Complexity Search for Compressed Neural Networks

Faustino Gomez

Jan Koutnik

Jurgen Schmidhuber

IDSIA IDSIA IDSIA
USI-SUPSI USI-SUPSI USI-SUPSI
Manno-Lugano, CH Manno-Lugano, CH Manno-Lugano, CH

tino@idsia.ch hkou@idsia.ch juergen@idsia.ch

ABSTRACT

In this paper, we introduce a method, called Compressed
Network Complexity Search (CNCS), for automatically de-
termining the complexity of compressed networks (neural
networks encoded indirectly by Fourier-type coefficients) that
favors parsimonious solutions. CNCS maintains a probabil-
ity distribution over complexity classes that it uses to se-
lect which class to optimize. Class probabilities are adapted
based on their expected fitness, starting with a prior biased
toward the simplest networks. Experiments on a challenging
non-linear version of the helicopter hovering task, show that
the method consistently finds simple solutions.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

General Terms
Algorithms

Keywords

Neuroevolution, complexity, indirect encodings, recurrent
neural networks

1. INTRODUCTION

In previous work [2], we presented a new encoding where
network weight matrices are represented indirectly as a set
of Fourier-type coefficients that are transformed into weight
values via an inverse Fourier transform, so that evolution-
ary search is conducted in the frequency-domain instead of
weight space. If adjacent weights in the matrices are corre-
lated, then this regularity can be encoded using fewer coef-
ficients than weights, effectively reducing the search space
dimensionality. For problems with a high-degree of redun-
dancy, this “compressed” approach can result in an order of
magnitude fewer free parameters and significant speedup.

Up to now, the complexity of networks using this encoding
was fixed a priori, both in terms of (1) the number of free pa-
rameters or topology and (2) the number of coefficients. In
this paper, we introduce a method, called Compressed Net-
work Complexity Search (CNCS), that automatically deter-
mines network complexity, favoring parsimonious solutions.
CNCS maintains a probability distribution over complexity
classes, which it uses to select which class to optimize. The
probability of a given class is adapted based on the expected
fitness of individuals sampled from it. Starting with a prior
biased toward the simplest networks, the distribution adapts
gradually until a solution is found.

Copyright is held by the author/owner(s).

GECCO’12 Companion, July 7-11, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1178-6/12/07.

Algorithm 1: Coefficient mapping(g, d)
j < 0, K <« sort(diag(d) — I)
for i =0 to \d|—1+2‘7ildn do
[+ 0
si ¢ {e| Tyl e, =}
while |s;| > 0 do
ind[j] + argmin||e — K[l++ mod |d[]||
e€s;
Si <+ s; \ ind[j++]
or i =0 to |ind| do
if i < |g| then
| coeff_array[ind[i] < ¢
else
| coeff_array[ind[i] < 0

ey

2. DCT NETWORK REPRESENTATION

Networks are encoded as a string or genome, g = {g1,..., 9k},

consisting of k substrings or chromosomes of real numbers
representing Discrete Cosine Transform (DCT) coefficients.
The number of chromosomes is determined by the choice of
network architecture, ¥, and data structures used to de-
code the genome, specified by Q = {D1,..., Dy}, where
D,,, m = 1..k, is the dimensionality of the coefficient ar-
ray for chromosome m. The total number of coefficients,
C =%F _lgm| < N (N is the number of weights), is user-
specified, and the coefficients are distributed evenly over the
chromosomes. The approach taken here restricts the search
space to band-limited neural networks where the power spec-
trum of the weight matrices goes to zero above a specified
limit frequency, cy*, and chromosomes contain all frequen-
cies up to ¢*, gm = (cg*, ..., cy").

Each chromosome is mapped to its coefficient array, ac-
cording to Algorithm 1, which is then transformed using a
D,,—dimensional inverse DCT to generate the weight values
that are mapped to their position in the corresponding 2D
weight matrix.

3. CNCS

Algorithm 2 describes CNCS in pseudocode. The algo-
rithm is initialized with a prior distribution, D, over the
complexity classes (C, V), where C' is the number of coeffi-
cients used to encode the net, and ¥ is the number of hid-
den neurons (equivalently, the topology). In order to bias
the search toward low-complexity solutions, D is initialized
with a prior that gives high probability to small nets (low
), represented by the fewest number of coefficients (low C').

Each x, = (C,, ¥,) pair in D has its own dedicated search
algorithm used to optimize that particular configuration. In

Algorithm 2: CNCS(D,s,n,00, h)

while —converged do

for k=1 to s do

X, v~ D //draw sample
(l’l’xk7 ka) — SNES(f,/ka, Oxps)‘(C’f)7n)

b < [,) //store fitness
forall the x; € D do

1 X;—X,;
. Zd)xiﬁlc(W J) max(ox,;) > 0¢

g(xi) vx; €D

0 otherwise
forall the x; € D do
p(x;) + e //normalize
9(x;)
Vx; €D

the current implementation we use Separable Natural Evo-
lution Strategies (SNES; [4]), an efficient variant in the NES
family of black-box optimization algorithms.

Each iteration, CNCS draws s samples from D, and runs
the SNES corresponding to each sample for n generations,
and then saves its state. The distribution D is then re-
estimated using a multivariate Parzen window estimator with
radial-symmetric Gaussian kernel K [3]. First, the values
g(x) are computed by applying the kernel weighted by the
normalized fitnesses, ¢x;, (the first forall loop), where h
is the kernel width, and d is the dimensionality of D, e.g. 2
when estimating C' and ¥ (the SNES distributions that have
converged, max(o) < gy, are assigned a g value of 0). Then
the g values are normalized into probabilities, and the cycle
repeats. The algorithm terminates when all SNES search
distributions have converged, or either the desired fitness or
the maximum number of iterations has been reached.

4. HELI HOVERING W/ GUSTING WIND

The standard Helicopter Hovering benchmark involves main-

taining the position of a simulated XCell Tempest [1] as close
as possible to origin of a bounded 3D space. The helicopter
model consists of 12 state variables: the coordinates and an-
gular rotations in 3-space and their derivatives; and 4 con-
trol variables: longitudinal and latitudinal cyclic pitch and
tail, and main rotor collective pitch. The fitness is the sum
of squares of all state variables over the course of a flight
lasting ¢ time steps. If the helicopter moves more that 20m
away from the origin in any direction or its velocity exceeds
5 m/s, then it is considered to have crashed, and the trial is
terminated. The fitness is normalized between 0 and 1 and
the minimum over 5 trials is used. The original 2008 RL
competition version is easy to solve due to the simple wind
model. To make the task more challenging, requiring non-
linear control, strong “gusts” (20m/s decaying exponentially
after striking the heli) were added that buffet the helicopter
at random in both z and y directions with probability 0.4.

The helicopters were controlled using simple recurrent net-
works (SRN/Elman). The decoding scheme for the genomes
was Q= {2,2,1,2,1}, i.e. 5 chromosomes: a 2D input, recur-
rent and output arrays, and 1D arrays for the input and out-
put bias weights. Each flight lasted 100 time-steps. CNCS
was used to search for both the network topology, ¥ (number
of neurons), and number of coefficients, C, with D initial-
ized with a uniform prior over {1, 2} for both ¥ and C, and
a sample size s = 2, h =7, 09 = 0.01,n = 1, and a SNES
population size of 16. A total of 20 experiments were run,
for 20 thousand iterations each.

20 T -
2 No. neurons - — - — - B D N
& 15[No. coefficients e
2y Fitness — — — — o ®
r - %]
S10F - Jo52
X i
£ s¢
s r _
z 0:
0 10 20 50 100 200 500 1k 2k 5k 10k 20k
CNCS iteration
10 50 200 1000 5000 20 000
0
[2] h I
: -l-
2
S -
©
o
o
0 M — 1
ol]I
0 10 0 10 0 10 0 10 0 10
Neurons

Figure 1: (top) The median fitness, no. of neurons
and no. of coefficients of the best network from each
run. (bottom) Evolution of fitness over time across
complexity classes, averaged across 20 runs.

Figure 1 shows how the fitness of each configuration adapts
over the course of 20k iterations of CNCS (average of 20
runs). The prior concentrates on networks with the low-
est complexity (upper-left corner of the graphs), gradually
expanding to find high fitness individuals with 1 to 3 neu-
rons, using ~8 coefficients, at around iteration 1000 (figure
1). The distribution then focuses on this area, moving away
from configurations with fewer coefficients (C' < 8) as they
cannot express the level of complexity required for nets with
more that 3 neurons. Then the distribution begins to follow
a narrow, high-fitness corridor, adding coefficients to net-
works with 2 and 3 neurons, until it reaches C' = 12 (=2000
iterations) and starts to grow the size of networks. The
shape of the distribution at 20k iterations emerged consis-
tently for all runs, with a maximum relative entropy between
the distributions of any two runs of only 0.038.

CNCS consistently found low-complexity solutions: net-
works with 2 neurons (64 weights) encoded by 8 DCT coeffi-
cients. Updating the distribution on complexity classes ele-
gantly addresses the question of how to configure the evolu-
tionary search. Running all configurations in parallel would
be prohibitive, whereas CNCS quickly adapts the search dis-
tribution towards promising configurations.

5. ACKNOWLEDGMENTS
This research was funded by SNF grant 200020-125038/1.

6. REFERENCES

[1] P. Abbeel, V. Ganapathi, and A. Y. Ng. Learning
vehicular dynamics, with application to modeling
helicopters. In NIPS, 2005.

[2] J. Koutnik, F. Gomez, and J. Schmidhuber. Evolving
neural networks in compressed weight space. In
Proceedings of the Conference on Genetic and
Evolutionary Computation (GECCO-10), 2010.

[3] E. Parzen. On estimation of a probability density
function and mode. The Annals of Mathematical
Statistics, 33(3):pp. 1065-1076, 1962.

[4] D. Wierstra, T. Schaul, T. G. Y. Sun, and
J. Schmidhuber. Natural evolution strategies. Technical
report, arXiv:1106.4487v1, 2011.

