General Problem Solving & How to Learn an Algorithm

Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

NNAISENSE
Jürgen Schmidhuber
You_again Shmidhoobuh

http://people.idsia.ch/~juergen/metalearner.html

R-learn & improve learning algorithm itself, and also the meta-learning algorithm, etc…
1997-2009. Since 2015 on your phone! Google, Microsoft, IBM, others, all use LSTM now

http://www.idsia.ch/~juergen/rnn.html
First: a beautiful simple pattern (discovered in 2014) of exponential acceleration of the most important events in the history of the universe from a human perspective

http://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/cozd9ju
Ultimate Trend
Will history converge around 2050 = Ω?

Pattern starts at
Ω - 13.8 B years:
Big Bang

http://www.id sia.ch/~juergen/history.html
Ω - ¼ of this time

Ω - 3.5 B years:
Life
$\Omega - \frac{1}{4}$ of this time

$\Omega - 0.9$ B years:
Animal-like life
$\Omega - \frac{1}{4}$ of this time \quad $\Omega - 220$ M years: Mammals
Ω - ¼ of this time Ω - 55 M years:

Primates
$\Omega - \frac{1}{4}$ of this time

$\Omega - 13 \text{ M years:}$

Hominids
Ω - ¼ of this time

Ω - 3.5 M years:
Stone tools
$\Omega - \frac{1}{4}$ of this time

$\Omega - 850,000$ years:
Controlled fire
Ω - ¼ of this time

Ω - 210,000 years:
Anatomically modern man
Ω - ¼ of this time

Ω - 50,000 years:
Behaviorally
modern man
Ω - ¼ of this time

Ω - 13,000 years:
Neolithic revolution
Ω - ¼ of this time

Ω - 3,300 years: Iron age
Ω - ¼ of this time

Ω - 800 years:
Guns & rockets
Ω - ¼ of this time

Ω - 200 years: Industrial revolution
$\Omega - \frac{1}{4}$ of this time

$\Omega - 50$ years (now):
Information revolution
Ω - 12 years

Small computers with 1 brain power

Ω - 3 years

Ω - 9 months

Ω - 10 weeks

Ω - 12 years

http://www.idsia.ch/~juergen/history.html
RNN
ASSISTANCE
JÜRGEN SCHMIDHUBER
THE SWISS AI LAB
IDSIA - USI & SUPSI
NNAISENSE
JÜRGEN SCHMIDHUBER 2013
Deep Learning is a half century old although recent “tabloid science” stories claim it is a recent thing

Scholarpedia: http://www.scholarpedia.org/article/Deep_Learning
Critique (also at Google+) of paper by self-proclaimed “deep learning conspiracy” (LeCun & Bengio & Hinton) who cite each other but not the pioneers of the field: http://www.idsia.ch/~juergen/deep-learning-conspiracy.html
Father of Deep Learning

Ivakhnenko et al, since 1965
Deep multilayer perceptrons with polynomial activation functions
Incremental layer-wise training by regression analysis - learn numbers of layers and units per layer - prune superfluous units
8 layers already back in 1971 still used in the 2000s
Who introduced the term “deep learning” to Machine Learning and Neural Networks?

- Dechter, 1986 (ML)
- Aizenberg et al, 2000 (NNs)
- Gomez & Schmidhuber (2005): first NN paper with word combination “learn deep” in title
who invented backpropagation?
The deepest NNs:
RNNs are general computers
Learn program = weight matrix
1991: SEPP HOCHREITER’S ANALYSIS OF THE FUNDAMENTAL DEEP LEARNING PROBLEM

\[\left\| \frac{\partial e(t-q)}{\partial e(t)} \right\| = \left\| \prod_{m=1}^{q} WF'(Net(t-m)) \right\| \leq \left(\left\| W \right\| \max_{Net} \left\{ \left\| F'(Net) \right\| \right\} \right)^q \]

COMPARE: HOCHREITER & BENGIO & FRASCONI & SCHMIDHUBER, 2001

http://www.idsia.ch/~juergen/fundamentaldeeplearningproblem.html
Schmidhuber 1991: first very deep learner. Unsupervised pretraining for Hierarchical Temporal Memory:
stack of RNN → history compression → speed up supervised learning. Compare feedforward NN case:
AutoEncoder stacks (Ballard 1987) and Deep Belief NNs (Hinton et al 2006)

http://www.idsia.ch/~juergen/firstdeplearner.html
1997-2009. Since 2015 on your phone! Google, Microsoft, IBM, others, all use LSTM now
Today’s LSTM RNNs shaped by:

Ex-PhD students (TUM & IDSIA)
Sepp Hochreiter (PhD 1999)
Felix Gers (PhD 2001, e.g., gated recurrent units or forget gates)
Alex Graves (PhD 2008)
Daan Wierstra (PhD 2010)
Justin Bayer (2009), others

Postdocs at IDSIA (2000s)
Fred Cummins, Santiago Fernandez, Faustino Gomez, …
LSTM: First RNN to win contests: 3 ICDAR 2009 connected handwriting competitions

Connectionist Temporal Classification (CTC): Graves, Fernandez, Gomez, Schmidhuber ICML 2006

\[O^{ML}(S) = - \sum_{(x,z) \in S} \ln(p(z|x)) \]

http://www.idsia.ch/~juergen/handwriting.html
LSTM for speech: 2003 as good as HMMs, 2007: LSTM stack gets best results on keyword spotting in a large corpus (vs HMMs). Today: speech and NLP conferences are full of LSTM …
A dozen of the many 2014/2015 benchmark records with LSTM RNNs / CTC, often at major IT companies:

1. Large vocabulary speech recognition (Sak et al., Google, Interspeech 2014)
2. English to French translation (Sutskever et al., Google, NIPS 2014)
3. CTC RNNs break Switchboard record (Hannun et al., Baidu, 2014)
5. Prosody contour prediction (Fernandez et al., IBM, Interspeech 2014)
6. Google Voice improved by 49% (Sak et al, 2015, now for >1 billion users)
7. Syntactic parsing for NLP (Vinyals et al., Google, 2014-15)
8. Photo-real talking heads (Soong and Wang, Microsoft, ICASSP 2015)
9. Social signal classification (Brueckner & Schulter, ICASSP 2014)
10. Image caption generation (Vinyals et al., Google, 2014)
11. Keyword spotting (Chen et al., Google, ICASSP 2015)
12. Video to textual description (Donahue et al., 2014; Li Yao et al., 2015)
2005: Reinforcement-Learning or Evolving RNNs with Fast Weights

Robot learns to balance 1 or 2 poles through 3D joint

Gomez & Schmidhuber. Co-evolving recurrent neurons learn deep memory POMDPs. GECCO 2005

http://www.idsia.ch/~juergen/evolution.html
Reinforcement Learning Robot
Using LSTM in POMDPs

Bakker, Zhumatiy, Gruener, Schmidhuber, IROS 2003

Robot learns to memorize important bit of information
1993: Gradient-based meta-RNNs that can learn to run their own weight change algorithm: J. Schmidhuber. A self-referential weight matrix. ICANN 1993

This was before LSTM. In 2001, however, Hochreiter taught a meta-LSTM to learn a learning algorithm for quadratic functions that was faster than backprop

J. Schmidhuber. Reducing the ratio between learning complexity and number of time-varying variables in fully recurrent nets. ICANN 1993
IQ Test

2, 4, 6, 8, … what’s next?
IQ Test

2,4,6,8,… what’s next?

Answer: 34

Because n-th number is
$n^4-10n^3+35n^2-48n+24$

instead of $2n$
Regular, predictable financial time series? Sometimes:

Finance data with less obvious regularities? Can LSTM RNNs discover those?
Time series prediction – 4 or 5 superimposed sines out of phase – LSTM finds simple rule.

Humans find that difficult …
No memory needed for MNIST: 60,000 digits for training, 10,000 for testing, 7 layer MLP; >12m weights; train 200 days on CPU = 5 on GPU; >10^{15} weight updates, 5B/s, 2010: new world record 0.35% (Ciresan et al.) Since then: decline of unsupervised pre-training for FNNs, like in the 1990s for RNNs

Two old ideas: backprop (3-5 decades old), training pattern deformations (Baird, 1990, 2 decades old)
1990s: Trend from unsupervised to supervised RNNs

2000s: Trend from unsupervised to supervised FNNs

Both trends driven by our team
Our Deep GPU-Based Max-Pooling CNNs (IJCAI 2011)

e.g., http://www.idsia.ch/~juergen/deeplearning.html

http://www.idsia.ch/~juergen/handwriting.html
Ensembles of deep sparse CNNs + Max-Pooling + MLP on top: 1 year on CPU = 1 week on GPU.
2011-2012: first human-competitive MNIST result: 0.2% (after almost a decade of ~0.4%).

Ciresan, Meier, Masci, Gambardella, Schmidhuber, IJCAI 2011, IJCNN 2011, CVPR 2012
Traffic Sign Contest, Silicon Valley, 2011:
Our GPU-MPCNN was twice better than humans
3 times better than closest artificial competitor
6 times better than best non-neural thing: FIRST

SUPERHUMAN VISUAL
PATTERN RECOGNITION

http://www.idsia.ch/~juergen/superhumanpatternrecognition.html
IJCNN 2011 traffic sign recognition competition, Silicon Valley, 2011:
1ST (0.56\% ERROR)
2ND HUMANS (1.16\%)
3RD (1.69\%)
4TH (3.86\%)
Ciresan, Meier, Masci, Schmidhuber, IJCNN 2011, Neural Networks, 2012

Very similar GPU-MPCNNs later used for ImageNet (Krizhevsky & Hinton 2012, Zeiler & Fergus 2013, …)
2014: 20 year anniversary of self-driving cars in highway traffic

1995: Munich to Denmark and back on public Autobahns, up to 180 km/h, no GPS, passing other cars

Ernst Dickmanns, the robot car pioneer, Munich, 80s

http://www.idsia.ch/~juergen/robotcars.html
Our Deep Learner Won ISBI 2012 Brain Image Segmentation Contest:
First feedforward Deep Learner to win an image segmentation competition (but compare deep recurrent LSTM 2009: segmentation & classification)

http://www.idsia.ch/~juergen/deeplearningwinsbraincontest.html
DEEP LEARNING WINS
MICCAI 2013 GRAND CHALLENGE
ON MITOSIS DETECTION

http://www.idsia.ch/~juergen/deeplearningwinsMICCAIgrandchallenge.html
Thanks to Dan Ciresan & Alessandro Giusti
Image caption generation with LSTM RNNs translating internal representations of CNNs (Vinyals, Toshev, Bengio, Erhan, Google, 2014)
Highway Networks: feedforward LSTM with forget gates (e.g., Gers et al, 2000); train NNs with hundreds of layers

Very similar: feedforward LSTM without gates, used by Microsoft to win ImageNet (150 layers): $y = g(f(x) + x)$
MICROSOFT WINS IMAGENET THROUGH FEEDFORWARD LSTM WITHOUT GATES

LSTM concepts keep invading CNN territory

JS 2015

http://people.idsia.ch/~juergen/microsoft-wins-Imagenet-through-feedforward-LSTM-without-gates.html
Best Segmentation with PyramMiD-LSTM (NIPS 2015)

Stollenga, Byeon, Liwicki, Schmidhuber
http://people.idsia.ch/~juergen/brainstorm.html
Open Source Neural Networks Library by my PhD students K Greff and R Srivastava
LSTM learns knot-tying tasklets:
Mayr Gomez Wierstra Nagy Knoll
Schmidhuber, IROS’06
Some of Our Deep Learning “Firsts”

• First very deep learner (1991-1993) – tasks with >1000 computational stages
• First neural learner of sequential attention (1991)
• First self-referential RNNs that run their own learning algorithm (1993)
• First very deep supervised learner (LSTM, 1995-2009 and beyond)
• First recurrent NN to win international contests (2009)
• First NN to win connected handwriting contests (2009)
• First outperformance of humans in a computer vision contest (2011)
• First deep NN to win Chinese handwriting contest (2011)
• European handwriting (MNIST): old error record almost halved (2011)
• First deep NN to win image segmentation contest (2012)
• First deep NN to win object detection contest (2012)
• First deep NN to win medical imaging contest (2012)
• First RNN controller that reinforcement learns from raw video (2013) …
Finds Complex Neural Controllers with a Million Weights – RAW VIDEO INPUT!
Faustino Gomez, Jan Koutnik, Giuseppe Cuccu, J. Schmidhuber, GECCO 2013
Octopus-arm control: 82 in, 32 out, 3'680 weights, only 20 DCT coefficients, compression 1:184

Octopus-arm with low-level vision, 32x32 in, 32 out, 33'824 weights, 160 DCT, compression 1:211

TORCS driving video game, low-level vision, 64x64 in, 3 out, 1'115'139 weights, 200 DCT, compression 1:5575

http://www.idsia.ch/~juergen/compressednetworksearch.html
Google bought DeepMind for 600 M to do Machine Learning (ML) & AI. First DeepMinders with PhDs in ML & AI: my lab’s ex-PhD students Legg (co-founder) & Wierstra (#4). Background of the other co-founders: neurobiology & video games (Hassabis) & business (Suleyman).

DeepMind hired 2 more PhD students of mine: Graves (scientifically very visible) & Schaul (on our 2010 Atari-Go paper).
The first 4 members of DeepMind include 2 former PhD students of my lab. But I am not happy with their Nature paper, although 3 of its authors were trained here, because others at IDSIA published Reinforcement Learning with high-dimensional video input earlier.
No new NN winter, because physics dictates that future hardware will be 3D-RNN-like: many processors connected by many short and few long wires

http://www.idsia.ch/~juergen/rnn.html
IJCNN 1990, NIPS 1991: Reinforcement Learning with Recurrent Controller & Recurrent World Model

A bit like AIXI, but with feasible local search
IJNS 1991: R-Learning of Visual Attention on 1,000,000 times slower computers
http://people.idsia.ch/~juergen/attentive.html

Fig. 1. A typical visual scene. The diameters of the receptive fields of the retina’s input units are indicated by circles.

Fig. 2. An artificial fovea provides inputs for a control network which is able to move the fovea around. A model network is trained to predict the next input from the current input and the current controller action.
1991: current goal=extra fixed input
2015: all of this is coming back!

Fig. 1. Trajectories: Examples of fovea trajectories leading from various start positions to different targets. The first target is near the left corner of the triangle. The second target is near the lower corner.
RoboCup World Champion 2004, Fastest League, 5m/s

Lookahead expectation & planning with neural networks (Schmidhuber, IEEE INNS 1990): successfully used for RoboCup by Alexander Gloye-Förster (went to IDSIA)

http://www.idsia.ch/~juergen/learningrobots.html

Alex @ IDSIA, led FU Berlin’s RoboCup World Champion Team 2004
On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning RNN-based Controllers (RNNAIs) and Recurrent Neural World Models

http://arxiv.org/abs/1511.09249
Maximize Future Fun (Data X, O(t)) ~
∂CompResources(X, O(t))/∂t

Formal theory of fun & novelty & surprise & attention & creativity & curiosity & art & science & humor

http://www.idsia.ch/~juergen/creativity.html
PowerPlay not only solves but also continually invents problems at the borderline between what's known and unknown - training an increasingly general problem solver by continually searching for the simplest still unsolvable problem.
Success-story algorithm for self-modifying code (since 1994)

R(t): Reward until time t. Stack of past check points \(v_1v_2v_3 \ldots\) with self-mods in between. SSA undoes selfmods after \(v_i\) that are not followed by long-term reward acceleration up until t (now):

\[
\frac{R(t)}{t} < \frac{[R(t)-R(v_1)]}{(t-v_1)} < \frac{[R(t)-R(v_2)]}{(t-v_2)} < \ldots
\]

E.g., Schmidhuber, Zhao, Wiering: MLJ 28:105-130, 1997
Internal State

<table>
<thead>
<tr>
<th>Addresses</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>5321</td>
<td>-44</td>
<td>810</td>
<td>-2</td>
<td>-3322</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>-189</td>
<td>2</td>
<td>237</td>
<td>6</td>
</tr>
</tbody>
</table>

Instruction Pointer

<table>
<thead>
<tr>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
</tr>
</tbody>
</table>

Perceptions

External Environment

Variable Probability Distributions
Addresses and Contents

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5321</td>
</tr>
<tr>
<td>1</td>
<td>-44</td>
</tr>
<tr>
<td>2</td>
<td>810</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>-3322</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>-189</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>237</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

Instruction Pointer Parameters

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = ADD(a1, a2, a3)</td>
<td>0.001 0.0014 0.9 0.24 0.001 0.0014 0.9 0.9</td>
</tr>
<tr>
<td>1 = MUL(a1, a2, a3)</td>
<td>0.001 0.0014 0.04 0.01 0.001 0.0014 0.04 0.04</td>
</tr>
<tr>
<td>2 = SUB(a1, a2, a3)</td>
<td>0.99 0.0014 0.01 0.01 0.001 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>3 = JMPIEQ(a1, a2, a3)</td>
<td>0.001 0.99 0.01 0.01 0.001 0.99 0.01 0.01</td>
</tr>
<tr>
<td>4 = MOVEAGENT(a1, a2)</td>
<td>0.001 0.0014 0.01 0.7 0.001 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>5 = InvokeSSA()</td>
<td>0.004 0.0014 0.01 0.01 0.004 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>6 = INCPROB(a1, a2)</td>
<td>0.001 0.0014 0.01 0.01 0.001 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>7 = DECROB(a1, a2)</td>
<td>0.001 0.0014 0.01 0.01 0.001 0.0014 0.01 0.01</td>
</tr>
</tbody>
</table>

External Environment

The diagram illustrates the flow of instructions and parameters, with the instruction pointer leading to the perception and the external environment.
<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ADD(a1, a2, a3)</td>
</tr>
<tr>
<td>1</td>
<td>MUL(a1, a2, a3)</td>
</tr>
<tr>
<td>2</td>
<td>SUB(a1, a2, a3)</td>
</tr>
<tr>
<td>3</td>
<td>JMLEQ(a1, a2, a3)</td>
</tr>
<tr>
<td>4</td>
<td>MOVEAGENT(a1, a2)</td>
</tr>
<tr>
<td>5</td>
<td>InvokeSSA()</td>
</tr>
<tr>
<td>6</td>
<td>INCPROB(a1, a2)</td>
</tr>
<tr>
<td>7</td>
<td>DECPROB(a1, a2)</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
1997: Lifelong meta-learning with self-modifying policies and success-story algorithm: 2 agents, 2 doors, 2 keys. 1st southeast wins 5, the other 3. Through recursive self-modifications only: from 300,000 steps per trial down to 5,000.

Time-optimal incremental search and algorithmic transfer learning in program space

Branches of search tree are program prefixes

Node-oriented backtracking restores partially solved task sets & modified memory components on error or when $\sum t > PT$
61 primitive instructions operating on stack-like and other internal data structures. For example:

- `push1()`, `not(x)`, `inc(x)`, `add(x,y)`, `div(x,y)`, `or(x,y)`, `exch_stack(m,n)`, `push_prog(n)`, `movstring(a,b,n)`, `delete(a,n)`, `find(x)`, `define function(m,n)`, `callfun(fn)`, `jumpif(val,address)`, `quote()`, `unquote()`, `boost_probability(n,val)`

Programs are integer sequences; data and code look the same; makes functional programming easy.
Towers of Hanoi: incremental solutions

- +1ms, \(n=1 \): \((\text{movdisk})\)
- 1 day, \(n=1,2 \): \((c4 \ c3 \ \text{cpn} \ c4 \ \text{by2} \ c3 \ \text{by2} \ \text{exec})\)
- 3 days, \(n=1,2,3 \): \((c3 \ \text{dec} \ \text{boostq} \ \text{defnp} \ c4 \ \text{calltp} \ c3 \ c5 \ \text{calltp} \ \text{endnp})\)
- 4 days: \(n=4, n=5, \ldots, n=30 \): by same double-recursive program
- Profits from 30 earlier context-free language tasks (\(1^{n}2^{n}\)): \textit{transfer learning}
- 93,994,568,009 prefixes tested
- 345,450,362,522 instructions
- 678,634,413,962 time steps
- longest single run: \textbf{33 billion} steps (5% of total time)! Much deeper than recent memory-based “deep learners” …
- top stack size for restoring storage: \(< 20,000\)
What the found **Towers of Hanoi** solver does:

- \((c3 \text{ dec boostq defnp c4 calltp c3 c5 calltp endnp})\)
- Prefix increases \(P\) of double-recursive procedure:

 \[
 \text{Hanoi(Source, Aux, Dest, n): IF n=0 exit; ELSE BEGIN} \\
 \text{Hanoi(Source, Dest, Aux, n-1); move top disk from Aux to Dest;} \\
 \text{Hanoi(Aux, Source, Dest, n-1); END}
 \]
- Prefix boosts instructions of previously frozen program, which happens to be a previously learned solver of a context-free language \((1^n2^n)\). This rewrites search procedure itself: **Benefits of metalearning!**
- Prefix probability 0.003; suffix probability \(3 \times 10^{-8}\); total probability \(9 \times 10^{-11}\)
- Suffix probability without prefix execution: \(4 \times 10^{-14}\)
- That is, Hanoi does profit from \(1^n2^n\) experience and incremental learning (OOPS excels at algorithmic transfer learning): speedup factor 1000
Gödel Machine (2003): agent-controlling program that speaks about itself, ready to rewrite itself in arbitrary fashion once it has found a proof that the rewrite is *useful*, given a user-defined utility function.

Theoretically optimal self-improver!
Initialize Gödel M. by asymptotically fastest method for all well-defined problems.

Given \(f:X \rightarrow Y \) and \(x \in X \), search proofs to find program \(q \) that provably computes \(f(z) \) for all \(z \in X \) within time bound \(t_q(z) \); spend most time on \(f(x) \)-computing \(q \) with best current bound

\[
n^3 + 10^{10000} = n^3 + O(1)
\]

As fast as fastest \(f \)-computer, save for factor \(1 + \varepsilon \) and \(f \)-specific const.

Independent of \(x \)!
General AI becoming a formal science

Old AI

Heuristics come and go

New AI

Theorems are for eternity
True Artificial Intelligence Will Change Everything

Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen
NNAISENSE
Next: build small animal-like AI that learns to think and plan hierarchically like a crow or a capuchin monkey.

Evolution needed billions of years for this, then only a few more millions for humans.
The Dawn of AI

neural networks-based artificial intelligence