
Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

NNAISENSE

Continual Lifelong
Meta-Learning &
Artificial Curiosity

Jürgen Schmidhuber
You_again Shmidhoobuh

Continual Learning (Mark Ring, 1994-)
Meta-Learning (JS, 1987-)
Artificial Curiosity (JS, 1990-)

“True” Learning to
Learn (L2L) is not just

transfer learning!
Even a simple

feedforward NN can
transfer-learn to learn

new images faster
through pre-training
on other image sets

True L2L is not just
about learning to
adjust a few hyper-
parameters such as
mutation rates in
evolution strategies
(e.g., Rechenberg &
Schwefel, 1960s)

Radical L2L is about
encoding the initial

learning algorithm in
a universal language

(e.g., on an RNN),
with primitives that
allow to modify the

code itself in arbitrary
computable fashion

Then surround this
self-referential, self-
modifying code by a
recursive framework
that ensures that
only “useful” self-
modifications are
executed or survive
(Recursive Self-
Improvement)

Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

NNAISENSE
1987: Diploma thesis on meta-learning how to learn how to learn & recursive self-improvement

Lifelong R-Learning
to Learn Learning
Algorithms (1994)

J. Schmidhuber. On
learning how to learn
learning strategies.
TR FKI-198-94, 1994.

Success-story algorithm (SSA) for
self-modifying code (since 1994)

R(t)/t <
[R(t)-R(v1)] / (t-v1) <
[R(t)-R(v2)] / (t-v2) <…

R(t): Reward until time t. Stack of
past check points v1v2v3 … with
self-mods in between. SSA
undoes selfmods after vi that are
not followed by long-term reward
acceleration up until t (now):

1997: Lifelong
meta-RL with self-
modifying policies
and success-story
algorithm: 2
agents, 2 doors, 2
keys. 1st
southeast wins 5,
the other 3.
Through recursive
self-modifications
only: from
300,000 steps per
trial down to
5,000.

Universal Search: run all programs
until one of them finds and verifies

a solution, where a program of k
bits gets 2-k of total search time

O(n3)10100=
O(n3)

Fastest solver for given problem
class, save for constant factor

Leonid
Levin
1973

Asymptotically optimal curriculum
learner: Optimal Ordered Problem
Solver OOPS (Schmidhuber,
MLJ, 2004, extending Levin’s
universal search, 1973)

Time-optimal incremental search
and algorithmic transfer learning
in program space

Branches of search tree are
program prefixes

Node-oriented backtracking
restores partially solved task sets
& modified memory components
on error or when ∑ t > PT

61 primitive instructions operating
on stack-like and other internal
data structures. For example:

push1(), not(x), inc(x), add(x,y),
div(x,y), or(x,y), exch_stack(m,n),
push_prog(n), movstring(a,b,n),
delete(a,n), find(x), define
function(m,n), callfun(fn),
jumpif(val,address), quote(),
unquote(),
boost_probability(n,val) ….

Programs are integer sequences;
data and code look the same;
makes functional programming
easy

Towers of Hanoi: incremental solutions
•  +1ms, n=1: (movdisk)
•  1 day, n=1,2: (c4 c3 cpn c4 by2 c3 by2 exec)
•  3 days, n=1,2,3: (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)
•  4 days: n=4, n=5, …, n=30: by same double-recursive program
•  Profits from 30 earlier context-free language tasks (1n2n): transfer learning
•  93,994,568,009 prefixes tested
•  345,450,362,522 instructions
•  678,634,413,962 time steps
•  longest single run: 33 billion steps (5% of total time)! Much deeper than

recent memory-based “deep learners” …
•  top stack size for restoring storage: < 20,000

What the found Towers of Hanoi solver does:
•  (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)
•  Prefix increases P of double-recursive procedure:

Hanoi(Source,Aux,Dest,n): IF n=0 exit; ELSE BEGIN
Hanoi(Source,Dest,Aux,n-1); move top disk from Aux to Dest;
Hanoi(Aux,Source,Dest,n-1); END

•  Prefix boosts instructions of previoulsy frozen program, which happens to
be a previously learned solver of a context-free language (1n2n). This
rewrites search procedure itself: Benefits of metalearning!

•  Prefix probability 0.003; suffix probability 3*10-8; total probability 9*10-11

•  Suffix probability without prefix execution: 4*10-14

•  That is, Hanoi does profit from 1n2n experience and incremental learning
(OOPS excels at algorithmic transfer learning): speedup factor 1000

Gödel Machine (2003):
agent-controlling program
that speaks about itself,
ready to rewrite itself in
arbitrary fashion once it
has found a proof that the
rewrite is useful, given a
user-defined utility function

Theoretically optimal
self-improver!

goedelmachine.com

Initialize Gödel Machine
by Marcus Hutter‘s

asymptotically fastest
method for all well-

defined problems

Given f:X→Y and x∈X, search proofs to find
program q that provably computes f(z) for all

z∈X within time bound tq(z); spend most time
on f(x)-computing q with best current bound

IDSIA
2002

on my
SNF

grant

n3+101000=n3+O(1)

As fast as fastest
f-computer, save
for factor 1+ε and
f-specific const.
independent of x!

Separation of Storage and Control (Zuse 1936) for NNs: End-to-End-
Differentiable Neural Stack Machines (Das, Giles, Mike Mozer, 1992),

NTM & DNC (Graves et al 2014-16) & Memory Nets (Weston et al 2014)

Neural stack machine
of 1992-1993

http://www.idsia.ch/~juergen/rnn.html

Looks a bit like supervised L2L but is not yet: Separation of Storage and
Control for NNs: End-to-End Differentiable Fast Weights (Schmidhuber,
1992) extending v.d. Malsburg’s non-differentiable dynamic links (1981)

1992-1993:
Gradient-based
meta-RNNs that can
learn to run their own
weight change
algorithm, e.g.: J.
Schmidhuber. A self-
referential weight
matrix. ICANN 1993.
Based on TR at U
Colorado, 1992.

An RNN, but no LSTM yet. In 2001, however, Sepp Hochreiter taught a meta-LSTM
to learn a learning algorithm for quadratic functions that was faster than backprop

1993: More elegant
Hebb-inspired

addressing to go
from (#hidden) to

(#hidden)2 temporal
variables: gradient-
based RNN learns
to control internal

end-to-end
differentiable
spotlights of

attention for fast
differentiable

memory rewrites –
again fast weights

Schmidhuber,
ICANN 1993:
Reducing the ratio
between learning
complexity and
number of time-
varying variables in
fully recurrent nets.

Similar NIPS 2016
paper by Ba et al.
See I. Schlag at
NIPS Metalearning
Symposium 2017!

slow network

fast network

New fast
weight
addressing
scheme:
Imanol
Schlag @
NIPS Meta-
learning
Workshop
2017

2005:
Reinforcement-

Learning or
Evolving RNNs

with Fast Weights

Robot learns to
balance 1 or 2 poles
through 3D joint

http://www.idsia.ch/~juergen/evolution.html

Gomez & Schmidhuber:
Co-evolving recurrent
neurons learn deep
memory POMDPs.
GECCO 2005

1.  Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: The meta-meta-... hook. Diploma thesis, TUM, 1987. (First concrete RSI.)

2.  Schmidhuber. A self-referential weight matrix. ICANN 1993. Based on TR CU-
CS-627-92, Univ. Colorado, 1992. (Supervised gradient-based RSI.)

3.  Schmidhuber. On learning how to learn learning strategies. TR FKI-198-94, 1994. (RL)
4.  Schmidhuber and J. Zhao and M. Wiering. Simple principles of metalearning. TR

IDSIA-69-96, 1996. (Meta-RL and RSI based on 3.)
5.  Schmidhuber, J. Zhao, N. Schraudolph. Reinforcement learning with self-modifying

policies. In Learning to learn, Kluwer, pages 293-309, 1997. (Meta-RL based on 3.)
6.  Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story

algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning
28:105-130, 1997. (Partially based on 3.)

7.  Schmidhuber. Gödel machines: Fully Self-Referential Optimal Universal Self-Improvers.
In Artificial General Intelligence, p. 119-226, 2006. (Based on TR of 2003.)

8.  T. Schaul and Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.
9.  More under http://people.idsia.ch/~juergen/metalearner.html

IJCNN 1990, NIPS 1991: Reinforcement Learning &
Planning with RNN Controller & RNN World Model

A bit like
universal
AIXI, but
with
feasible
local
search

My old drawings
from: Making the
World Differentiable:
On Using Self-
Supervised Fully
Recurrent Neural
Networks for
Dynamic
Reinforcement
Learning and
Planning in Non-
Stationary
Environments. J.
Schmidhuber, 1990.

From: Making the
World Differentiable:
On Using Self-
Supervised Fully
Recurrent Neural
Networks for
Dynamic
Reinforcement
Learning and
Planning in Non-
Stationary
Environments. J.
Schmidhuber, 1990.

IJNS 1991: R-Learning of Visual Attention
on 100,000 times slower computers
http://people.idsia.ch/~juergen/attentive.html

1991: current goal=extra fixed input
2018: all of this is coming back!

RoboCup World Champion 2004, Fastest League, 5m/s

Alex @ IDSIA, led
FU Berlin’s RoboCup
World Champion
Team 2004

Lookahead expectation & planning with neural networks
(Schmidhuber, IEEE INNS 1990): successfully used for

RoboCup by Alexander Gloye-Förster (went to IDSIA)
http://www.idsia.ch/~juergen/learningrobots.html

World Models @ NIPS 2018
David Ha, J. Schmidhuber

Train agent inside of its own
hallucinated dream generated by
its world model, and transfer policy
back into actual environment

Made possible by David Ha (Google)

RNNAIssance
2014-2015

On Learning to
Think: Algorithmic

Information
Theory for Novel
Combinations of

Reinforcement
Learning RNN-

based Controllers
(RNNAIs) and

Recurrent Neural
World Models

http://arxiv.org/abs/1511.09249

How to motivate the controller
to improve the world model?

 1990: Active Unsupervised Minimax for RL
Adversarial Reinforcement Learning (RL) for agents with

Artificial Curiosity (1990): A reward-maximising neural control
network C learns to generate action sequences or experiments in an

environment. It gets intrinsic reward in proportion to the prediction
errors of a separate neural network called the world model M. M

learns to predict future inputs, given past inputs and actions. Again,
in the absence of external reward, C is maximising exactly the same
value function that M is minimising. This motivates C to invent and
generate experiments that lead to "novel" situations where M does

not yet know how to predict well [plan1, int1].

Making the World
Differentiable: On
Using Self-
Supervised Fully
Recurrent Neural
Networks for
Dynamic
Reinforcement
Learning and
Planning in Non-
Stationary
Environments. J.
Schmidhuber, 1990.

[plan1] J. Schmidhuber. Making the world differentiable: On using fully recurrent
self-supervised neural networks for dynamic reinforcement learning and planning in
non-stationary environments. TR FKI-126-90, TU Munich, November 1990.
http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf

[int1] J. Schmidhuber. A possibility for implementing curiosity and boredom in
model-building neural controllers. In Proc. SAB'91, pages 222-227. MIT Press/
Bradford Books, 1991. Based on [plan1].

More than 40 follow-up papers on artificial curiosity:
http://people.idsia.ch/~juergen/interest.html
http://people.idsia.ch/~juergen/creativity.html

 1991: Predictability Minimization (PM): 2 unsupervised
nets fight minimax game to model given data distribution

Encoder maximizes
objective minimized
by predictor. Saddle
point = ideal factorial
code: P(pattern) =
P(c1)P(c2)…P(cn)

P(c3 l c1,c2)

 1996: PM applied to images: learns orientation-sensitive
bar detectors, on-center-off-surround detectors, etc

PM v GAN: latent space v original data space

TRAINED

DATA

CODE

GAN

DATA

CODE

PM Standard decoder

(often omitted)

Standard encoder

(InfoGAN)
ENCODER

MINIMAX

TRAINED

MINIMAX

DECODER

 1997-2002: More Sophisticated Unsupervised Minimax for RL:
What’s interesting? Exploring the predictable

Two dueling, reward-maximizing modules (both general computers) called left
brain and right brain collectively design an experiment: a (probabilistic)

program that defines how to execute an action sequence in the environment,
and how to compute the final experimental outcome through an instruction

sequence implementing a computable function (e.g., a binary yes/no
classification) of the observation sequence triggered by the experiment. Both

brains can predict experimental outcomes before they are known. If their
predictions or hypotheses differ, after having generated and executed the
experiment, the surprised loser pays an intrinsic reward to the winner in a

zero sum game. Each brain is maximising the value function minimised by the
other. This may also accelerate the intake of external reward [int5-7].

1997-2002: artificial
curiosity through active
unsupervised minimax
accelerates real reward

Key publications on artificial
curiosity: 1990, 1991, 1995,
1997, 2002, 2006

[pm1] J. Schmidhuber. Learning factorial codes by predictability minimization. Neural
Computation, 4(6):863-879, 1992. Based on TR CU-CS-565-91, Univ. Colorado at Boulder,
1991.
[pm2] J. Schmidhuber, M. Eldracher, B. Foltin. Semilinear predictability minimzation
produces well-known feature detectors. Neural Computation, 8(4):773-786, 1996.
[int5] J. Schmidhuber. What's interesting? TR IDSIA-35-97, IDSIA, July 1997. (Co-evolution
of unsupervised RL adversaries in a zero sum game for exploration. See also [int3].)
[int6] J . Schmidhuber. Artificial Curiosity Based on Discovering Novel Algorithmic
Predictability Through Coevolution. In P. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao,
Z. Zalzala, eds., Congress on Evolutionary Computation, p. 1612-1618, IEEE Press,
Piscataway, NJ, 1999. Based on [int1].
[int7] J. Schmidhuber. Exploring the Predictable. In Ghosh, S. Tsutsui, eds., Advances in
Evolutionary Computing, p. 579-612, Springer, 2002. Based on [int1].

More on Predictability Minimization (PM): http://people.idsia.ch/~juergen/ica.html
More on artificial curiosity: http://people.idsia.ch/~juergen/interest.html
http://people.idsia.ch/~juergen/creativity.html

My formal theory of fun & novelty &
surprise & attention & creativity &
curiosity & art & science & humor

Maximize Future Fun(Data X,O(t))~
∂CompResources(X,O(t))/∂t

E.g., Connection Science 18(2):173-187, 2006
IEEE Transactions AMD 2(3):230-247, 2010
http://www.idsia.ch/~juergen/creativity.html

PowerPlay not only solves but also continually
invents problems at the borderline between what's

known and unknown - training an increasingly
general problem solver by continually searching for

the simplest still unsolvable problem

https://www.youtube.com/watch?v=OTqdXbTEZpE
Continual curiosity-driven skill
acquisition from high-dimensional
video inputs for humanoid robots.
Kompella, Stollenga, Luciw,
Schmidhuber. Artificial Intelligence,
2015

w. M Stollenga, K Frank, J Leitner, L Pape, A Foerster, J Koutnik

DRAWBACKS
OF CURIOSITY

now talking to investors

neural networks-based
artificial intelligence

http://people.idsia.ch/~juergen/erc2017.html www.nnaisense.com

