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Continual Learning (Mark Ring, 1994-)  
Meta-Learning (JS, 1987-) 
Artificial Curiosity (JS, 1990-) 



“True” Learning to 
Learn (L2L) is not just 

transfer learning! 
Even a simple  

feedforward NN can 
transfer-learn to learn 

new images faster 
through pre-training 
on other image sets 

True L2L is not just 
about learning to 
adjust a few hyper-
parameters such as 
mutation rates in 
evolution strategies 
(e.g., Rechenberg & 
Schwefel, 1960s) 



Radical L2L is about 
encoding the initial 

learning algorithm  in 
a universal language 

(e.g., on an RNN), 
with primitives that 
allow to modify the 

code itself in arbitrary 
computable fashion 

Then surround this 
self-referential, self-
modifying code by a 
recursive framework 
that ensures that 
only “useful” self-
modifications are 
executed or survive 
(Recursive Self-
Improvement) 
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NNAISENSE 
1987: Diploma thesis on meta-learning how to learn how to learn & recursive self-improvement 

Lifelong R-Learning 
to Learn Learning 
Algorithms (1994) 















J. Schmidhuber. On 
learning how to learn 
learning strategies. 
TR FKI-198-94, 1994. 

Success-story algorithm (SSA) for 
self-modifying code (since 1994) 

R(t)/t <                  
[R(t)-R(v1)] / (t-v1) <              
[R(t)-R(v2)] / (t-v2) <… 

R(t): Reward until time t. Stack of 
past check points v1v2v3 … with 
self-mods in between. SSA 
undoes selfmods after vi that are 
not followed by long-term reward 
acceleration up until t (now): 



1997: Lifelong 
meta-RL with self-
modifying policies 
and success-story 
algorithm: 2 
agents, 2 doors, 2 
keys. 1st 
southeast wins 5, 
the other 3. 
Through recursive 
self-modifications 
only: from 
300,000 steps per 
trial down to 
5,000. 



Universal Search: run all programs 
until one of them finds and verifies 

a solution, where a program of k 
bits gets 2-k of total search time 

O(n3)10100=
O(n3) 

Fastest solver for given problem 
class, save for constant factor  

Leonid 
Levin 
1973 



Asymptotically optimal curriculum 
learner: Optimal Ordered Problem 
Solver OOPS (Schmidhuber, 
MLJ, 2004, extending Levin’s 
universal search, 1973)  
 
Time-optimal incremental search 
and algorithmic transfer learning 
in program space 
 
Branches of search tree are 
program prefixes 
 
Node-oriented backtracking  
restores partially solved task sets 
& modified memory components 
on error or when ∑ t > PT 



61 primitive instructions operating 
on stack-like and other internal 
data structures. For example:  
 
push1(), not(x), inc(x), add(x,y), 
div(x,y), or(x,y), exch_stack(m,n), 
push_prog(n), movstring(a,b,n), 
delete(a,n), find(x), define 
function(m,n), callfun(fn), 
jumpif(val,address), quote(), 
unquote(), 
boost_probability(n,val) …. 
 
Programs are integer sequences; 
data and code look the same; 
makes functional programming 
easy 



Towers of Hanoi: incremental solutions 
•  +1ms,   n=1:       (movdisk) 
•  1 day,   n=1,2:    (c4 c3 cpn c4 by2 c3 by2 exec) 
•  3 days, n=1,2,3: (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp) 
•  4 days: n=4, n=5, …, n=30:  by same double-recursive program 
•  Profits from 30 earlier context-free language tasks (1n2n): transfer learning 
•  93,994,568,009 prefixes tested 
•  345,450,362,522 instructions  
•  678,634,413,962 time steps 
•  longest single run: 33 billion steps (5% of total time)! Much deeper than 

recent memory-based “deep learners” … 
•  top stack size for restoring storage: < 20,000 



What the found Towers of Hanoi solver does: 
•  (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)     
•  Prefix increases P of double-recursive procedure: 

Hanoi(Source,Aux,Dest,n): IF n=0 exit;  ELSE BEGIN 
Hanoi(Source,Dest,Aux,n-1); move top disk from Aux to Dest; 
Hanoi(Aux,Source,Dest,n-1); END            

•  Prefix boosts instructions of previoulsy frozen program, which happens to 
be a previously learned solver of a context-free language (1n2n). This 
rewrites search procedure itself: Benefits of metalearning! 

•  Prefix probability 0.003; suffix probability 3*10-8; total probability 9*10-11 

•  Suffix probability without prefix execution: 4*10-14 

•  That is, Hanoi does profit from 1n2n experience and incremental learning 
(OOPS excels at algorithmic transfer learning): speedup factor 1000 



Gödel Machine (2003): 
agent-controlling program 
that speaks about itself, 
ready to rewrite itself in 
arbitrary fashion once it 
has found a proof that the 
rewrite is useful, given a 
user-defined utility function 

Theoretically optimal  
self-improver! 

goedelmachine.com 



Initialize Gödel Machine 
by Marcus Hutter‘s 

asymptotically fastest 
method for all well-

defined problems 

Given f:X→Y and x∈X, search proofs to find 
program q that provably computes f(z) for all 

z∈X within time bound tq(z); spend most time 
on f(x)-computing q with best current bound 

IDSIA 
2002 

on my 
SNF 

grant 

n3+101000=n3+O(1)    

As fast as fastest 
f-computer, save 
for factor 1+ε and 
f-specific const. 
independent of x!  



Separation of Storage and Control (Zuse 1936) for NNs: End-to-End-
Differentiable Neural Stack Machines (Das, Giles, Mike Mozer, 1992),  

NTM & DNC (Graves et al 2014-16) & Memory Nets (Weston et al 2014)  

Neural stack machine 
of 1992-1993 



http://www.idsia.ch/~juergen/rnn.html 

Looks a bit like supervised L2L but is not yet: Separation of Storage and 
Control for NNs: End-to-End Differentiable Fast Weights (Schmidhuber, 
1992) extending v.d. Malsburg’s non-differentiable dynamic links (1981) 



1992-1993: 
Gradient-based 
meta-RNNs that can 
learn to run their own 
weight change 
algorithm, e.g.: J. 
Schmidhuber. A self-
referential weight 
matrix. ICANN 1993. 
Based on TR at U 
Colorado, 1992. 

An RNN, but no LSTM yet. In 2001, however, Sepp Hochreiter taught a meta-LSTM 
to learn a learning algorithm for quadratic functions that was faster than backprop  



1993: More elegant 
Hebb-inspired 

addressing to go 
from (#hidden) to 

(#hidden)2 temporal 
variables: gradient-
based RNN learns 
to control internal 

end-to-end 
differentiable 
spotlights of 

attention for fast 
differentiable 

memory rewrites – 
again fast weights  

Schmidhuber, 
ICANN 1993: 
Reducing the ratio 
between learning 
complexity and 
number of time-
varying variables in 
fully recurrent nets. 

Similar NIPS 2016 
paper by Ba et al. 
See I. Schlag at 
NIPS Metalearning 
Symposium 2017! 
 



slow network

fast network

New fast 
weight 
addressing 
scheme: 
Imanol 
Schlag @ 
NIPS Meta-
learning 
Workshop 
2017 
 



2005: 
Reinforcement-

Learning or 
Evolving RNNs 

with Fast Weights 

Robot learns to 
balance 1 or 2 poles 
through 3D joint 

http://www.idsia.ch/~juergen/evolution.html 

Gomez & Schmidhuber: 
Co-evolving recurrent 
neurons learn deep 
memory POMDPs. 
GECCO 2005 



1.  Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to 
learn: The meta-meta-... hook. Diploma thesis, TUM, 1987. (First concrete RSI.) 

2.  Schmidhuber. A self-referential weight matrix. ICANN 1993. Based on TR CU-
CS-627-92, Univ. Colorado, 1992. (Supervised gradient-based RSI.) 

3.  Schmidhuber. On learning how to learn learning strategies. TR FKI-198-94, 1994. (RL) 
4.  Schmidhuber and J.  Zhao and M.  Wiering. Simple principles of metalearning. TR 

IDSIA-69-96, 1996. (Meta-RL and RSI based on 3.) 
5.  Schmidhuber, J.  Zhao, N. Schraudolph. Reinforcement  learning with self-modifying 

policies. In Learning to learn, Kluwer, pages 293-309, 1997. (Meta-RL based on 3.) 
6.  Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story 

algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning 
28:105-130, 1997. (Partially based on 3.) 

7.  Schmidhuber. Gödel machines: Fully Self-Referential Optimal Universal Self-Improvers. 
In Artificial General Intelligence, p. 119-226, 2006. (Based on TR of 2003.) 

8.  T. Schaul and Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.  
9.  More under http://people.idsia.ch/~juergen/metalearner.html 



IJCNN 1990, NIPS 1991: Reinforcement Learning & 
Planning with RNN Controller & RNN World Model 

A bit like 
universal 
AIXI, but 
with 
feasible 
local 
search 



My old drawings 
from: Making the 
World Differentiable: 
On Using Self-
Supervised Fully 
Recurrent Neural 
Networks for 
Dynamic 
Reinforcement 
Learning and 
Planning in Non-
Stationary 
Environments. J. 
Schmidhuber, 1990.  



From: Making the 
World Differentiable: 
On Using Self-
Supervised Fully 
Recurrent Neural 
Networks for 
Dynamic 
Reinforcement 
Learning and 
Planning in Non-
Stationary 
Environments. J. 
Schmidhuber, 1990.  



IJNS 1991: R-Learning of Visual Attention 
on 100,000 times slower computers 
http://people.idsia.ch/~juergen/attentive.html 



1991: current goal=extra fixed input 
2018: all of this is coming back! 



RoboCup World Champion 2004, Fastest League, 5m/s 

Alex @ IDSIA, led  
FU Berlin’s RoboCup 
World Champion 
Team 2004 

Lookahead expectation & planning with neural networks 
(Schmidhuber, IEEE INNS 1990):  successfully used for 

RoboCup by Alexander Gloye-Förster (went to IDSIA) 
http://www.idsia.ch/~juergen/learningrobots.html 



World Models @  NIPS 2018 
David Ha, J. Schmidhuber 

Train agent inside of its own 
hallucinated dream generated by 
its world model, and transfer policy 
back into actual environment  

Made possible by David Ha (Google) 



RNNAIssance   
2014-2015        

On Learning to 
Think: Algorithmic 

Information 
Theory for Novel 
Combinations of 

Reinforcement 
Learning RNN-

based Controllers 
(RNNAIs) and 

Recurrent Neural 
World Models 

http://arxiv.org/abs/1511.09249 



How to motivate the controller  
to improve the world model? 





 1990: Active Unsupervised Minimax for RL 
Adversarial Reinforcement Learning (RL) for agents with 

Artificial Curiosity (1990): A reward-maximising neural control 
network C learns to generate action sequences or experiments in an 

environment. It gets intrinsic reward in proportion to the prediction 
errors of a separate neural network called the world model M. M 

learns to predict future inputs, given past inputs and actions. Again, 
in the absence of external reward, C is maximising exactly the same 
value function that M is minimising. This motivates C to invent and 
generate experiments that lead to "novel" situations where M does 

not yet know how to predict well [plan1, int1]. 



Making the World 
Differentiable: On 
Using Self-
Supervised Fully 
Recurrent Neural 
Networks for 
Dynamic 
Reinforcement 
Learning and 
Planning in Non-
Stationary 
Environments. J. 
Schmidhuber, 1990.  



[plan1] J.  Schmidhuber. Making the world differentiable: On using fully recurrent 
self-supervised neural networks for dynamic reinforcement learning and planning in 
non-stationary environments. TR FKI-126-90, TU Munich, November 1990. 
http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf 
 
[int1] J.  Schmidhuber.  A possibility for implementing curiosity and boredom in 
model-building neural controllers. In Proc. SAB'91, pages 222-227. MIT Press/
Bradford Books, 1991. Based on [plan1].  
 
More than 40 follow-up papers on artificial curiosity:  
http://people.idsia.ch/~juergen/interest.html 
http://people.idsia.ch/~juergen/creativity.html 



 1991: Predictability Minimization (PM): 2 unsupervised 
nets fight minimax game to model given data distribution  

Encoder maximizes 
objective minimized 
by predictor. Saddle 
point = ideal factorial 
code: P(pattern) = 
P(c1)P(c2)…P(cn) 

P(c3 l c1,c2) 



 1996: PM applied to images: learns orientation-sensitive 
bar detectors, on-center-off-surround detectors, etc 



PM v GAN: latent space v original data space 

TRAINED

DATA

CODE

GAN

DATA

CODE

PM Standard decoder

(often omitted)

Standard encoder

(InfoGAN)
ENCODER

MINIMAX

TRAINED

MINIMAX

DECODER



 1997-2002: More Sophisticated Unsupervised Minimax for RL:             
What’s interesting? Exploring the predictable 

Two dueling, reward-maximizing modules (both general computers) called left 
brain and right brain collectively design an experiment: a (probabilistic) 

program that defines how to execute an action sequence in the environment, 
and how to compute the final experimental outcome through an instruction 

sequence implementing a computable function (e.g., a binary yes/no 
classification) of the observation sequence triggered by the experiment. Both 

brains can predict experimental outcomes before they are known. If their 
predictions or hypotheses differ, after having generated and executed the 
experiment, the surprised loser pays an intrinsic reward to the winner in a 

zero sum game. Each brain is maximising the value function minimised by the 
other. This may also accelerate the intake of external reward [int5-7].  



1997-2002: artificial 
curiosity through active 
unsupervised minimax  
accelerates real reward 

Key publications on artificial 
curiosity: 1990, 1991, 1995, 
1997, 2002, 2006 





[pm1] J. Schmidhuber. Learning factorial codes by predictability minimization. Neural 
Computation, 4(6):863-879, 1992. Based on TR CU-CS-565-91, Univ. Colorado at Boulder, 
1991.  
[pm2] J. Schmidhuber, M. Eldracher, B. Foltin. Semilinear predictability minimzation 
produces well-known feature detectors. Neural Computation, 8(4):773-786, 1996.  
[int5] J. Schmidhuber. What's interesting? TR IDSIA-35-97, IDSIA, July 1997. (Co-evolution 
of unsupervised RL adversaries in a zero sum game for exploration. See also [int3].) 
[int6] J . Schmidhuber. Artificial Curiosity Based on Discovering Novel Algorithmic 
Predictability Through Coevolution. In P. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, 
Z. Zalzala, eds., Congress on Evolutionary Computation, p. 1612-1618, IEEE Press, 
Piscataway, NJ, 1999. Based on [int1]. 
[int7] J. Schmidhuber. Exploring the Predictable. In Ghosh, S. Tsutsui, eds., Advances in 
Evolutionary Computing, p. 579-612, Springer, 2002. Based on [int1]. 
 
More on Predictability Minimization (PM): http://people.idsia.ch/~juergen/ica.html 
More on artificial curiosity: http://people.idsia.ch/~juergen/interest.html 
http://people.idsia.ch/~juergen/creativity.html 



My formal theory of fun & novelty & 
surprise & attention & creativity & 
curiosity & art & science & humor 

Maximize Future Fun(Data X,O(t))~ 
∂CompResources(X,O(t))/∂t 

E.g., Connection Science 18(2):173-187, 2006 
IEEE Transactions AMD 2(3):230-247, 2010 
http://www.idsia.ch/~juergen/creativity.html 



PowerPlay not only solves but also continually 
invents problems at the borderline between what's 

known and unknown - training an increasingly 
general problem solver by continually searching for 

the simplest still unsolvable problem 



https://www.youtube.com/watch?v=OTqdXbTEZpE 
Continual curiosity-driven skill 
acquisition from high-dimensional 
video inputs for humanoid robots. 
Kompella, Stollenga, Luciw, 
Schmidhuber. Artificial Intelligence, 
2015 



w. M Stollenga, K Frank, J Leitner, L Pape, A Foerster, J Koutnik 



DRAWBACKS 
OF CURIOSITY 



now talking to investors 

neural networks-based 
artificial intelligence 



http://people.idsia.ch/~juergen/erc2017.html www.nnaisense.com 


