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Abstract

In general music composed by recurrent neural networks (RNNs) suffers from a lack of
global structure. Though networks can learn note-by-note transition probabilities and even
reproduce phrases, attempts at learning an entire musical form and using that knowledge
to guide composition have been unsuccessful. The reason for this failure seems to be that
RNNs cannot keep track of temporally distant events that indicate global music structure.
Long Short-Term Memory (LSTM) has succeeded in similar domains where other RNNs have
failed, such as timing & counting and CSL learning. In the current study we show that
LSTM is also a good mechanism for learning to compose music. We compare this approach
to previous attempts, with particular focus on issues of data representation. We present
experimental results showing that LSTM successfully learns a form of blues music and is able
to compose novel (and we believe pleasing) melodies in that style. Remarkably, once the
network has found the relevant structure it does not drift from it: LSTM is able to play the
blues with good timing and proper structure as long as one is willing to listen.

1 Introduction

The most straight-forward way to compose1 music with an RNN is to use the network as single-step
predictor. The network learns to predict notes at time t+1 using notes at time t as inputs. After
learning has been stopped the network can be seeded with initial input values—perhaps from
training data–and can then generate novel compositions by using its own outputs to generate
subsequent inputs. This note-by-note approach was first examined by Todd (1989); Bharucha and
Todd (1989) and later used by others (Stevens and Wiles, 1994; Mozer, 1994).

A feed-forward network would have no chance of composing music in this fashion. Lacking the
ability to store any information about the past, such a network would be unable to keep track of
where it is in a song. In principle an RNN does not suffer from this limitation. With recurrent
connections it can use hidden layer activations as memory and thus is capable of exhibiting (seem-
ingly arbitrary) temporal dynamics. In practice, however, RNNs do not perform very well at this
task. As Mozer (1994) aptly wrote about his attempts to compose music with RNNs, “While the
local contours made sense, the pieces were not musically coherent, lacking thematic structure and
having minimal phrase structure and rhythmic organization”.

The reason for this failure is likely linked to the problem of vanishing gradients(Hochreiter et al.,
2001) in RNNs. In gradient methods such as Back-Propagation Through Time (BPTT) (Williams
and Zipser, 1995) and Real-Time Recurrent Learning (RTRL) (Robinson and Fallside, 1987) error
flow either vanishes quickly or explodes exponentially, making it impossible for the networks to
deal correctly with long-term dependencies. In the case of music, long-term dependencies are at
the heart of what defines a particular style, with events spanning several notes or even many bars
contributing to the formation of metrical and phrasal structure (Cooper and Meyer, 1960). The

1In this paper we use the terms composition and improvisation loosely. It is probably more accurate to describe

the behavior of the network as improvisation because it is inventing new melodies on top of a set form; however,

the end goal is the creation of new melodies and new forms, thus the use of the term composition.
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clearest example of these dependencies are chord changes. In a musical form like early rock-and-
roll music for example, the same chord can be held for four bars or more. Even if melodies are
constrained to contain notes no shorter than an eighth note, a network must regularly and reliably
bridge time spans of 32 events or more.

The most relevant previous research is that of Mozer (1994) , who did note-by-note compo-
sition of single-voice melodies accompanied by chords. In the “CONCERT” model, Mozer used
sophisticated RNN procedures including BPTT, log-likelihood objective functions and probabilis-
tic interpretation of the output values. In addition to these neural network methods, Mozer
employed a psychologically-realistic distributed input encoding (Shepard, 1982) that gave the net-
work an inductive bias towards chromatically and harmonically related notes. He used a second
encoding method (Laden and Keefe, 1989) to generate distributed representations of chords.

As was mentioned above, a BPTT-trained RNN does a poor job of learning long-term depen-
dencies. To offset this, Mozer used a distributed encoding of duration that allowed him to process
a note of any duration in a single network timestep. By representing in a single timestep a note
rather than a slice of time, the number of time steps to be bridged by the network in learning
global structure is greatly reduced. For example, to allow sixteenth notes in a network which
encodes slices of time directly requires that a whole note span at minimum 16 time steps. One
CONCERT composition (Figure 8 in the paper) contained only 76 notes but would require 172
time steps presuming the sixteenth notes found in the piece are to be allowed.

Even with sophisticated RNN techniques and psychologically-realistic distributed representa-
tion of melody, chords and duration the CONCERT architecture failed to capture global musical
structure2. Though networks regularly outperformed third-order transition table approaches, they
failed in all cases to find global structure. In analyzing this performance Mozer suggests that, for
the note-by-note method to work it is necessary that the network can induce structure at multiple
levels. We agree and offer the following architecture as one possible solution.

2 An LSTM Music Composer

2.1 LSTM Architecture

Due to space constraints it is impossible to describe LSTM in depth. See Gers and Schmidhuber
(2001); Gers et al. (2000) for details. In summary, LSTM is designed to obtain constant error
flow through time and to protect this error flow from undesired perturbations. LSTM uses linear
units called Constant Error Carousels (CECs) to overcome error decay problems plaguing previous
RNNs (Hochreiter, 1991; Hochreiter et al., 2001). Each CEC has a fixed self-connection and is
surrounded by a cloud of nonlinear units responsible for controlling the flow of information in
and out of the CEC. Typically, a multiplicative input gate unit learns to protect the flow from
perturbation by irrelevant inputs. Likewise, a multiplicative output gate unit learns to protect
other units from perturbation by currently irrelevant memory contents. A forget gate learns to
reset a memory cell when its content is obsolete. Learning is done by gradient descent method that
uses a slightly modified, truncated BPTT and a customized version of RTRL. Output units use
BPTT; output gates use the truncated version of BPTT; while weights to cells, input gates and
forget gates use truncated RTRL. LSTM performance is improved in online learning situations by
using a Kalman filter to control weight updates (Pérez-Ortiz et al., 2002).

2.2 Data Representation

We avoid psychologically realistic distributed encodings and instead represent the data in a simple
local form (similar to (Todd, 1989) ). We use one input/target unit per note, with 1.0 representing
on and 0.0 representing off. (In later experiments we used the common technique of adjusting input
units to have a mean of 0 and a standard deviation of 1.0.) Unlike CONCERT this representation

2Mozer cannot be faulted for overstating the achievements of the model. He suggest that the “ER” in CONCERT

is meant to stand for “ERudite” but that it could also mean “ERsatz” or ERratic”.
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leaves it to the network to learn an inductive bias towards chromatically and harmonically related
notes. Despite this, we prefer a localist representation for several reasons. First it is implicitly
multi-voice and makes no artificial distinction between chords and melodies. (In fact, we implement
chords by simply turning on the appropriate notes in the input vector.) Second it is an easy task
to generate probability distributions over the set of possible notes, with the flexibility to treat
single note probabilities as independent or dependent from one another.

The representation of time is straightforward, with one input vector representing a slice of real
time. The stepsize of quantization can of course vary; if the quantization is set at the eighth note
level (as it is for all experiments in this study) then a eight network time steps are required to
process a whole note. This method is preferable for LSTM because it forces the network to learn
the relative durations of notes, making it easier for the counting and timing mechanisms to work
(Gers and Schmidhuber, 2000).

Two representational issues are ignored in this representation. First, there is no explicit way to
determine when a note ends. This means that eight eighth notes of the same pitch are represented
exactly the same way as, say, four quarter notes of the same pitch. One way to implement this
without changing input and target data structures is to decrease the stepsize of quantization and
always mark note endings with a zero. With this method, a quantization level of sixteen steps per
whole note would generate unique codes for eight eighth notes and four quarter notes of the same
pitch. A second method is to have special unit(s) in the network to indicate the beginning of a
note. This method was employed by Todd (1989) and is certainly viable. However, it is not clear
how such a method would scale to data sets with multi-voice melodies.

In simulations for this study, a range of 12 notes were possible for chords and 13 notes were
possible for melodies Figure 1. Though we divided chord notes from melody notes for these
simulations, this division is artificial: Chord notes are represented no differently than melody
notes and in future experiments we intend to blend the two in a more realistic manner.�

�
�

melody

�
chords

��� ��� ��� ���� ��� � �� �� �� �
�� ��� ��� ���� ��� �chords

�
melody

�

��

�

Figure 1: Possible note values for these simulations

2.3 Training Data

For the experiments in this study, a form of 12-bar blues popular among bebop jazz musicians
is used. With a quantization stepsize of 8 notes per bar, this yields a single song length of 96
network time steps. The chords used did not vary from song to song and are shown in Figure
2. Chords inversions were chosen so that the chords would fit into the allocated range of notes.
For Experiment 1, only these chords were presented. For Experiment 2, a single melody line was

� � ��G7� ���
Dm����

A7��� � �� �
C�� � �� �

G� ���
Dm�� �� �� ��

A7��� � �� �
Em���C�� � �� �� Fdim�� �� �� �� F7�� �� �� �

C�� � �� �� Gm� ���
C�� � �� �� F7�� �� �� �� C�� � �� �

�

Figure 2: Chords for training data (transposed up one octave).

presented along with the chords. The melody line was built using the pentatonic scale (Figure 3)
commonly used in this style of music. Training melodies were constructed by concatenating bar-
long segments of music written by the first author to fit musically with each chord. Datasets were
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� � �� ��� ��� �� � �� �
�

Figure 3: Pentatonic scale used for training data melodies.

constructed by choosing randomly from the space of unique complete pieces (n = 212 = 4096).
Only quarter notes were used. No rests were used. Space constraints make it impossible to include
examples. However several of these training pieces are provided as sheet music (Acrobat .pdf) and
audio (MIDI, MP3 and wav) at http://www.idsia.ch/~doug/blues/index.html.

In Figure 8.1 at the end of this paper is an example of the melodies and chords presented to
the network.

3 Experiment 1 — Learning Chords

In this experiment we show that LSTM can learn to reproduce a musical chord structure. My
motivation is to ensure that the chord structure of the song can in fact be induced in absence of
its melody. Otherwise it is unclear whether LSTM is taking advantage of the local structure in
melody to predict global chord structure. This is especially a risk when input data is generated
using a random recombination of a relatively small number of musical examples, as was done here.

3.1 Network Topology and Experimental Parameters

The chords used are the ones described in Section 2.3. No melodies are presented. The quantization
timestep is eight events per whole note. In the network four cell blocks containing 2 cells each are
fully connected to each other and to the input layer. The output layer is fully connected to all
cells and to the input layer. Forget gate, input gate and output gate biases for the four blocks are
set at -0.5, -1.0, -1.5 and -2.0. This allows the blocks to come online one by one. Output biases
were set at 0.5. Learning rate was set at .00001. Momentum rate (Plaut et al., 1986) was set at
.9. Weights being burned after every timestep. Experiments showed that learning was faster if the
network was reset after making one (or a small number) of gross errors. Resetting went as follows:
on error, burn existing weights, reset the input pattern and clear partial derivatives, activations
and cell states. Gers and Schmidhuber (2000) use a similar strategy. The squashing function at
the output layer was the logistic sigmoid with range [0,1].

3.2 Training and Testing

The goal was to predict at the output the probability for a given note to be on or off. For predicting
probabilities root mean squared error (RMSE) is not appropriate. Instead the network was trained
using cross-entropy as the objective function. The error function Ei for output activation yi and
target value ti is

Ei = −tiln(yi)− (1− ti)ln(1− yi) (1)

This yields a δ term at the output layer of (ti − yi). See, e.g., Joost and Schiffmann (1998)
for details. Note that by a series of binomial formulations rather than a single multinomial
formulation (softmax) we are treating outputs as statistically independent of one another. Though
this assumption is untrue, it allows the network to predict chords and melodies in parallel and
also allows for multi-voice melodies.

The network was tested by starting it with the inputs from the first timestep and then using
network predictions for ensuing time steps. Chord notes were predicted using a decision threshold
of 0.5. Training was stopped after the network successfully predicted the entire chord sequence.
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3.3 Results

LSTM easily handled this task under a wide range of learning rates and momentum rates. Once
a network could successfully generate one full cycle through the chord sequence, it could generate
any number of continuing cycles. This indicates that there was no reason to continue learning for
a longer time. As it is already well documented that LSTM excels at timing and counting tasks
(Gers and Schmidhuber, 2000) , success at this task is not surprising. Fast convergence was not a
goal of this study, and learning times were not carefully collected. However, even with no attempt
was made to optimize learning rates, this task was learned relatively quickly (on the order of 15
minutes to 45 minutes of processor time on a 1Ghz Pentium depending on parameter settings and
initial random weights)

4 Experiment 2 — Learning Melody and Chords

In this experiment both melody and chords are learned. Learning continues until the chord
structure is learned and cross-entropy error is relatively low. Note that there are far too many
melodies for the network to learn them all. Once learning has been stopped, the network is started
with a seed note or series of notes and then allowed to compose freely. The goal of the study was
to see if LSTM could learn chord structure and melody structure and then use that structure to
advantage when composing new songs.

4.1 Network Topology and Experimental Parameters

The network topology for this experiment differs from the previous task in that some cell blocks
processed chord information while other cell blocks processed melody information. Eight cell
blocks containing 2 cells each are used. Four of the cell blocks are fully connected to the input
units for chords. The other four cell blocks are fully connected to the input units for melody.
The chord cell blocks have recurrent connections to themselves and to the melody cell blocks.
However, melody cell blocks are only recurrently connected to melody cell blocks. That is, melody
information does not reach the cell blocks responsible for processing chords. At the output layer,
output units for chords are fully connected to cell blocks for chords and to input units for chords.
Output units for melody are fully connected to cell blocks for melody and to input units for melody.
The implications of such a topology are discussed below in Section 5. Forget gate, input gate and
output gate biases for the four blocks dedicated to processing chords are set at -0.5, -1.0, -1.5 and
-2.0. Gates for processing melodies are biased in exactly the same way. All other parameters are
identical to those described for Experiment 1 in Section 3.1.

4.2 Training and Testing

The goal was to predict at the output the probability for a given note to be on or off. For chords,
the same method as Experiment 1 is used: the network applies a decision threshold of 0.5 for all
chord notes. For melodies we restrict the network to choosing a single note at any given timestep.
This is achieved by adjusting melody output activations so that they sum to 1.0 and then using a
uniform random number in the range [0,1] to choose the appropriate next note. The implications
of this decision are discussed below in Section 5.

The network was trained until it had learned the chord structure and until objective error had
reached a plateau. Then the network was allowed to freely compose music. Music was composed
by providing a single note or series of notes (up to 24) from the training set as input. After those
were presented, network outputs were presented as inputs at the next timestep. No algorithmic
or statistical method was used to evaluate the musical quality of the network. In all cases the
network succeeded in reproducing chord structure while in parallel improvising new melodies.
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4.3 Results

LSTM composed music in the form of blues. It learned the chord structure in training and used
that structure to constrain its melody output in composition mode. Because is difficult to evaluate
the performance objectively—this point is commonly made in AI art research, e.g., (Mozer, 1994)
— we urge the reader to visit http://www.idsia.ch/~doug/blues/index.html. On that page
are examples of network blues composition in sheet music form (Acrobat .pdf) and audio (MIDI,
MP3 and wav). It can be said that the network compositions are remarkably better sounding
than a random walk across the pentatonic scale (this is also available for listening at the website).
Unlike a random walk, the network compositions follow the structure of the musical form. They
do diverge from the training set, sometimes significantly. But due to the influence of the chord
structure, they never “drift” away from the form: the chord changes always bring it back. Also,
an informal survey in our lab indicates that the compositions are at times quite pleasant. One jazz
musician3 is struck by how much the compositions sound like real bebop jazz improvisation over
this same chord structure. In particular, the network’s tendency to intermix snippets of known
melodies with less-constrained passages is in keeping with this style.

5 Discussion

These experiments were successful: LSTM induced both global structure and local structure from
a corpus of musical training data, and used that information to compose in the same form. This
answers Mozer’s (Mozer, 1994) key criticism of RNN music composition, namely that an RNN is
unable to compose music having global coherence. To my knowledge the model presented in this
paper is the first to accomplish this.

That said, several parts of the experimental setup made the task easier for the model. More
research is required to know whether the LSTM model can deal with more challenging composition
tasks.

5.1 Training Data

There was no variety in the underlying chord structure. For this reason it is perhaps better to
talk about network performance as improvisation over a predefined (albeit learned) form rather
than composition. This lack of variation made it easier for LSTM to generate appropriately-timed
chord changes. Furthermore, quantization stepsize for these experiments was rather low, at 8 time
steps per whole note. As LSTM is known to excel at datasets with long time lags, this does not
pose a serious problem. However it remains to be seen how much more difficult the task will be at,
say, 32 time steps per whole note, a stepsize which would allow two sixteenth notes to be uniquely
identified from a single eighth note.

subsectionNetwork Architecture There network connections were divided between chords and
melody, with chords influencing melody but not vice-versa. We believe this choice makes sense:
in real music improvisation the person playing melody (the soloist) is for the most part following
the chord structure supplied by the rhythm section. However this architectural choice presumes
that we know ahead of time how to segment chords from melodies. When working with jazz sheet
music, chord changes are almost always provided separately from melodies and so this does not
pose a great problem. Classical music compositions on the other hand make no such explicit
division. Furthermore in an audio signal (as opposed to sheet music) chords and melodies are
mixed together.

These are preliminary experiments, and much more research is warranted. A comparison with
BPTT and RTRL (and other candidate RNNs) would help verify the claim that LSTM performance
is better. A more interesting training set would allow for more interesting compositions. Finally,
recent evidence suggests (Gers et al., 2002) that LSTM works better in similar situations using a
Kalman filter to control weight updates. This should be explored. Finally, the current architecture

3Admittedly, this musician isn’t particularly good, and also happens to be the first author.
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is limited to working with symbolic representations (i.e. modified sheet notation) of music. If the
architecture were to be extended to handle real-time performed music (i.e. MIDI or audio) it
would have potential as a tool for interactive improvisation. This would require an ability to
deal with temporal noise found in real performed music. One possibility is to apply research on
oscillator beat tracking models (Eck, 2002, 2001) to LSTM in order to create an inductive bias
towards coupling with sometimes-noisy rhythmical elements in the input.

6 Conclusion

A music composition model based on LSTM successfully learned the global structure of a musical
form, and used that information to compose new pieces in the form. Two experiments were
performed. The first verified that LSTM was not relying on regularities in the melody to learn the
chord structure. The second experiment explored the ability for LSTM to generate new instances
of a musical form, in this case a bebop-jazz variation of standard 12-bar blues. These experiments
are preliminary and much more work is warranted. However by demonstrating that an RNN can
capture both the local structure of melody and the long-term structure of a of a musical style,
these experiments represent an advance in neural network music composition.
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8 Musical Examples

The reader is referred to http://www.idsia.ch/~doug/blues/index.html for a full set of exam-
ples.

8.1 Sample Training Input to Network
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