011 generated by a fair coin flip?

b) Is 1111111111111111111111111111 generated by a fair coin flip?

c) Is 1100100100001111110110101010 generated by a fair coin flip?

d) Is 0101010101010101010101010101 generated by a fair coin flip?

• Intuitively: (a) and (c) look random, but (b) and (d) look unlikely.

• Problem: Formally (a-d) have equal probability ( 1
2 )length.

• Classical solution: Consider hypothesis class H := {Bernoulli(p) :
p ∈ Θ ⊆ [0, 1]} and determine p for which sequence has maximum

likelihood =⇒ (a,c,d) are fair Bernoulli( 1
2 ) coins, (b) not.

• Problem: (d) is non-random, also (c) is binary expansion of π.

• Solution: Choose H larger, but how large? Overfitting? MDL?

• AIT Solution: A sequence is random iff it is incompressible.
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What does Probability Mean?

Naive frequency interpretation is circular:

• Probability of event E is p := limn→∞
kn(E)

n ,

n = # i.i.d. trials, kn(E) = # occurrences of event E in n trials.

• Problem: Limit may be anything (or nothing):

e.g. a fair coin can give: Head, Head, Head, Head, ... ⇒ p = 1.

• Of course, for a fair coin this sequence is “unlikely”.

For fair coin, p = 1/2 with “high probability”.

• But to make this statement rigorous we need to formally know what

“high probability” means. Circularity!

Also: In complex domains typical for AI, sample size is often 1.

(e.g. a single non-iid historic weather data sequences is given).

We want to know whether certain properties hold for this particular seq.
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How to Choose the Prior?

The probability axioms allow relating probabilities and plausibilities of

different events, but they do not uniquely fix a numerical value for each

event, except for the sure event Ω and the empty event {}.
We need new principles for determining values for at least some basis

events from which others can then be computed.

There seem to be only 3 general principles:

• The principle of indifference — the symmetry principle

• The maximum entropy principle

• Occam’s razor — the simplicity principle

Concrete: How shall we choose the hypothesis space {Hi} and their

prior p(Hi) –or– M = {ν} and their weight wν .
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Indifference or Symmetry Principle

Assign same probability to all hypotheses:

p(Hi) = 1
|I| for finite I

p(Hθ) = [Vol(Θ)]−1 for compact and measurable Θ.

⇒ p(Hi|D) ∝ p(D|Hi)
∧= classical Hypothesis testing (Max.Likelihood).

Prev. Example: Hθ =Bernoulli(θ) with p(θ) = 1 for θ ∈ Θ := [0, 1].

Problems: Does not work for “large” hypothesis spaces:

(a) Uniform distr. on infinite I = IN or noncompact Θ not possible!

(b) Reparametrization: θ Ã f(θ). Uniform in θ is not uniform in f(θ).

Example: “Uniform” distr. on space of all (binary) sequences {0, 1}∞:

p(x1...xn) = ( 1
2 )n ∀n∀x1...xn ⇒ p(xn+1 = 1|x1...xn) = 1

2 always!

Inference so not possible (No-Free-Lunch myth).

Predictive setting: All we need is p(x).
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The Maximum Entropy Principle ...

is based on the foundations of statistical physics.

The symmetry principle is a special case of the maximum entropy

principle.



MH - 43 - How to Predict with Bayes and MDL

Occam’s Razor — The Simplicity Principle

• Only Occam’s razor (in combination with Epicurus’ principle) is

general enough to assign prior probabilities in every situation.

• The idea is to assign high (subjective) probability to simple events,

and low probability to complex events.

• Simple events (strings) are more plausible a priori than complex

ones.

• This gives (approximately) justice to both Occam’s razor and

Epicurus’ principle.
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Prefix Sets/Codes

String x is (proper) prefix of y :⇐⇒ ∃ z( 6= ε) such that xz = y.

Set P is prefix-free or a prefix code :⇐⇒ no element is a proper
prefix of another.

Example: A self-delimiting code is prefix-free.

Kraft Inequality

For a prefix code P we have
∑

x∈P 2−`(x) ≤ 1.

Conversely, let l1, l2, ... be a countable sequence of natural numbers

such that Kraft’s inequality
∑

k 2−lk ≤ 1 is satisfied. Then there exists

a prefix code P with these lengths of its binary code.
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Proof of the Kraft-Inequality

Proof ⇒: Assign to each x ∈ P the interval Γx := [0.x, 0.x + 2−`(x)).

Length of interval Γx is 2−`(x).

Intervals are disjoint, since P is prefix free, hence
∑

x∈P
2−`(x) =

∑

x∈P
Length(Γx) ≤ Length([0, 1]) = 1

⇐: Idea: Choose l1, l2, ... in increasing order. Successively chop off

intervals of lengths 2−l1 , 2−l2 , ... from left to right from [0, 1) and

define left interval boundary as code.
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Priors from Prefix Codes

• Let Code(Hν) be a prefix code of hypothesis Hν .

• Define complexity Kw(ν) :=Length(Code(Hν))

• Choose prior wν = p(Hν) = 2−Kw(ν)

⇒ ∑
ν∈M wν ≤ 1 is semi-probability (by Kraft).

• How to choose a Code and hypothesis space M ?

• Praxis: Choose a code which is reasonable for your problem

and M large enough to contain the true model.

• Theory: Choose a universal code and consider “all” hypotheses ...
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A Universal Choice of ξ and M
• We have to assume the existence of some structure on the

environment to avoid the No-Free-Lunch Theorems [Wolpert 96].

• We can only unravel effective structures which are describable by

(semi)computable probability distributions.

• So we may include all (semi)computable (semi)distributions in M.

• Occam’s razor and Epicurus’ principle of multiple explanations tell

us to assign high prior belief to simple environments.

• Using Kolmogorov’s universal complexity measure K(ν) for

environments ν one should set wν = 2−K(ν), where K(ν) is the

length of the shortest program on a universal TM computing ν.

• The resulting mixture ξ is Solomonoff’s (1964) universal prior.

• In the following we consider generic M and wν .
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Optimality of the Universal Predictor

• There are M and µ ∈M and weights wµ for which the loss bounds

are tight.

• The universal prior ξ is pareto-optimal, in the sense that there is no

ρ with F(ν, ρ) ≤ F(ν, ξ) for all ν ∈M and strict inequality for at

least one ν, where F is the instantaneous or total squared distance

st, Sn, or entropy distance dt, Dn, or general Losst, Loss1:n.

• ξ is balanced pareto-optimal in the sense that by accepting a slight

performance decrease in some environments one can only achieve a

slight performance increase in other environments.

• Within the set of enumerable weight functions with short program,

the universal weights wν = 2−K(ν) lead to the smallest performance

bounds within an additive (to ln w−1
µ ) constant in all enumerable

environments.
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The Minimum Description Length Principle

Identification of probabilistic model “best” describing data:

Probabilistic model(=hypothesis) Hν with ν ∈M and data D.

Most probable model is νMDL = arg maxν∈M p(Hν |D).

Bayes’ rule: p(Hν |D) = p(D|Hν)·p(Hν)/p(D).

Occam’s razor: p(Hν) = 2−Kw(ν).

By definition: p(D|Hν) = ν(x), D = x =data-seq., p(D) =const.

Take logarithm =⇒ νMDL = arg min
ν∈M

{Kν(x) + Kw(ν)}

Kν(x) := −log ν(x) = length of Shannon-Fano code of x given Hν .

Kw(ν) = length of model Hν .

Names: Two-part MDL or MAP or MML (∃ “slight” differences)
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Predict with Best Model

• Use best model from class of models M for prediction:

• Predict y with probability νMDL(y|x) = νMDL(xy)
νMDL(x)

(3 variants)

• yMDL = arg max
y
{νMDL(y|x)} is most likely continuation of x

• Special case: Kw(ν) =const.

=⇒ MDL Ã ML:=Maximum likelihood principle.

• Example: Hθ =Bernoulli(θ) with θ ∈ [0, 1] and Kw(θ) :=const. and

ν(x1:n) = θn1(1− θ)n0 with n1 = x1 + ... + xn = n− n0.

⇒ θMDL = arg min
θ
{−logθn1(1−θ)n0+K(θ)} =

n1

n
= νMDL(1|x)

= ML frequency estimate. (overconfident, e.g. n1 = 0)

• Compare with Laplace’ rule based on Bayes’ rule: θLaplace = n1+1
n+2 .
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Application: Sequence Prediction

• Instead of Bayes mixture ξ(x) =
∑

ν wνν(x), consider MAP/MDL

• νMDL(x) = max{wνν(x) : ν ∈M} = arg min
ν∈M

{Kν(x) + Kw(ν)}.

•
∞∑

t=1

E
[∑

xt

(µ(xt|x<t)− νMDL(xt|x<t))2
]
≤ 8w−1

µ ⇐ no log as
for ξ!

⇒ MDL converges, but speed can be exponentially worse than Bayes

⇒ be careful (bound is tight).

• For continuous smooth model class M and prior wν ,

MDL is as good as Bayes.
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Application: Regression / Polynomial Fitting
• Data D = {(x1, y1), ..., (xn, yn)}
• Fit polynomial fd(x) := a0 + a1x + a2x

2 + ... + adx
d of degree d

through points D

• Measure of error: SQ(a0...ad) =
∑n

i=1(yi − fd(xi))2

• Given d, minimize SQ(a0:d) w.r.t. parameters a0...dd.

• This classical approach does
not tell us how to choose d?
(d ≥ n− 1 gives perfect fit)
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MDL Solution to Polynomial Fitting
Assume y is Gaussian with variance σ2 and mean fd(x), i.e.

P ((x, y)|fd) := P (y|x, fd) =
1√
2πσ

exp(− (y − fd(x))2

2σ2
)

=⇒ P (D|fd) =
d∏

i=1

P ((xi, yi)|fd) =
e−SQ(a0:d)/2σ2

(2πσ2)n/2

The larger the error SQ, the less likely the data.

Occam: P (fd) = 2−Kw(fd). Simple coding: Kw(fd) ≈ (d + 1)·C, where
C is the description length=accuracy of each coefficient ak in bits =⇒
fMDL = argmin

f
{−logP (D|f)+Kw(f)} = argmin

d,a0:d

{SQ(a0:d)
2σ2 ln 2

+(d+1)C
}

Fixed d ⇒ aML
0:d = arg min

a0:d
SQ(a0:d) = classical solution

(by linear invariance of arg min)
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MDL Polynomial Fitting: Determine Degree d

Determine d (minf = mind minfd
):

d = arg min
d
{ 1
2σ2 ln 2

SQ(aML
0:d)︸ ︷︷ ︸

least square fit

+
n

2
log(2πσ2)

︸ ︷︷ ︸
“constant”

+ (d + 1)C︸ ︷︷ ︸
complexity penalty

}

Interpretation: Tradeoff between SQuare error and compleity penalty

σ and C may also be determined by minimizing this expression w.r.t.

σ and C, but some subtleties have to be paid attention to.
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Minimum Description Length: Summary

• Probability axioms give no guidance of how to choose the prior.

• Occam’s razor is the only general (always applicable) principle for

determining priors, especially in complex domains typical for AI.

• Prior = 2−descr.length — Universal prior = 2−Kolmogorov complexity.

• Prediction =̂ finding regularities =̂ compression =̂ MDL.

• MDL principle: from a model class, a model is chosen that:

minimizes the joint description length of the model and

the data observed so far given the model.

• Similar to (Bayesian) Maximum a Posteriori (MAP) principle.

• MDL often as good as Bayes but not always.
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The Similarity Metric: Contents

• Kolmogorov Complexity

• The Universal Similarity Metric

• Tree-Based Clustering

• Genomics & Phylogeny: Mammals, SARS Virus & Others

• Classification of Different File Types

• Language Tree (Re)construction

• Classify Music w.r.t. Composer

• Further Applications

• Summary
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The Similarity Metric: Abstract

The MDL method has been studied from very concrete and highly tuned

practical applications to general theoretical assertions. Sequence

prediction is just one application of MDL. The MDL idea has also been

used to define the so called information distance or universal similarity

metric, measuring the similarity between two individual objects. I will

present some very impressive recent clustering applications based on

standard Lempel-Ziv or bzip2 compression, including a completely

automatic reconstruction (a) of the evolutionary tree of 24 mammals

based on complete mtDNA, and (b) of the classification tree of 52

languages based on the declaration of human rights and (c) others.

Based on [Cilibrasi&Vitanyi’03]
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Kolmogorov Complexity

Question: When is object=string x similar to object=string y?

Universal solution: x similar y ⇔ x can be easily (re)constructed from y

⇔ Kolmogorov complexity K(x|y) := min{`(p) : U(p, y) = x} is small

Examples:

1) x is very similar to itself (K(x|x) += 0)

2) A processed x is similar to x (K(f(x)|x) += 0 if K(f) = O(1)).
e.g. doubling, reverting, inverting, encrypting, partially deleting x.

3) A random string is with high probability not similar to any other

string (K(random|y) =length(random)).

The problem with K(x|y) as similarity=distance measure is that it is

neither symmetric nor normalized nor computable.
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The Universal Similarity Metric

• Symmetrization and normalization leads to a/the universal metric d:

0 ≤ d(x, y) :=
max{K(x|y),K(y|x)}

max{K(x),K(y)} ≤ 1

• Every effective similarity between x and y is detected by d

• Use K(x|y)≈K(xy)−K(y) (coding T) and K(x)≡KU (x)≈KT (x)
=⇒ computable approximation: Normalized compression distance:

d(x, y) ≈ KT (xy)−min{KT (x), KT (y)}
max{KT (x),KT (y)}

<∼ 1

• For T choose Lempel-Ziv or gzip or bzip(2) (de)compressor in the

applications below.

• Theory: Lempel-Ziv compresses asymptotically better than any

probabilistic finite state automaton predictor/compressor.
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Tree-Based Clustering

• If many objects x1, ..., xn need to be compared, determine the

similarity matrix Mij= d(xi, xj) for 1 ≤ i, j ≤ n

• Now cluster similar objects.

• There are various clustering techniques.

• Tree-based clustering: Create a tree connecting similar objects,

• e.g. quartet method (for clustering)
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Genomics & Phylogeny: Mammals

Let x1, ..., xn be mitochondrial genome sequences of different mammals:

Partial distance matrix Mij using bzip2(?)

Cat Echidna Gorilla ...

BrownBear Chimpanzee FinWhale HouseMouse ...

Carp Cow Gibbon Human ...

BrownBear 0.002 0.943 0.887 0.935 0.906 0.944 0.915 0.939 0.940 0.934 0.930 ...

Carp 0.943 0.006 0.946 0.954 0.947 0.955 0.952 0.951 0.957 0.956 0.946 ...

Cat 0.887 0.946 0.003 0.926 0.897 0.942 0.905 0.928 0.931 0.919 0.922 ...

Chimpanzee 0.935 0.954 0.926 0.006 0.926 0.948 0.926 0.849 0.731 0.943 0.667 ...

Cow 0.906 0.947 0.897 0.926 0.006 0.936 0.885 0.931 0.927 0.925 0.920 ...

Echidna 0.944 0.955 0.942 0.948 0.936 0.005 0.936 0.947 0.947 0.941 0.939 ...

FinbackWhale 0.915 0.952 0.905 0.926 0.885 0.936 0.005 0.930 0.931 0.933 0.922 ...

Gibbon 0.939 0.951 0.928 0.849 0.931 0.947 0.930 0.005 0.859 0.948 0.844 ...

Gorilla 0.940 0.957 0.931 0.731 0.927 0.947 0.931 0.859 0.006 0.944 0.737 ...

HouseMouse 0.934 0.956 0.919 0.943 0.925 0.941 0.933 0.948 0.944 0.006 0.932 ...

Human 0.930 0.946 0.922 0.667 0.920 0.939 0.922 0.844 0.737 0.932 0.005 ...

... ... ... ... ... ... ... ... ... ... ... ... ...



MH - 62 - How to Predict with Bayes and MDL

Genomics & Phylogeny: Mammals
Evolutionary tree built from complete mammalian mtDNA of 24 species:

Carp
Cow

BlueWhale
FinbackWhale

Cat
BrownBear
PolarBear
GreySeal

HarborSeal
Horse

WhiteRhino

Ferungulates

Gibbon
Gorilla

Human
Chimpanzee

PygmyChimp
Orangutan

SumatranOrangutan

Primates

Eutheria

HouseMouse
Rat

Eutheria - Rodents

Opossum
Wallaroo

Metatheria

Echidna
Platypus

Prototheria
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Genomics & Phylogeny: SARS Virus and Others

• Clustering of SARS virus in relation to potential similar virii based

on complete sequenced genome(s) using bzip2:

• The relations are very similar to the definitive tree based on

medical-macrobio-genomics analysis from biologists.
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Genomics & Phylogeny: SARS Virus and Others

AvianAdeno1CELO

n1

n6

n11

AvianIB1

n13

n5

AvianIB2

BovineAdeno3HumanAdeno40

DuckAdeno1

n3

HumanCorona1

n8

SARSTOR2v120403

n2

MeaslesMora

n12
MeaslesSch

MurineHep11

n10
n7

MurineHep2

PRD1

n4

n9

RatSialCorona

SIRV1

SIRV2

n0
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Classification of Different File Types

Classification of files based on markedly different file types using bzip2

• Four mitochondrial gene sequences

• Four excerpts from the novel “The Zeppelin’s Passenger”

• Four MIDI files without further processing

• Two Linux x86 ELF executables (the cp and rm commands)

• Two compiled Java class files

No features of any specific domain of application are used!
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Classification of Different File Types

ELFExecutableA

n12n7

ELFExecutableB

GenesBlackBearA

n13

GenesPolarBearB

n5

GenesFoxC

n10

GenesRatD

JavaClassA

n6

n1

JavaClassB

MusicBergA

n8 n2

MusicBergB

MusicHendrixA
n0

n3

MusicHendrixB

TextA

n9

n4

TextB

TextC

n11
TextD

Perfect classification!
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Language Tree (Re)construction

• Let x1, ..., xn be the “The Universal Declaration of Human Rights”

in various languages 1, ..., n.

• Distance matrix Mij based on gzip. Language tree constructed

from Mij by the Fitch-Margoliash method [Li&al’03]

• All main linguistic groups can be recognized (next slide)



Basque [Spain]
Hungarian [Hungary]
Polish [Poland]
Sorbian [Germany]
Slovak [Slovakia]
Czech [Czech Rep]
Slovenian [Slovenia]
Serbian [Serbia]
Bosnian [Bosnia]

Icelandic [Iceland]
Faroese [Denmark]
Norwegian Bokmal [Norway]
Danish [Denmark]
Norwegian Nynorsk [Norway]
Swedish [Sweden]
Afrikaans
Dutch [Netherlands]
Frisian [Netherlands]
Luxembourgish [Luxembourg]
German [Germany]
Irish Gaelic [UK]
Scottish Gaelic [UK]
Welsh [UK]
Romani Vlach [Macedonia]
Romanian [Romania]
Sardinian [Italy]
Corsican [France]
Sammarinese [Italy]
Italian [Italy]
Friulian [Italy]
Rhaeto Romance [Switzerland]
Occitan [France]
Catalan [Spain]
Galician [Spain]
Spanish [Spain]
Portuguese [Portugal]
Asturian [Spain]
French [France]
English [UK]
Walloon [Belgique]
OccitanAuvergnat [France]
Maltese [Malta]
Breton [France]
Uzbek [Utzbekistan]
Turkish [Turkey]
Latvian [Latvia]
Lithuanian [Lithuania]
Albanian [Albany]
Romani Balkan [East Europe]
Croatian [Croatia]

Finnish [Finland]
Estonian [Estonia]

ROMANCE

BALTIC

UGROFINNIC

CELTIC

GERMANIC

SLAVIC

ALTAIC
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Classify Music w.r.t. Composer
Let m1, ..., mn be pieces of music in MIDI format.

Preprocessing the MIDI files:

• Delete identifying information (composer, title, ...), instrument

indicators, MIDI control signals, tempo variations, ...

• Keep only note-on and note-off information.

• A note, k ∈ ZZ half-tones above the average note is coded as a

signed byte with value k.

• The whole piece is quantized in 0.05 second intervals.

• Tracks are sorted according to decreasing average volume, and then

output in succession.

Processed files x1, ..., xn still sounded like the original.
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Classify Music w.r.t. Composer
12 pieces of music: 4×Bach + 4×Chopin + 4×Debussy. Class. by bzip2

BachWTK2F1

n5

n8

BachWTK2F2
BachWTK2P1

n0

BachWTK2P2

ChopPrel15n9

n1

ChopPrel1

n6
n3

ChopPrel22

ChopPrel24

DebusBerg1

n7

DebusBerg4

n4
DebusBerg2

n2

DebusBerg3

Perfect grouping of processed MIDI files w.r.t. composers.
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Further Applications

• Classification of Fungi

• Optical character recognition

• Classification of Galaxies

• Clustering of novels w.r.t. authors

• Larger data sets

See [Cilibrasi&Vitanyi’03]
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The Clustering Method: Summary

• based on the universal similarity metric,

• based on Kolmogorov complexity,

• approximated by bzip2,

• with the similarity matrix represented by tree,

• approximated by the quartet method

• leads to excellent classification in many domains.
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Wrap Up

• Setup: Given (non)iid data D = (x1, ..., xn), predict xn+1

• Ultimate goal is to maximize profit or minimize loss

• Consider Models/Hypothesis Hi ∈M
• Max.Likelihood: Hbest = arg maxi p(D|Hi) (overfits if M large)

• Bayes: Posterior probability of Hi is p(Hi|D)

• MDL: Hbest = arg minHi{CodeLength(D|Hi)+CodeLength(Hi)}
(Complexity penalization)

• Bayes needs prior(Hi), MDL needs CodeLength(Hi)

• Occam+Epicurus: High prior for simple models with short codes.

• Kolmogorov/Solomonoff: Quantification of simplicity/complexity

• MDL & Bayes work if D is sampled from Htrue ∈M
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Thanks! Questions? Details:

Jobs: PostDoc and PhD positions at IDSIA, Switzerland

Projects at http://www.idsia.ch/˜marcus

A Unified View of Artificial Intelligence
= =

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

Open research problems at www.idsia.ch/∼marcus/ai/uaibook.htm


