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A Theory of Adaptive Pattern Classifiers

SHUNICHI AMARI

Abstract-This paper describes error-correction adjustment pro- needs a parametric treatment, that is, the distributions
cedures for determining the weight vector of linear pattern classifiers must be limited to those of a certain known kind whose
under general pattern distribution. It is mainly aimed at clarifying distributions can be specified by a finite number of
theoretically the performance of adaptive pattern classifiers. In the
case where the loss depends on the distance between a pattern vector parameters. Ioreover, the discriminant functions thus
and a decision boundary and where the average risk function is obtained depend directly on all of the past patterns so
unimodal, it is proved that, by the procedures proposed here, the that they are not able to quickly follow the sudden
weight vector converges to the optimal one even under nonseparable change of the distributions. In order to avoid these
pattern distributions. The speed and the accuracy of convergence
are analyzed, and it is shown that there is an important tradeoff be- shocrt s,bw sha pro sennonprametric lanion
tween speed and accuracy of convergence. Dynamical behaviors, procedures, by which the present discriminant function
when the probability distributions of patterns are changing, are also is modified according only to the present misclassified
shown. The theory is generalized and made applicable to the case pattern.
with general discriminant functions, including piecewise-linear dis- The steepest-descent method is often used in order to
criminant functions.

minimize a knowvn function. How^ever, in our learning
Index Terms-Accuracy of learning, adaptive pattern classifier, situation, we cannot obtain the descending directions of

convergence of learning, learning under nonseparable pattern dis- the average risk which we intend to minimize, because
tribution, linear decision function, piecewise-linear decision function, the probability distributions of the patterns are un-
rapidity of learning.

known. What we can utilize is the present pattern only,
I. INTRODUCTION which obeys the unknown probability distribution. We

N ADAPTIVE pattern classifier system is one shall associate a correction vector to each pattern in
\ r1ofthe most typical learning or * such a manner that the average of the correction vectors
/\\ O tnemosttyplal larnlg orself-organizing ..
)t~~~~~~.l 1 is in 1 n a descending direction. By the above correction, it
systems. We shall first consider a simple classifier i g y

categorizing given patterns into two classes by a linear is guaranteed that the discriminant function becomes
discriminant function which is automatically modified better on the average, but in any given trial it may
whenever a pattern is misclassified. Such a classifier has happen that the discriminant function becomes worse.
been investigated as the perceptron [1] or in the theory This method may be called the probabilistic-descent
of threshold logic [2]. For the case where the patterns method.
of the two classes are finite and linearly separable, We shall prove that the discriminant function ap-
various learning rules are known, and the discriminant proaches a minimal one (this is the optimal if there is
function converges to the optimal one within a finite only one minimum) as near as desired, even if the dis-
number of learning steps [1], [3], [4]. However, if the tributions are overlapping. However, there is an im-
patterns are not linearly separable, it is not clear what portant tradeoff between speed and accuracy of con-
is obtained using these rules. We shall treat the classifier vergence. The speed and the accuracy of the classifier
in the general nonseparable case, assuming that the loss are explicitly obtained, and the performance of the
caused by misclassification is a monotonically increas- classifier is theoretically clarified.
ing function of the distance between a pattern vector The learning rule of the simple classifier mentioned
and the decision boundary. The loss which is some con- above can be generalized, and the learning rules of more
stant for an incorrect decision, can be approximated by complex classifiers are obtained. We first treat the
choosing an appropriate function of the distance. classifier with multicategory or many-pattern classes.

If we could use the knowledge of the probability dis- Next, wre treat the classifier having piecewise-linear
tributions of the patterns of the two classes, the optimal discriminant functions. We, then, generalize the theory
linear discriminant function could be obtained by cal- and make it applicable to the general pattern classifiers
culation. In the case of nonseparable patterns, most of having nonlinear discriminant functions. Finally, we
the learning rules proposed so far are based on the es- discuss the adaptive determination of the constants
timation of the probability distributions. However, this contained in the learning rule, i.e., the learning of

learning rule.
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vector x= (xi, x2, Xn) , w-here t denotes the trans- -(7
position. A linear equation \Owa OW2 awn dwo

g(x) = E wx ± wo, (1) Since W is contained in both f and Va,, VR consists of
i=1 two terms: one concerning the gradient of the integrands

fa and the other concerning the integration over the
where wi and wo are constants, divides the space into boundary of Va. By calculation, the following theorem
the following two regions: is obtained [8].

V, = {XI g(X) >0}, V2 = {XI g(X) < 0}. (2) Theorem 1: The optimal weight vector is given by

When a pattern classifier decides that x belongs to C, VR =- X(f1 -f2)dX + ('vf,dX
or C2 according as xE V, or xESE V2, respectively,' it is W D
said to be linear and the function g(x) is called the linear r
discriminant function. The boundary of Vi and V2 is +JVf2dX= 0, 3 (8)
a hyperplane D determined by g(x) =0, and it is called
the decision surface. For simplicity's sake, let us aug- where
ment x by adding 1 as the (n +lI)st component and de- n 1/2
note the (n+1)-dimensional vector (xt, 1)t by X. We w = W
also define an (n+1)-dimensional vector by W= (w,, (=
W2* - w, WO) and call it the weight vector. Then, the In the special case where the loss function does notlinear discriminant function is specified by W as

depend on W, Vf, and Vf2 vanish identically. Hence, we
g(x) = WtX. (3) have the following corollary.

Corollary 1: In the case where the loss function does
Let the a priori probability of receiving a pattern not depend on W, the optimal W is given by

which belongs to Ca(a= 1, 2) be pa, and let the prob-
ability density function of the patterns of Ca be pa(X).' r X(fl -f2)dX = 0. (9)
Assuming that these quantities are known, we shall JD
find the optimal linear discriminant function. The word
"optimal" means to minimize the average risk, which This is the same result as was obtained by Highleyman
is the expected value of the loss caused by misclas. [9]. On the other hand, when the loss function iden-
fication. Let us denote by lao(x, W) the loss which we tically vanishes on the decision surface D, the surface
suffer when a pattern x belonging to Ca is mistakenly integral over D vanishes identically. Hence, we have
decided to belong to Co (3o=a )by using the discriminant the following corollary.
function of the wTeight vector W. We call la,B (x, W) the Corollary 2: When the loss function satisfies la: (x, W)
loss function. Since a pattern xCa is misclassified 0 on D, the optimal weight vector is given by
when it is contained in V03,$5a), and since the prob- r r
ability density of such a pattern is PaPa(X), the aver- J Vf,dX + 3 Vf,dX = 0 (10)
age risk R is expressed by V1 V,

Let d= g(x) /w be the distance from x to D, and let
R(W) = Ifi(x, W)dX + f2(x, W)dX, (4) I(d) be a monotonically increasing function satisfying

v1v2 1(0) =0. The loss function defined by

where we put li2(x, W) = 12l(x, W) = I(d)

fl(x, W) = p2p2(x)l2(x, W) satisfies the condition of Corollary 2. We call it the dis-
f2(x, W) = PiP(x),112(x, W) (5) tance loss function. Denoting the (n+1)-dimensional

vector (Wi, w,, , wn, 0) by w, we obtain
and dX = dxdx2 dXn. R is a function of W, and the
optimal weight vector is one which minimizes R. (g(x) w - g
We assume that R(W) is differentiable, and that it W J 3

has no local minima but the global minimum. In this
case, the optimal W is given by where T is the matrix defined by

VR(W) = O, (6) ~~~T(W) = -(w'E -wW'), (11)

wvhere V is the gradient operator w

3Here J¢DdX means an integration over D, i.e., an (n-1!-1 W;hen x satisfies g(x) =0, any decision willdo. dimensional integration. Hence, when n= 1, special treatment is
2 Here we assume that x is a continuous variable. If x is discrete, required. In this case, D is a point and JDdX denotes the value of the

replace integration with summation. integrand on that point.
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and E is the unit matrix. Noting that 121=l(g/w) and b6W =eCH(xi, Wi), (13)
112 =I(-g W), we can write TR in the form where e is a small positive constant and C is a positive-

Ur.p(x)l'(d)TXdX- rdefinite matrix. We call E the learning constant. Assum-
vR=R P2f2(X)1'(d)TXdX- pipi(x)l'(d)TXdX, (12) ing that the correction takes place only when xi is mis-

takenly classified, we can put
where the prime denotes the differentiation.
We treat hereafter the distance loss functions only. (Hi(x, W), when WtX<O and xEC1,

As an example, let us consider the family of loss func- H(x, W) = 1H2(x, W), when W'X>O and xCC2, (14)
tions l(d) =dk. If we put k = 2, the criterion is to mini- when xis correctly classified.
mize the sum of the squared distances of misclassified
patterns, i.e., the least-square criterion. The criterion We call Hl(x, W) and H2(x, W) the learning functions,
with k-soc is to minimize the maximum of the dis- and they will be determined in the following.
tances of misclassified patterns, i.e., the minimax cri- When e is sufficiently small, the increment of the
terion. The criterion with k-sO is to minimize the per- average risk is 6R= 6W1VR(W) for one step of learning,
centage of misclassified patterns. neglecting higher order terms of E. In order to design

In classification problems, the most important cri- an effective learning system, it is suggested that 6W
terion is to minimize the percentage of misclassified pat- should be chosen so as to make 6R alwTays negative
terns. In this case, the loss is some constant for an in- [10], e.g., 6W= -VR, like the steepest descent method
correct decision and zero for a correct decision. Such a in nonlinear-programming problems. However, it is
loss is not expressed by a distance loss function. Hence, impossible to make 6W equal to -VR, since VR de-
we need to approximate it by a distance loss function.4 pends on the unknown quantities pa, pa>(x). Therefore,
For this purpose, we may adopt we try to make negative the average of 6R over all

l(d) =arctand/do, possible x, i.e., 6R=6WtRV<O, where the bar denotes
1()=artnd d0, dothe averaging over all xEC1, C2. Since 6R is negative

only as the average, this method may be called the
Id

d&/do d < do, probabilistic-descent method.
Lemma: For the following learning functions

etc., where do is a sufficiently small constant. When the
patterns are linearly separable, the optimal decisions H1 = - H2 = l'(d) T(W)X, (15)
based on a distance loss and a constant loss are exactly the relation 6R<0 holds and the equality holds when
identical.

and only when W is the optimal weight vector.

III. LEARNING RULE AND CONVERGENCE THEOREM Proof: Since 6W=ECH, when a pattern xeC, is

We have derived the equation of the optimal weight misclassified, the average of the correction vectors is

vector, assuming that the probability structures Pa and bW = EC pipi(x)H,dX + U p2p2(x)H2dX
p,a(x) are known. In many practical cases, however, 2
they are unknown and varying with time. 1\Joreover,
even if they are known, it is usually difficult to solve Substituting (15), we can derive
the equation. This fact suggests that the weight vector 6W =-eCVR. (16)
is determined step by step utilizing the information of
the input patterns. We propose a learning rule by which Since C is positive-definite, we get
the weight vector Wi at time i is modified to Wj1 by --
referring to the input pattern xi at time i only. The 6R = -eVRCVR < 0. (17)
computation by this rule is very simple and there is no The equality holds only when VR =0, which is satisfied
need of storing the information of the past input data, by the optimal weight vector only.
nor assuming the type of the distributions. We shall consider a classifier with the above-men-

Let the correction vector of Wi, be 6Wi, which depends tioned learning rule. Let the classifier start with an
on the present input pattern xi, and the new weight initial weight vector WI at time 1, under the condition
vector at time i+ 1 be Wi+j = Wi+b6W. We put that the probability distributions are fixed. Since the

weight vector W, depends on the sequence of the input
4In the case where the loss is some constant for an incorrect de- patterns x1, x2, xs_ randomly selected from the

cision, there is no exact learning rule of the.nonparametric type. In distributions pa pa(x), it is also a random variable
this case, the optimal decision boundary is one satisfying (9) of a
Corollary 1. However, the probability of the appearance of the vector. Let its density function be qi(W). Then the ex-
patterns on a hyperplane D is 0, because the measure of D is 0 etdvleo h vrgers ttm .. fe
Hence, we are obliged to obtain the information about the distribu: pete vau ofteaeaers.tiei..fe
tion of the patterns on D from the patterns around D. For this pur- I-1 steps of learning, iS
pose, we use a distance loss, and approximate the constant loss by it.
In the parametric case where the type of the distributions is known, - r
the, distribution on D can be estimated using the patterns of the Rt= | qi(W)R(W)dW, (18)
whole space. J
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where dW= dwidw2 dwndwo. The increment of Ri Its complement is a neighborhood of W. M,i can be
by a step of learning is written as

i= - (19) M = qi(W)dW. (27)

which is the expectation of 6R(xi, Wi) with respect to J
both x, and Wi. Hencebothxiand Wi. Hence Next, we define another set UA' by

5Ri = -eS VRtCvRqi(W)dW . 0. (20) U>' = {Wf r(W) . X}. (28)

Since r is a continuous function of W and is equal to 0
Consequently, ]s is proved to be monotonically non-
increasing. Obviously, Wi0, since the loss function is xvhen and only when W= WOP, for any U, there existsi resin Obiouly i_O sice he ossfuntio isa positive constant X,(Xtt) for wvhich Ux'D3U, holds.
nonnegative. Therefore, the sequence Rs converges, putting
and it follows that limix 6Ri=0. However, we have g
already proved that VR1CVR>0 holds for all but the qi(W)dW, (29)
optimal weight vector WOP. Therefore, roughly speaking, J
it is expected that

we obtain the inequality M,i<M. 'i. By averaging (24)
i q ) (4- )2 with respect to qi(W) and taking account of the relation

holds, where 8(W) is the delta function. r(W)qi(W)dW > r(W)q(W)dW
Let us prove the convergence theorem more exactly.5 3 rW)
Theorem 2: For any ,, the probability that W| X

WoPj >A can be made as small as desired for suf- > x qi(W)dW= A
ficiently large i, by choosing a sufficiently small learning Ju
constant e.

Proof: Let M,i(e) be the probability that the weight we can prove the inequality
vector at time i is still apart from the optimal one fur- bRi . - EXM,i + Ke2. (30)
ther than y, i.e.,

Summing up the both sides of the above relation over i
Myi(e)= Pr { W| s- W0P |._,u}, (22) from 1 to N, dividing them by N, and taking the limit

and let M,(e) ==lim i, M,i(e).6 Then we need only to N-> oc, we derive the relation 0< -EXM,+KE2. Con-
prove sequently, we get the required relation lim, -o M,,=0.

In the special case where the patterns C1 and C2 are
ln M,,(e) = 0. (23) linearly separable, we can prove that a separating hy-

perplane is obtained with probability one by using the
Expanding R(8R(x, W), we obtain above learning rule.

6R(x, W) = bWtVR + 2 (6WIV tR5W) +***2R(W 6WtV +8Wt tR8W)+IV. CONVERGENCE RATE AND ACCURACY OF LEARNING
Averaging it over all x, we get Let f(W) be a function of W. When W is determined

_2 by learning, the expected value of f(W) at time i is
8R= - eVRtCVR + - tr {8W8WIVtR} ±+ O(E), defined by

2

where tr denotes the trace of a matrix. Hence, for suf- f(W)X = ('f(W)qi(W) dW. (31)
ficiently small E, there exists a positive constant K, for
which the inequality The aspect of the learning process will be clarified by

8R < - Er + KE2 (24) studying how f(W)i changes as i increases. We put

holds, where we put p (x) = 1p(x)) x E V2, (32)
r(W) = VR'CVR. (25) if' (psph(x), x E(i,V(2

Let U,, be the set of the W's defined by and

Uf,= {W| | W- WOP .-H} (26) B(W) =HH6 = fAHHtp(x)dX, Bo = B(W0p). (33)

cIn the case where there are many W's satisfying VR=O, W0O, Lemma: The increment of 7, due to a step of learning
in the following theorem should be regarded as the set of such weight.. b
vectors and the theorem guarantees only that the weight vector is given by
converges to one of such vectors. _____ ______

6 For the convergence of M,.tl(e), see Doob [1]. f+i+-ft==-E(VftCVR)i+ E2 tr (CBCtVVtf) i+0(E3). (34)

Authorized licensed use limited to: KAUST. Downloaded on November 22,2021 at 11:04:14 UTC from IEEE Xplore.  Restrictions apply. 



AMARI: THEORY OF ADAPTIVE PAYTERN CLASSIFIERS 303

Proof: Let Wi be the weight vector at time i. If a stant in that direction is EA0. We have thus obtained the
pattern x is presented, Wi changes to W= Wi expected weight vector Wi. However, the actual weight
+±Wi(x, Wi). Since x obeys the probability distribu- vector is not necessarily identical with it. The difference
tions P,, px(x), W is also a random variable and its between the actual vector and the expected is evaluated
density function q(W) is related to that of x by q(W) by the covariance matrix fi:
dW==p(x)dX. Since the probability distribution of
W, is qi(W), qi+±(W) is obtained by averaging it with 2i {(W - Wj)(W -W)t = (WWt)s WiWit. (41)
respect to W, i.e.,

Since Wi converges to W0p, 2i can be considered to
r represent the degree of the accuracy of learning.

q±i+(W)dW = dXJ qi(W2)p(x)dWi, (35) Theorem 4: The covariance matrix 2i of the weight
vector at time i is

where x is considered a function of W and Wi. Using = 2e{E-(E- 5)i-'} (3)-1CB0ct, (42)
(35), we obtain fi+i as

where E is the identity operator and S is the linear
fi+1 J qi+i(W)f(W)dW operator transforming an arbitrary matrix M by

SM = 2(CAM) s7 (43)

= f qi(Wi)f(Wi + 6Wj)p(x)dXdWj. (36) the superscript s denoting the symmetric part of a
matrix.

Expandingf(Wi+bWi), integrating with respect to dX, Proof: Applying the lemma to f(W) = WWt, we
and taking (16) and (33) into account, we derive (34). obtain

In the lemma, the function f may be a vector-valued
or matrix-valued function. Hence, if we put f(W) = W,
the expected value of the weight vector Wj=ji is de- + 2E2(CBoCt).
rived from (34). As has been proved, Wi converges to Subtracting
the optimal vector W0,. Now we can examine the man-
ner in which it converges to W,p. In this case we can Wi+ Wi+t = {(E - 2ECA)WiWit} s + 2E(CAWOPW t)s,
expand R around W0p,

we obtain the difference equation
R(W) = R(Wop) + '(W - Wop)tA(W-W ) -Wop= (LE-S)2i + 2E2CB0Ct. (44)

+0( IW- W0op 3), (37)
where

Since the classifier started with a fixed initial vector W1,
where the initial covariance matrix 11 is equal to 0. The corre-

A =VVtR w sponding solution of (44) is given by (42). The final ac-op. curacy of learning is represented by
We shall consider the neighborhood of Wop, neglecting lim Zi = 2E(3)-1CBoCt. (45)
the last term.

Theorem 3: The expected value of the weight vector Wi By the above two theorems, it has been shown that the
iS given by

convergence rate of learning is represented by the
W, = W0, + (E - ECA)i-1(Wi -Wop). (38) matrix ECA, while the accuracy is given by the matrix

2E(S)1-CBoCI. The constants E and C of the adaptive
Proof: For f(W) = W, it is easily shown that vf=E classifier should be determined by taking these relations

and VVYf=0. By applying the lemma to this case, we into account. If we can put C=A-1, the convergence
obtain rate of Wi is uniform for all directions. On the other

hand, if we can determine C in such a way that (S)-1Wi+j = Wi - IECVRi) (39) CB0Ct=E holds, the deviation of Wi from Wop be-

wher th temOE3) s ngleted By sin (3), hiscomes isotropic. The larger e we choose, the faster the
reducesto the lierdifrec equtio convergence becomes, and the worse the accuracy. On

the contrary, the smaller e w7e choose, the more accurate
Wsl=(E -eCA)W, ± ECAWop. (40) the learning becomes, and the slower the convergence.

This can easily be solved, giving (38) as the solution. 7Scan be considered a tensor having four indexes. Using the
Let X0>0 be the minimum eigenvalue of the matrix tensorial notation, SM is represented by (CiiAjkamfl±CmiAjk^nj)Mak,where 6mn is the Kronecker delta and Einstein's summation conven-CA. Then the corresponding eigenvector shows the tion is used. Hence, S is a tensor whose components are

direction of the slowest convergence, and the time con- Siknm =Ci!Ajk6mfl ± CmiAjkizn
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V. DYNAMICAL BEHAVIOR OF ADAPTIVE CLASSIFIERS where we put a =co/ EX. Accordingly, the stationary
The probability structures of the input patterns are solution is

not necessarily fixed but may vary from time to time. 1
The optimal vector will vary according to these dis- Wi = Wo + + 2 D sin (wi - 0), (53)
turbances. We shall briefly analyze the manner how
the weight vector follows the moving optimal vector where a is considered small. This show-s the frequency
under our learning rule. response of the system.

Let Wo+Di be the optimal weight vector at time i, From this, wAe see that, when the optimal vector
Di denoting the fluctuation. In this case the matrix A changes sinusoidally with frequency cow2wx, the weight
also depends on i. We denote A at time i by A . Then vector follows it with the amplitude divided by i/I +a2

and with the phase shifted by -a. Therefore, for
Wi+1 = Wi - ECAiWi + ECAi(Wo + Di) (46) co<<EX, we may say that the classifier is able to trace the

is derived instead of (40). Although we can solve (46) change well.
explicitly, we shall assume A i-A for all i for simplicity's VI. GENERALIZATION
sake. In this case, the solution is Multicategory Classifiers

Wi = Wo + (E - ECA)i-(Wi - Wo) We have so far assumed that there are only two
-1 categories C1 and C2. Our theory can easily be general-

+ jE (E -ECA)i-k-1CADk1 (47) ized to the case with many categories or pattern classes
k=1 Cl, C2, * * , Cm. In this case, we use m discriminant

functions
The second term, depending on the initial weight vector
W1, is transient. The third term depends on the devia- ga(x) = WatX, a = 1, 2, , m (54)
tion Di. From this, we see that the present deviation D and decide that a pattern x belongs to Ca when and only
causes the deviation E(E-ECA)i-1 CAD of the weight when ga(x)>go(x) for all 3(#a). We need to obtain a
vector of I times later. Hence, the matrices set of m weight vectors WA by learning.

I= e(E -eCA)i-1CA (48) For each pattern xECa, we can define a set Na of
integers by

are considered to represent the impulse response of the Na = (x) > ga(x)
classifier. The step response of the classifier is given by
the matrices For a correctly classified xECa, Na is the null set. It is

natural to define the loss caused by misclassification of a
Si= E - (E - ECA)-1. (49) signal x&Ca by

As an example, let us consider the case in which the la(x) = max l(dao), (55)
optimal vector changes periodically. We put EVNa

Di Diwhere da,s denotes the distance from x to the hyperplane=D sin (50) defined by ga(x) ==go(x). We can write
where the period is 2r/cw and assumed to be large. We ga(x) -go(x)
need only to solve the case where D is an eigenvector of da (56)
CA, CAD=XD, because the solution of general cases Wai2
are obtained by superposition. where Waa is the length of the vector Wa- W3 and
A particular solution of the difference equation is wa (wai, Wa2, Wan, 0)t. Obviously, when a

written as pattern is correctly classified, the corresponding Na is
null and l(x)=0. The average risk accompanied with

Wi = Wo + aD sin (wi + 6), the set of m weight vectors W1, A,m is expressed as

where the transient term is put equal to 0. Substituting A A mr
this in (47), we derive the following equations: ,WVm) .EJ Papa(x)la(x)dX. (57)

cos (w ± (9) -(1 - e) cos 6} -e1 = 0, Denoting the gradient operator with respect to *a by

sin (w ± 0) -(1 - eX) sinG0 = 0, (51) Va, we can obtain the following relation:

from wrhich the unknown parameters a and 6 can be VsR z,{f) PaPa(X)l'(da$)TaFXdX
determined. NTeglecting theShigher order terms of e and a#1E3 V:x
w, we obtain r-J rpdp:(x)l'(da$) TadXdX (58)

a =i/A/1 + a2 tan ° = -a,X (52) v<<
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where all of gj(x), iCN are negative. Defining the sets Vii and

VO= {x| max d'ya = doa2 (59) V2i by
c-N. Vii = {x max dj = dj,

and lEN
and1 ^ ^ V2j = {xf min dj = di and gj < 0 for allj}, (65)

Ta w={ E - (3'aiE- wi)(Wa w1)t}. (60) i
wa:

the average risk can be written as
Let us modify the weight vectors by

aWn = ECHa(X; 1V X Wm), (61) R= E ( U pip1(x)l(dj)dX+ f p2p2(x)1(dj)dX). (66)
i V2i V1i

when x is mistakenly classified. Then we can prove the
folwn* ovrgneterm The gradient of the average risk is expressed as follows:follolATng convergence theorem.
Theorem 5: By using the following learning functions,

viR = -, AI|2 p1p1(x)l'(ds)TiXdX
{-1'(dya) T^yaX, when xECa is contained in V7, TXi X }

x

H-y I'(dy,)Ty,aX, whenxC-CiscontainedinV,,, (62) P2p2(x)4'(d)TiXdX' (67)
l01 when x is correctly classified, p

the probability that the set of the weight vectors ap- where
proaches the optimal one as near as desired, can be made
as near to l as desired by choosing a sufficiently small T,= (t)2E- (68)
learning constant e. Wi

Classifiers with Piecewise-Linear Discriminant Functions and the fact that the term concerning the integration
over the boundaries of the V1i's and the V2i's vanishes as

Although the linear discriminant function is realizable a whole is taken into account.
with technical ease, it is a very restricted one. Hence, Let us consider a learning rule, by which the set of the
we consider the piecewise-linear discriminant functions weight vectorsare modified by Wi= CHi(x; .j) when[3], [12], wThich are much more general but also realiz- wiarmofedb6*=Ct(xTV)Whe
able with technicalease.

mu
eshlgeneralebuthealsealz- a pattern x is misclassified. In this case, we can prove the

able wvith technical ease. We shall generalize the learn- followTing convergence theorem.
ing rule and make it applicable to the classifiers whose Theorem 6: In the case of the convex piecewise-linear
discriminant functions are convex piecewise-linear. decision, by using the following learning functions:
We treat the case with two pattern classes. Let us

consider m linear functions 1l'(di)TiX, whenxECiCiscontainedinV2U,
gi(x) = WYX, i = 1,2, ,m H== l'(di) TiX, when xEC2 is contained in Vii, (69)gi~~~~~~~~~~ ~ ~ ~~ 0,) whe x is corcl classified

and decide that x belongs to Ci when maxi gi(x) > 0 and 0, when x is correctly classified,
to C2 when gi(x) <0 for all i. Such a decision is known as the probability that the set of the weight vectors ap-
a convex piecewise-linear decision [12] or a threshold-or proaches the optimal one as near as desired, can be made
decision [13]. as near to I as desired by choosing a sufficiently small
When a pattern xEC2 is misclassified into C2, all of learning constantE.

gi(x) are negative. It is natural to define the loss by

I(x) = min l(di), (63)
General Adaptive Classifiers

i Here we consider a general adaptive classifier which

where di = gj(x) /w'i is the shortest distance between x classifies a given pattern into m classes C. (a =1, -

, m)
and the boundary of .2= {xIgi<0 for all i} and .,I and whose discriminant function g,(x) is specified by a

the length of ,'i, because x is correctly classified if any set of parameters Oni, * * *, Oak. We represent the
one of gi(x) is positive. On the other hand, when a pat- parameters by a vector O '= (Oni, , Oak) t, and

is misclassified wecandefineanonempty denote by ga(x, Oa) the discriminant function specifiedtern xEC2 iS misclassified, we can define a nonempty settern ,.C, by On. ga(x On) need not be linear nor piecewise-linearN of inegr byN'ijx 0} I hscs,w e with respect to Oa. For simplicity's sake, we unite the m
fine the loss by ~~~~~vectors oa and denote it by an ink-dimensional vector

l(x) = max l(ds),5 (64) 0= (Oit, * * * Ornt)t. We call it the decision vector. By
ieN ~~~~~~specifying a decision vector 0, the decision is completely

considering that x cannot be correctly classified unless determined, that is, when a pattern x is contained in Va,
8 We may adopt l(x) =ZiCNl(di). All of the following discussions Va = { x |max g(x, Ofl) = ga(x, On) },X (70)

are valid, if we replace the definition of V1s by V1s= {xjgi(x)>O }.
Generally speaking, we may adopt 1(x)= es?(d See the fol- . Li
lowing subsection. it iS consiuereu to belong to Ca.
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Let a pattern x belonging to Ca be presented. Then we (4, when max g9-=g
can define a set of integers Na,(x) associated with the Y0a = i 7CN, (79)
pattern by (0, otherwise,

Na ={d3 go(x, %) > ga(x, Oa)}. (71) and l(d) =d, we obtain simpler learning functions

Na obviously depends on 0, and when the pattern is -X, when x E Ca is contained in Vya,
correctly classified, it is the null set. Let us consider a I Cy is
linear combination of g,(x) -g,a (x), ,B H N, cn

da(x, 0) = >1 s#a(go(x, 03) - ga(x, Oa)), (72) 1 0, when x is correctly classified.

ONa This gives the perceptron learning procedures.

where saa's are wNTeights and they may depend on x and In the case when ga(x, 6a) is linear with respect to
0. When Na is null, da(X, 0) vanishes. Oa, i.e.,

Let us define the loss caused by misclassification of ga(x, Oa) = ZOai4i(X), (81)
XCCa by

la(x, 0) = l(dax(x, 0)). (73) where 4j(x) is a nonlinear function of x, we obtain the

Obviously, the loss is 0 only when the pattern is cor- so-called 1 machines [14]. The general piecewise-linear
rectly classified. The average risk can be written classifier can also obtained as a special case.

R(0) ' papa(x),(x, 0dXr (74) Learning of Learning Rules

a..s J I As has already been shown in Section IV, the per-
formance of the classifier depends on the constant e and

Wecaithevector.It whtichiesminime R0) there otimat the components of C. Here, we shall try to determine
rdieisnt vpecator. sie R 0whererespecistothe the constants adaptively in such a manner that thegradienoperaorwithrespec to 0.convergence rate becomes fast wvhen the weight vector
Let us consider a learning rule, by which the present farg
decision vector is modified by is far from the optimal, and the degree of accuracy be-

comes high when it is nearly optimal. When the weight
60 = -ECHa(x, 0), (75) vector is far from the optimal, it is probable that the

two successive nonzero correction vectors are in almostwnptrxCipst.fehsthe same direction. On the contrary, when it is nearly

Ha Vla(x, 0), (76) optimal, it occurs with relatively large probability that
the two successive nonzero correction vectors have op-
posite directions. It is desirable to increase the length

0= -ECVR(0). (77) of the correction vector in the former situation and to
decrease it in the latter.

Thus the probabilistic-descent method is obtained for Let the present weight vector be W and let 3W(x, W)
the general classifier. We can prove the following con- be the present nonzero correction vector. When a pat-
vergence theorem. tern x' is again misclassified by the modified xveight

Theorem 7: By using the learning functions vector W'= W+3W, the nonzero correction vector

Ha = -Vla(X, ), 0W'(x', W') will be produced. Let us adopt the following
modification rule of EC. We change EC to EC+AC, where

the probability that the decision vector approaches the
optimum as near as desired, can be made as near to I as AC =H(x, W)H'(x', W')t' (82)
desired by choosing a sufficiently small learning con- when a pattern x' is misclassified, where x is the previ-
stant e. ously misclassified pattern and 'y is a positive constant.

In order to study the effect of the above modification
accuracy can also be obtained by using discussions simi- of EC, let us calculate the expected value of AC. It islar to those given in Section IV. .

a

The linear classifier is obtained as a special case of the writt a
general classifier. In this case, the parameter Oa is iden- -_ r
tified with the wseight vector Wa, and the discriminant A\C jJyH(x, W)H'(x', W')tp(x)p(x')dXdX'. (83)
function is ga(x, Wa) = WatX. By putting

(1~~~~~~~~^a,wea 7x 7 ~x V By integration with respect to dX', it is transformed to
q~~~~7 N.a p7Q

Sia =_0 otherwise, ( ) AC = -JfH(x,W){VR(W±+ W) } P(x)dX

we obtain the learning functions of (62). If we put = 7{vRVRt- 2EBoCtA}. (84)
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When W is far from the optimal, the second term may tion surely holds in the cases where the patterns are
be neglected, and we obtain linearly separable or nearly so. However, for some more

general pattern distributions, the assumption will not
'\C = yVRVRt. (85) hold, and we are not yet certain for what kind of distri-

This term acts to emphasize vR direction, accelerating bution this holds or does not. When the assumption does
the convergence. On the contrary, when W is nearly not hold, we can say merely that the weight vector con-
optimal, the first term may be neglected, and we obtain verges to one of the local minima. The learning of learn-

'AC 2c-BoCIA. (16
ing rules is also a problem to be studied further in moreiC-2eBoCtA. (86) detail.
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