... DAX1
Raw DAX version according to Statistisches Bundesamt (federal office of statistics). Other data are from the same source (except for business sentiment). Collected by Christian Puritscher, for a diploma thesis in industrial management at LMU, Munich.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....2
We have $- \frac{\partial \ln Z(D_0,\beta)}{\partial \beta} =  <_{D_0} \!
E(D_0,.)\! >$ and $- \frac{\partial \ln Z_{D_0}(D,\beta)}{\partial \beta} =  <_{D} \!
E(D,.) \!>$. Furthermore, $ \frac{\partial^2 \ln Z(D_0,\beta)}{\partial \beta^2} =  <_{D_0} \!
( E(D_0,.) - <_{D_0} \! E(D_0,.) \!> )^2 \!>$ and $ \frac{\partial^2 \ln Z_{D_0}(D,\beta)}{\partial \beta^2} =  <_{D} \!
( E(D,.) - <_{D} \! E(D,.) \! > )^2 \!>$. See also Levin et al. (1990). Using these expressions, it can be shown: by increasing $\beta $ (starting from $\beta = 0$), we will find a $\beta $ that minimizes $\frac{1}{\beta} \ln \frac{Z_{D_0}(D,\beta)}{Z(D_0,\beta)}<0$. Increasing $\beta $ further makes this expression go to $0$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


Back to Financial Forecasting page