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Abstract. Traditional Reinforcement Learning methods are insufficient
for AGIs who must be able to learn to deal with Partially Observable
Markov Decision Processes. We investigate a novel method for dealing
with this problem: standard RL techniques using as input the hidden
layer output of a Sequential Constant-Size Compressor (SCSC). The
SCSC takes the form of a sequential Recurrent Auto-Associative Mem-
ory, trained through standard back-propagation. Results illustrate the
feasibility of this approach — this system learns to deal with high-
dimensional visual observations (up to 640 pixels) in partially observable
environments where there are long time lags (up to 12 steps) between
relevant sensory information and necessary action.
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1 Introduction

The classical approach to RL [22] makes strong assumptions such as: the current
input of the agent tells it all it needs to know about the environment. However,
real-world problems typically do not fit this simple Markov Decision Process
(MDP) model, as they are of the partially observable POMDP type, where the
value function at a given time depends on the history of previous observations
and actions. It remains an open problem as how some developmental and gen-
eral agent may learn to handle Partially Observable Markov Decision Problems
(POMDPs) in real-world environments. Recent extremely general RL machines
for POMDPs [11] are theoretically optimal. However, these are not (yet) nearly as
practical as simpler, yet general (though non-optimal and non-universal), solvers
based on RL with Recurrent Neural Networks (RNNs).

In this paper we introduce a novel RNN approach for solving POMPDs with
a RL machine, potentially useful for scaling up AGIs. Let us quickly review
previous work in this vein. The neural bucket brigade algorithm [18] is a bio-
logically plausible, local RNN RL method. Adaptive RNN critics [19, 3] extend
the adaptive critic algorithm [4] to RNN with time-varying inputs. Gradient-
based RL based on interacting RNNs [20] extend Werbos’ work based on feed-
forward nets [24]: One RNN (the model net) serves to model the environment,
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the other one uses the model net to compute gradients maximizing reinforce-
ment predicted by the model. Recurrent Policy Gradients and Policy Gradient
Critics [25] can be used to train RNN such as LSTM [10] — these significantly
outperformed other single-agent methods on several difficult deep memory RL
benchmark tasks. Many approaches to evolving RNNs (Neuroevolution) have
been proposed [27]. One particularly effective family of methods uses coopera-
tive coevolution to search the space of network components (neurons) instead
of complete networks [14, 6]. CoSyNE was shown [7] to be highly efficient, best-
ing many other methods including both single-agent methods such as Adap-
tive Heuristic Critic [2], Policy Gradient RL [23], and evolutionary methods
like SANE, ESP, NEAT [21], Evolutionary Programming [16], CMA-ES [9], and
Cellular Encoding [8]. Finally, Natural Evolution Strategies [26] for RNNs use
natural gradients [1] to update both objective parameters and strategy param-
eters of an Evolution Strategy with a Policy Gradient-inspired derivation from
first principles; results are competitive with the best methods in the field.

Here, instead of using a RNN controller, we develop an unsupervised learn-
ing (UL) layer that presents a representation of the spatiotemporal history to
a non-recurrent controller developed through standard RL. The UL takes the
form of a Sequential Constant-Size Compressor (SCSC), which can be trained
in an unsupervised fashion to sequentially compress the history into a constant
size code. Providing that the essential aspects of the history are captured un-
ambiguously by the SCSC, the code that emerges is suitable for classical RL. If
successful, a SCSC obviates the need for an RNN controller on the RL layer and
makes the partially-observable problem tractable for MDP methods.

Our choice of SCSC is the Recurrent Auto-Associative Memory (RAAM)
which has been well-studied in the area of natural language processing by Pol-
lack et al. [15,12] for two decades. The RAAM can be used as a sequential com-
pressor (SRAAM): given a current data point and a representation of the current
history it produces a representation of the new history. Conversely, given a his-
tory the sSRAAM can reconstruct the previous data point and a representation
of the previous history, so, theoretically it may be able to reproduce the entire
history. Practically, it can be realized as an autoencoder neural network, and it
is amenable to unsupervised training by standard back-propogation.

Our choice of a RAAM-based UL layer to overcome non-Markovian environ-
ments is partially motivated by the recent success seen by using less general
feedforward auto-encoders to pre-train in unsupervised fashion a deep feedfor-
ward (non-recurrent) neural net [5]. Such stacks of auto-encoders have already
been used as preprocessing for RL [13]. Here, sSRAAM can be viewed as a signifi-
cant generalization thereof: not only can spatial patterns be compactly encoded,
but so can spatial-temporal patterns. The spatial-temporal compression achieved
by the sSRAAM potentially yields a Markovian code that significantly simplifies
the RL problem.

In what follows, we describe the first systems, SERVOs, which combine a
sequential constant-size compressor with reinforcement-learning. We examine
the interplay between SCSC and RL under resource constraints for both. Ex-
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periments show the strength of the approach for high-dimensional observation
sequences and long time lags between relevant events.

2 Sequential Recurrent Auto-Associative Memory

Assume we have a temporal sequence of data points H,, = (p1,...,pn) where
p € RN, which we shall refer to as the history at time t = n.

sRAAM is an example of a compressor that sequentially stores sequences into
block of fixed size. An (N, M)-sRAAM is given by a pair of mappings (E, F),

E:RNTM _, gM

F:RM 5 RN+M

where N is the dimension of the data points and M is the size of the mem-
ory block. The mappings F and F are often determined by parameters, and in
such cases we make no distinction between the parameters and the mappings
determined by them. Typically, sSRAAM is implemented using a multi-layer per-
ceptron with at least one hidden layer, which we shall refer to as the code layer.
The code layer is the domain of F' and the codomain of E. The input and output
layers have size N + M, making it an autoencoder, and the code layer has size
M.

Formally, the sSRAAM compresses and decompresses a history as follows:
Given data point p; € RN and a history, represented by h;_; € RM we can
represent the new history, at time ¢ with the map F,

E(pi®h;,_1) =h,.

Likewise, given a representation of a history h; the mapping F' is used to recover
the data point p; and the previous representation of the history h;_1,

F(h;) =p; ® hi_1.

The representation hg of empty history Hg = () needs to be decided upon to
encode any history. See Figure 1.

In practice F(E(p; ® hi—1)) # pi ® h;—1, so we write the result of the
compress—decompress step as

F(E(p; ® hi_11)) =P; ® hy_1.

Given a representation h,, of the history (p1,...,pn), found by iterating over FE,
we can decode the entire history (pq,...,P,,) by iterating over F. We say that
an SRAAM is trained when

1B: = pill <~"'e

for 1 < ¢ < k. The parameter v > 1 is used to relax the importance of recovering
the data points p as the SRAAM decodes further back in time. Since we intend
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Fig. 1: sSRAAM architecture. E, the compressor, takes data point p; and a representa-
tion h;—1 of the history Hi;—1 = (p1,...,Pi—1) and maps it to a representation h; of
the new history H,. F', the decompressor, takes a representaion h; of the history and
maps it to the previous data point p; and representation h;_1.

to use an SCSC to generate a representation h of a history H for the purpose of
supplying a state to an RL module it is usually not necessary to put v = 1.

Since we have a target p; @ h;_; to train p; @ h;_; towards for each point
of the history, gradient based methods for the RAAM are attractive. Classically,
the SRAAM has always been realized as an autoencoder and trained using back-
propogation. That is, the weights (E, F') of the network are updated so that the
output of the autoencoder F(E(p; ® hi—_1)) = p; ® h;_; is more like the input
Ppi @ h;_1. This is the only realization that we consider in this paper; we are
using an out-of-the-box sRAAM in a new way.

One major concern with this training method is that the network is being
trained on moving targets. After performing a step of back-propogation the
mapping F changes, which in turn changes the input p@® h at the next time step
since p is changed. This is an issue that does not arise for an autoencoder which
does not use a virtual recurrent connection. That said, the method of training is
often successful, and it avoids the computational costs associated with methods
such as back-propogation through time.

3 SERVO: SCSC assisted RL

Here we introduce a proto-type version of an architecture which combines SCSC
and RL, and refer to such systems as SERVOs. The UL layer which uses an
sRAAM, which assumes the form of an autoencoder neural network, and the
RL layer uses SARSA(A) [22]. The training of the two layers takes place inde-
pendently in a back-forth manner. After a number of episodes the sequential
compressor is trained. After training the compressor, the code is passed through
an intermediary layer which is used to establish internal states and is determined
by straight-forward clustering, or Vector Quantization (VQ). Using experience
replay, the value-fuction is then learned using SARSA()) on the states provided
by the intermediary layer. The use of an internal layer allows the system to do
tabular RL. After the reinforcement-learning, the agent interacts with the en-
vironment using the updated policy to collect more samples, these samples are
used to repeat the process: train the compressor (E, F'), update the intermediary
layer V', use experience replay to generate a new policy Q. See Figure 2.
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(a) (b) (c)
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Fig. 2: SERVO. The sRAAM autoencoder is trained using back-propogation on p; ®
hi_1. After training h; is generated using E and is passed the internal state layer. VQ
assigns an internal state s; to the represntation h; of the history. The RL layer receives
Markovian data and learns an action-value function using SARSA(X).

3.1 UL Layer: sRAAM

We first describe how to train on a single episode H = (p1,...,P,), where p; is
a vector representation of both the observation and action at step . Start with
an arbitrary choice for the representation hg of the empty history Ho = 0. The
training process walks over the history: Given p; and h;_; use the autoencoder
(E, F) to generate an error 4,

d=pi®hi1 —F(E([p;®h;_1))

then perform a step of back-propogation on the autoencoder. After updating the
weights E and F, find a represention h; of the history up to step ¢,

h; =E(p; ® h;_1),

then iterate, using p;+1 and h;.

Given the current policy the agent interacts with its environment for I
episodes to generate a collection of episodes = = {#};. The sSRAAM is trained by
repeatedly sampling from = and then performing an epoch of back-propogation
by walking over the observation-action pairs in the episode. See Figure 2a.

3.2 Internal State Layer: VQ

The building of the internal state layer takes place simultaneously with the rein-
forcement learning. To maintain a clear exposition we present the two processes
separately. After training the SRAAM we walk through each episode (p1,...,pn)
to generate representations of the history at each step: (hi,...,h;). For an
(N, M)-sRAAM the code lives in M-dimensional space. We generate a set of in-
ternal states by a (cheap) clustering all the representations {h} produced by each
of the episodes. Let S be a collection of points s € RM representing the internal
states of the SERVO. The internal state layer is initialized to the empty set after
training the UL layer. Fix a value for the parameter k. Given a point h the point
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s* in S closest to it is found. The point h is added to S if the squared Euclidean
distance between h and s* is greater than k. Otherwise, for the purpose of the
reinforcement-learning, h is identified with s*. This layer is built by randomly
choosing an episode and then considering, in order, all the h associated with the
episode. The layer is finished being built, as is the reinforcement-learning after
each episode has been walked through exactly once. See Figure 2b.

3.3 RL Layer: SARSA(})

A review of SARSA(\) can be found in [22]. We learn on each of the episodes as
the internal state layer is built, as follows. For a given episode the data coming
into the system can be parsed into 5-tuples, (0;, a;, 7, 011, a;+1). The SCSC
maps o; P a; to h;, as explained above. The internal layer maps h; to an internal
state s;. This mapping is determined while the learning proceeds; if h; is not
within /k of the point s* to which it is closest, then h; is added to the internal
layer and it is mapped to itself. Otherwise h is mapped to s*. Finally, the 5-tuple
that is passed to the RL layer has the form, (s;, a;, 74, Si+1, @i+1). The function Q
is trained on each of the episodes in an arbitrary order using off-line SARSA()).
See Figure 2c.

4 Experiments and Results

4.1 Partially Observable Vision Maze

As a proof of concept to show that this system handles high-dimensional ob-
servations with some memory requirement, we performed a visual navigation
experiment (see Figure 3). The agent’s observations are given by its internal
camera, always aimed forward, and its actions are to go forward, rotate left or
right, or turn around. Each observation (16 x 10 pixels) also contains Gaussian
noise to avoid possible trivial solutions where the agent memorizes all the views.
Each episode begins by placing the agent at a random position and orientation
in the maze.

We used a large three layer sSRAAM with a code layer of size 100. Obser-
vations are 160-dimensional and there are 4 actions, therefore the shape of our
network is 264 — 100 — 264. Each episode lasts until either the goal is reached or
the agent has taken 250 actions. NB: Using a random walk requires an average
of 220 actions to reach the goal, and on average only one-quarter of the walks
reach the goal within the 250 allotted actions. A training iteration consisted of
data gathering: 2000 walks/rollouts generated using the current policy, followed
by training the SRAAM (learning rate 0.01) for 300 epochs, followed by expe-
rience replay to develop the value function (discount factor 0.8, x = 0.9, and
SARSA learning rate 0.1). The actions shifted from 50% exploration to pure
exploitation linearly through the training iterations.

We compared SERVO to the state-of-the-art SNES [17] algorithm, which
directly searches the weight space of RNNs to find better controllers. SNES gen-
erates a population of controllers from a gaussian distribution, and based on
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Fig. 3: Left: Example 16x10 dimensional observation. Middle: Top-down maze view
(never observed by the agent). Right: Experimental comparison between SERVO and
SNES. A “roll-out” is a single controllers interaction with the environment: from a
start position, actions are taken until the goal is reached or time runs out. Compared
are the average number of steps and success rate between the best SNES controller
and SERVO, averaged over 10 experiments. The green line (constant value) represents
optimal performance.

the fitness evaluation (each individual started in 50 random start positions),
computes the natural gradient to move the distribution to a presumably better
location. Figure 4 for a comparison of the two methods. Due to gradient in-
formation provided by the fitness function, SNES is also able to deal with this
task.

4.2 Learning to Wait

We try a task with higher-dimensional inputs and explicitly require longer mem-
ory (up to 12 steps). The agent is placed at one end of a corridor, and can either
move forward or wait. The goal is to move through the door at the far end of the
corridor, where it is given a visual signal that vanishes in the next frame. One of
the signals, A, B, C, D, is shown for a single frame when the agent reaches the
door, corresponding to a waiting time of 6, 8, 10, and 12 frames respectively.
The agent receives a (positive) reward when it waits the exact number of frames
indicated before exiting, otherwise the agent receives no reward and goes back
to the start. The episode ends either when the agent walks through the door
or 20 frames have passed (to avoid extremely long episodes). This is a difficult
task: in the case of letter “D” a random policy will on average require 2'? trials
to make one successful walk.

The agent receives noisy visual input in the form of 32 x 20 pixel image. We
had trouble getting SERVO to work robustly (with noise) in this task, so we first
had to train and use an autoencoder for de-noising the observations before they
are passed to the sSRAAM. The autoencoder was trained on-line over 5k random
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Fig. 4: Shown are the various views of the corridor from the agent’s vantage point. The
leftmost images are observed as the agent approaches the door. The second column
shows the various wait signals, indicating the number of frames to wait before exiting.

walks. After training the autoencoder, the agent performs a series of random
walks (approx. 100k) to collect encoded training samples for the SERVO. The
SERVO is then trained batchwise: (1) 200 epochs of training to compress the
successful episodes, first training the UL layer and then training the RL layer,
as described in Section 3. (2) the agent again interacts with the environment
for 100 episodes to evaluate its policy. Training continues until the agent has
achieved better than 90% success rate!.

In this task, there are only a
few general sequences worth encod-
ing. They are difficult to find and
locating one does not help to find
the others. A “fitness landscape” for
RNN controllers in this task would
be made up of sharp ridges and
vast plateaus. It may seem that all
that can be done here is to find
and store the best sequences. Yet,
the SERVO technique goes further
and compresses these sequences. A
representation of a current sequence
can then be located in the space of
compressed previously seen valuable
seqeunces (the VQ layer). The cur-
rent sequence can then be identified
with the closest prototype.

1
0.9
0.8
0.7,
0.6
0.5
0.4
0.3
0.2
0.1

Success rate

o 1 2 3 4 5 6 7 8 9 10
Training iterations

Fig.5: The average success rate (n=10),
with standard deviation for the corridor ex-
periment. After each training episode (200
epochs) the SERVO is tested for 100 episodes.

! There is a video of SERVO operation at www.idsia.ch/~gisslen/SERVOagent.html
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5 Discussion

In problems with high-dimensional observations and deep memory requirements,
direct search of weight-space for an RNN controller is quite a difficult task (even
with a state-of-the-art method such as SNES). It must find relevant regularities
to build on in parameter space using only the fitness measures of the individuals.
The high-dimensionality and generality of some problems may be too difficult for
direct evolutionary search. In contrast, the SERVO architecture decouples the
problem of encoding the relevant spatiotemporal regularities from learning how
to act on them. The SERVO separates the learning problem into two components:
(1) unsupervised learning of an autoencoder to provide a (quasi-)Markovian
code, and (2) classical reinforcement-learning.

The compression capacity of the SRAAM is limited, and cannot be expected
to recall all histories of a given length. However, since the sequences are gen-
erated by way of reinforcement learning the compressor can in principle learn
to represent the important histories unambiguously. This biased training of the
unsupervised layer allows the agent to improve its policy, steering it towards
increasingly valuable sequences, thereby further refining the UL layer.

We have demonstrated that the use of an SCSC is a competitive method for
solving high-dimensional POMDPs with long time lags. Yet, the current system
is not sufficiently stable for real-world AGIs. Future work will refine this first-
generation SERVO architecture.
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