A Family of Godel Machine Implementations

Bas R. Steunebrink and Jiirgen Schmidhuber

IDSIA & University of Lugano, Switzerland, {bas, juergen}@idsia.ch

Abstract. The Godel Machine is a universal problem solver encoded
as a completely self-referential program capable of rewriting any part of
itself, provided it can prove that the rewrite is useful according to some
utility function, encoded within itself. Based on experience gained by
constructing a virtual machine capable of running the first Gédel Ma-
chine implementation written in self-referential code, we discuss several
important refinements of the original concept. We also show how dif-
ferent approaches to implementing the proof search leads to a family of
possible Gédel Machine implementations.

1 Introduction

The fully self-referential Gédel Machine [8,7,9] is a universal AI that is theoret-
ically optimal in a certain sense. It may interact with some initially unknown,
partially observable environment to solve arbitrary user-defined computational
tasks by maximizing expected cumulative future utility. Its initial algorithm is
not hardwired; it can completely rewrite itself without essential limits apart from
the limits of computability, provided a proof searcher embedded within the initial
algorithm can first prove that the rewrite is useful, according to its formalized
utility function taking into account the limited computational resources. Self-
rewrites due to this approach can be shown to be globally optimal with respect
to the initial utility function (e.g., a Reinforcement Learner’s reward function),
relative to Godel’s well-known fundamental restrictions of provability [2].

The original Gédel Machine description [10] outlines the general concept and
provides implementation details only where necessary to address potential doubts
about feasibility. To the best of our knowledge, however, no full implementation
has existed before. In this paper, we show how inconvenient aspects of the origi-
nal Godel Machine specification can be overcome by presenting a new one geared
towards implementation, offering clarifications of subtle details. In particular, we
specify in novel ways both the utility function framework and the target theorem
at the core of the Godel Machine. Based on experience gained from our ongoing
effort to build a full Gédel Machine, we also provide several essential implemen-
tation details, including a technique for attaining self-reflectivity, demonstrating
that implementing a Gédel Machine is not as hard as it may seem at first sight.

2 Godel Machine Specification

One can view a Godel Machine as a program consisting of two parts. One part,
which we will call the solver, can be any problem-solving program. For clarity of

presentation, we will pretend the solver is a Reinforcement Learning (RL) pro-
gram interacting with some environment. This will provide us with a convenient
way of determining wutility (using the RL program’s reward function), which will
be an important topic later on. But in general, no constraints are placed on the
solver. The second part of the Gédel Machine, which we will call the searcher, is
a program that tries to improve the entire Godel Machine in a provably optimal
way. This searcher will be the main topic of this paper.

In order to discuss our implementation of a Godel Machine, we must first
critically examine the original specification [10,9] and show where, how, and
why we deviate from it. In [9], a Godel Machine’s searcher is said to hold a
function computing the machine’s expected cumulative future utility as follows.

u(s, env) =E, [Zthtme r(t) | env] (ORIG.)
So given a state s, environment env, environment distribution u, lifetime 7', cur-
rent time time, and reward function r, the utility of s is determined by summing
all expected future rewards up to the expected end of the machine’s life (which
may be extended through appropriate self-modifications). This utility function
u is then used to construct a target theorem; that is, the Goédel Machine is only
allowed to perform a self-modification if a part of memory referred to as proof
contains a theorem of the following form.

u(s(t) @ (switchbit(t) = 17), env(t)) > u(s(t) ® (switchbit(t) = ‘07), env(t))

(ORIG.)
(The notation s @ (v = x) stands for the state obtained when element v of s is
set to x; v(t) for (the expected value of) element v at time ¢.) To understand
this theorem, several more details about the searcher must be explained. The
searcher holds a procedure check which invokes another procedure referred to
as switchprog if and only if a bit called switchbit is set to 1. The procedure
switchprog, which is assumed to be created during the proof search, may modify
any part of the Godel Machine’s software. But switchprog is invoked only when
the target theorem shown above can be proved to hold. So the target theorem
weighs self-modification against proceeding as usual, because switchprog cannot
be invoked when switchbit is set to 0.

The concept of only allowing self-modification when it is provably profitable
is intuitively sound; however, the specification of Gédel Machines as introduced
in [10] presents several difficulties when an actual implementation is attempted.
We identify three main issues: (1) the time-based view of the future makes the
utility function u tricky to implement, glossing over certain subtleties; (2) the
target theorem is decoupled from its proof and does not explicate the relation
between switchbit and switchprog; and (3) it is not obvious how env, u, T, and
r are encoded in state s. These issues call for more explanation, but as we shall
see next, they can actually be solved in a unified way.

The function u for determining the expected cumulative future utility, as
shown above, requires us to sum all rewards for all future time steps. Here
“time steps” actually means not clock ticks, but execution of elementary in-
structions. Indeed, each instruction takes time to execute, so if we can find a
way to explicitly represent the instructions that are going to be executed in the

future, we automatically have a window into a future time. An obvious choice
of such a representation is the continuation, which is a well-studied concept in
light of A-calculus-based programming languages (e.g., LISP, Scheme) [6]. As we
shall see, using continuations will allow us to remove ¢t and T' from the utility
function while switchprog can be explicitly introduced in the target theorem.
Intuitively, a continuation can be seen as the opposite of a call stack; instead of
showing “where we came from,” a continuation explicitly shows “what is going
to happen next.” Note that in all but the simplest cases, a continuation will
only be partially expanded. For example, suppose the current continuation is
{ A0; if B() then C() else D() fi }; this continuation specifies that the
next thing to be done is expanding A and executing its body, and then the con-
ditional statement will be executed, which means that first B will be expanded
and depending on its result, either C or D will be expanded. Note that before
executing B, it is not clear yet whether C or D will be executed in the future; so
it makes no sense to expand either of them before we know the result of B.

In what follows we consistently use subscripts to indicate where some ele-
ment is encoded. With the use of continuations, u becomes a function of two
parameters, uz(s, ¢), which represents the expected cumulative future utility of
running continuation ¢ on state s. Here 5 represents the evaluating state (where
u is encoded), whereas s is the evaluated state. The reason for this separation
will become clear when considering the calculation of wu:

us(s,¢) =B, a[u'] with o' (env) = 75(s, env) + E_ k. [us | env] (1)

As indicated with subscripts, we have moved the representation M of the (ex-
ternal) environment inside s, because all knowledge a Gédel Machine has must
be encoded in s. For clarity, let M be a set of bitstrings, each constituting a
representation of the environment held possible by the Godel Machine. u is a
mapping from M to probabilities, also encoded in s. ¢ encodes not only a (par-
tially expanded) representation of the instructions that are going to be executed
in the future, but also a set K of state—continuation pairs representing which
possible next states and continuations can result from executing the first instruc-
tion in ¢, and a mapping x from K to probabilities. So p and x are (discrete)
probability distributions on sample spaces M and K, respectively. r5(s, env) de-
termines whether state s is rewarding given environment env. For example, in
the case where solver (which is part of s) is an RL program, rz(s, env) will be
nonzero only when s represents a state just after performing an input receiving
instruction. Finally, the term E,, g [us | env] recurses on u with the state and
continuation following from executing the next instruction in continuation c.

It is crucial to note that w and r are taken from the evaluating state s,
not from the state s under evaluation. Doing the latter would break the global
optimality [9] of the Gédel Machine, because it would be capable of rewriting
its utility function in arbitrary ways. Therefore, the original, unchanged utility
function of 5 must be used to first show that a rewrite is useful. In contrast,
@ and M are taken from s, because for any interesting Goédel Machine, ¢ will
both contain instructions that affect the external environment (e.g., output to
actuators) and instructions that update the internal model of the environment

(encoded in s) accordingly. To make use of these updated models, u must extract
them from s. Likewise, x and K are taken from c, because after each instruction
the continuation necessarily changes, resulting in new x and K.

It is also important to notice that our function wu is recursive, whereas the
original u is a summation up to the end of the Goédel Machine’s lifetime T'. In
formula (1), a Godel Machine’s life ends when the continuation sample space
K, is empty. In that case, the term E,_ x [us | env] is zero and recursion on u
stops. In the most common case, however, an instruction will be deterministic,
e.g., K. = {(s',)}. Then formula (1) reduces to us(s,c) = E,_ a[7s(s, -)] +
uz(s', ¢'). So for chains of deterministic state transitions, the expected cumulative
future utility reduces to a summation of expected rewards in the successive
states. But as observed earlier, even those expected rewards are usually zero,
because most instructions are not involved with receiving information from the
environment (which in e.g. RL is usually the source of rewards).

We are now in a position to introduce a revised target theorem, based on
the new utility function. Thanks to our continuation-based perspective, we can
explicitly introduce switchprog into the target theorem by constructing a con-
tinuation out of it. Specifically, let ¢* = {wait_until(t); switchprog()} denote the
continuation that waits until time ¢ (e.g., by continually calling a primitive clock
function until the returned time tests as greater or equal to ¢) and then ex-
ecutes switchprog. Furthermore, let s be an expected future state before time
t. Now usz(s,c*) tells us what is the expected cumulative future utility of run-
ning switchprog on s at time ¢. If this utility compares positively against the
expected cumulative future utility of not switching, then the Godel Machine
must perform the switch at time ¢. Thus, the searcher is to find a state s, a time
t, and a nullary procedure switchprog such that tts(s, t, switchprog) holds, where:

tts(s, t, switchprog) =
[us(s, {wait_until(t); switchprog()}) > us(s, {schedulers()})] (2)
where scheduler is the procedure that interleaves the Godel Machine’s solver and
searcher. Thus {schedulers()} denotes the continuation that “proceeds as usual”
from s (including searching for new switchprogs). Note that, since switchprog may
overwrite the scheduler, it must as its last instruction invoke a new scheduler (if
needed), or simply invoke the old scheduler if it has been left intact.

There are two ways in which this target theorem can be used to find prov-
ably useful self-rewrites: (1) generate a candidate switchprog (e.g., a program
performing optimization techniques also applied by state-of-the-art compilers),
generate a future switch time ¢ at least as far ahead as the time the evaluation
of the utility of running switchprog is expected to take, and make s a copy of
the current state s; then run both continuations specified by tt on s (this is safe
because s acts like a sandbox) until the inequality can be shown to be true or
false, or until the current time exceeds t; if the inequality is false or time has
run out, generate a new switchprog and start over; else, swap the current state
for s, wait until time ¢ and execute switchprog. (2) Start with an axiomatic sys-
tem with axiom and rules, and generate theorems (or generate programs that
calculate theorems [9]), testing them for equivalence with tt. The first method
can be seen as a top-down approach to proving tt and the latter as bottom-up.

Hybrid approaches are also possible, so our specification of the target theorem
allows for a family of possible Godel Machine implementations.

To make sure the Goédel Machine is at least asymptotically optimal even
before the first self-rewrite, it may be initialized with Hutter’s non-self-referential
but asymptotically fastest algorithm for all well-defined problems HSEARCH [3],
which uses a hardwired brute force proof searcher and ignores the costs of proof
search. Given some problem, the Gédel Machine may decide to replace HSEARCH
by a faster method suffering less from large constant overhead, but even if it does
not, its performance will not be less than asymptotically optimal.

3 Discussion and Conclusion

In this paper we have presented a novel Gédel Machine specification geared to-
wards implementation. Our own approach so far has been to implement a virtual
machine capable of running a specially invented programming language with self-
referential constructs to attain the self-reflexivity needed for a Godel Machine.
The solver, searcher, and scheduler are then implemented in this language. It
should be noted though, that a simpler existing technique can be used to attain
self-reflexivity, namely by using meta-circular evaluators [1]. A meta-circular
evaluator is basically an interpreter for the same programming language as the
one in which the interpreter is written. Especially suitable for this technique are
homoiconic languages such as Scheme [5], which is very close to A-calculus and is
often used to study meta-circular evaluators and self-reflection in programming
in general [1,6,4]. So a meta-circular Scheme evaluator is a program written in
Scheme which can interpret programs written in Scheme. Using the technique
of a global execution environment as insightfully described in [4], complete self-
inspection and self-modification can be attained by having a double nesting of
meta-circular evaluators run the Gédel Machine’s scheduler. Although this tech-
nique is pretty inefficient, there is in principle no need to build a special (virtual)
machine. Ultimately, the Gédel Machine should be directly implemented in an
assembly language, to make it capable of working in tandem with arbitrary
compiled problem solvers, instead of needing access to their source code and
translating it into the virtual machine’s programming language. This requires
an axiomatic encoding of the instruction set of the architecture on which the
Godel Machine is going to run. On the positive side, however, reflexivity comes
for free in assembly languages, given von Neumann-like hardware architectures.
It is interesting to note that “gddelizing”! an existing problem solver is always
harmless. Before the first self-rewrite, the proof searcher of a Gédel Machine will
do little but consume a fixed percentage of processing time, say 50%. This loss is
easily offset by simply running the entire program on a machine which is twice
as fast. The gain is a program that may improve over time in a way that is
globally optimal [9] with respect to its initial utility function. We should caution
though that this puts a burden on the programmer: a Gédel Machine with a
badly chosen utility function is motivated to converge to a “poor” program.

. I.e., adding a scheduler to a problem solving program which interleaves that solver with a program
searching for provably useful self-rewrites. Thanks to Moshe Looks for suggesting this term to us.

Acknowledgments

This work was partially funded by the Humanobs EU Project (FP7-ICT-231453).

References

10.

Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer
Programs. MIT Press, second edn. (1996)

Godel, K.: Uber formal unentscheidbare Sitze der Principia Mathematica und
verwandter Systeme I. Monatshefte fiir Mathematik und Physik 38, 173-198 (1931)
Hutter, M.: The fastest and shortest algorithm for all well-defined problems. In-
ternational Journal of Foundations of Computer Science 13(3), 431-443 (2002)
Jefferson, S., Friedman, D.P.: A simple reflective interpreter. LISP and Symbolic
Computation 9(2-3), 181-202 (1996)

Kelsey, R., Clinger, W., Rees, J., (eds.): Revised® report on the algorithmic lan-
guage Scheme. Higher-Order and Symbolic Computation 11(1) (August 1998)
Queinnec, C.: Lisp in Small Pieces. Cambridge University Press (1996)
Schmidhuber, J.: Completely self-referential optimal reinforcement learners. In:
Duch, W., Kacprzyk, J., Oja, E., Zadrozny, S. (eds.) Artificial Neural Networks:
Biological Inspirations - ICANN 2005, LNCS 3697. pp. 223-233. Springer-Verlag
Berlin Heidelberg (2005), plenary talk

Schmidhuber, J.: Godel machines: Fully self-referential optimal universal self-
improvers. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence,
pp. 199-226. Springer Verlag (2006), variant available as arXiv:cs.LO/0309048
Schmidhuber, J.: Ultimate cognition ¢ la Godel. Cognitive Computation 1(2), 177—
193 (2009)

Schmidhuber, J.: Go6del machines: Self-referential universal problem solvers
making provably optimal self-improvements. Tech. Rep. IDSIA-19-03,
arXiv:cs.LO/0309048 v2, IDSIA (2003)

