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Abstract 
First a brief introduction to reinforcement learning and to supervised learning with recurrent 

networks in non-stationary environments 
'
is given. The introduction also covers the basic principle of 

'gradient descent through frozen model networks• as employed by Werbos, Jordan, Munro, Robinson 
and Fallside, and Nguyen and. Widroui. This principle allows supervised learning techniques to be 
employed for reinforcement learning. 

T hen a general algorithm for a reinforcement learning neural network with internal and external 
feedback in a non-stationary reactive environment is descr ibed. Internal feedback is given by con­
nections that allow cyclic activation flow through the network. External feedback is given by output 
actions that may change the state of the environment thus influencing subsequent input activations. 
The network 's m ain goal is to receive as much reinforcement (or as little 'pain') as possible. 

In theory, arbitrary time lags between a ctions and ulterior consequences are possible. The 'visi­
ble' environment may be 'non-Markovian'. Although the approach is based on 'supervised ' learning 
algorithms for fully recurrent dynamic networks, no teacher is required. An adaptive model of the 
environmental dynamics is constructed which includes a model of future reinforcement to be received. 
This model is used for learning goal directed behavior. The algorithm may concurrently learn the 
model and learn to pursue the main goal. To att ack certain problems with the parallel version of the 
algorithm, 'a daptive randomness' is introduced. The algorithm is applied to a reinforcement learning 
task in a non-Markovian environment. 
, A connection to 'meta-learning' {learning how to learn} is noted. An extension of the algorithm 

i} described which includes a vector-valued. adaptive critic element (based on Sutton's TD-methods}. 
The possibility of using the model for learning by planning (by 'mental simulation' of the environ­
mental dynamics} is investigated. 

Finally it is described how the algorithm can be augmented by dynamic curiosity and boredom. 
This can be done by introducing (delayed) reinforcement for controller actions that increase the 
model network's knowledge about the worl d . This in turn requires the model network to model its 
own ignorance, thus showing a rudimentary form of introspective behavior. 

*This work was supported by a scholarship from SIEMENS AG 
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Introduction 

� '\a_.-o\f\ 

\;· 

Figure 1: Internal and external feedback. 

Note: This is the revised and expanded version of an ·earlier report from February 1990, which was itself 
an expanded version of an earlier report from November 1989. 

Consider a dynamic neural network receiving inputs from a non-stationary environment and being 
able to produce actions that may have an influence on the environmental state. Since the new state may 
cause n�w inputs for the system we say that �here is external feedback. In general, arbitrary time lags 
may exist between actions and their ultimate consequences in the environment. 

If the network is cyclic, then input activations from a given time may alter the way in which inputs 
from later times are processed. In this case there is a potential for the 'representation of state', or 'short 
term memory', and we speak of internal feedback: In general, arbitrary time lags may occur bet,veen 
inputs to the network and later network consequences. 

· 

The principles of i�ternal feedback are usually known (in most cases internal feedback· is based on 
sigmoid transformations of weighted sums) . In real world applications less is known a priori about the 
laws that govern the external feedback. 

If the network is supposed to learn ext�rnally posed tasks then it faces Minsky's basic credit assign­
ment problem[14]: If performance is not sufficient, then which component of the network at which time 
did in which way contribute to failure? How should critical components change behavior to increase 
future p_erformance? In this report I describe how two 'self-supervised' recurrent networks can interact in 
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order to attack the fundamental credit assignment problem. The context will be given by reinforcement 
learning tasks (described below) . 

. 

We will concentrate on discrete time versions of dynamic learning algorithms for neural networks. 
We assume that there are 'time steps ' ,  and that state changes only take place from one time step to the 
next one, not within a time step. 

Locality in Space and Time. A learning algorithm for dynamic neural networks is said to be local 
in time if for given network size (measured in number of connections) during on-line learning the peak 
computation complexity at every time step is 0(1), for arbitrary durations of sequences to be learned. 

A learning algorithm for dynamic neural networks is said to be local in space if during on-line 
learning for limited durations of learned sequences and for arbitrary network sizes (measured in number 
of connections) and for arbitrary network topologies the peak computation complexity per .connection 
at every time step is 0(1). 

A learning algorithm for dynamic neural networks is said to be local if during on-line learning for 
arbitrary durations of sequences to be learned and for arbitrary network sizes (measured in number of 
connections) and arbitrary network topologies the peak computation complexity per connection at every 
time step is 0(1). 

These definitions do not imply that a local algorithm is unable to consider actions that have taken 
place any time before the current·time step. 

Various kinds of tasks differ according to the complexity of the corresponding credit assignment prob­
lem. Often the distinction is made between supervised learning tasks and the more difficult reinforcement 
learning tasks. 

Supervised Learning 

A learning task is called a supervised learning task if there are externally defined desired outputs at 
certain time steps, but the network never needs to discover output actions on its own. This can be the 
case if there is an external teacher who gives the desired output activations at every time step . (Teaching 
information also may be given by another network .) Supervised learners need only consider the internal 
network dynamics for performing credit assignment . These dynamics are g iven by the known rules of 
internal information processing (e.g. sigmoid transformations of we�ghted activation signals). External 
feedback is not really important for supervised learners , since by definition they do not need to care 
for unknown environmental dynamics to achieve their goals. There. is no such thing as an undesired 
input caused by the external feedback . A supervised learner therefore does not need to 'propagate errors 
through the environment'. 

The goal of supervised learning is usually stated as the minimization of cumulative errors observed 
at the output units over time. This usually is achieved by gradient descent methods : 

.6.w = -TJ 8 Et lldt - :z:tll2
, ow 

where
·
� is the networks weight vector, .6.w ·is its increment caused by the learning procedure after a 

training episode (usually a time interval with fixed length during which the inputs and desired outputs 
are presented) , t ranges over all time steps of the activation spreading phase of the episode, d, is the 
desired output vector at timet, :Z:t is the actual output vector at timet, and 7J is a positive constant. 

Straightforward but not general algorithms for dynamic supervised learning have beEm proposed by 
Jordan [7] and Elman [4]. General supervised learning algorithms for completely recurrent dynamic 
networks have been described in [25], [43], and [19]. These algorithms are based on conventional back­
propagation (BP) [41] [12] [18] [25] and the 'unfolding in time' principle, which requires that each unit 
remembers its past activations on a stack. During the backward pass the stored activations are succes­
sively popped off their stacks and used to compute the error gradient in the conventional manner. 

Robinson and Fallside [22] (see also [21]) were the first to note that a backward pass is not necessary. 
They described the 'Infinite Input Duration' (IID)-algorithm which minimizes the same cumulative error 
as the 'unfolding in time' methods, but uses only computations that go 'forward in time'. Their method 
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has the advantage that for arbitrary sequences of inputs and desired outputs, a fixed amount of storage 
is sufficient to compute the complete error gradient . A disadvantage of the method is that it is not 
local in space . Pearlmutter [19] and Gherrity [5] described continuous time versions of the method . 
Rohwer [24] also described a non-local algorithm for fully recurrent dynamic networks which needs only 
computations 'going forward in time'. 

Williams and Zipser [47] implemented a variant of the liD-algorithm. In their implementation they 
assume the learning rate to be small enough to allow immediate weight changes during on-line learning . 
Although this means a deviation from true gradient descent, the important consequence is that there 
is no need for 'episode boundaries' any more. This property makes the algorithm very interesting for 
tasks where the external teacher _ does not structure environmental inputs into sequences that 'belong 
together'. In some experiments Williams and Zipser showed that such structuring information can be 
acquired by the learning system itself. Hence, this algorithm is of potential interest for autonomous 
agents in non-stationary environments. 

Reinforcemen� Learning 

A learning task is called a reinforcement learning task if the teacher only indicates once in a while whether 
the system is in a desirable state or not, without giving information about how to reach desirable· states. 
In most cases the teacher occasionally provides a scalar signal, the reinforcement, whose value indicates 
success or failure. During training the network is supposed to discover on its own the outputs that 
eventually lead to desirable states. From the standpoint of the reinforcement learner, the nature of the 
external feedback in most cases is highly significant. In contrast to supervised learning , there can be 
undesired inputs caused by previous output actions. In general, the external unknown dynamics have to 
be taken into consideration to perform credit assignment . Since the external dynamics are not known 
a priori they have to be explored . An explorative capability can be achieved through units that obey 
probabilistic activation rules . 

Williams [46] described a class of reinforcement learning algorithms for recurrent networks with prob­
abilistic activation rules. These algorithms are suitable for the case where there are predefined episode 
boundaries. Though they are derived by using the 'unfolding in time' principle, the algorithms themselves 
do not require an unlimited amount of storage for past activations since they only use computations that 
go 'forward in time'. And although they are suited for the comparatively difficult reinforcement learn­
ing tasks, the algorithms require less peak computation than corresponding supervised methods. One 
reason for this is that the procedures are 'uninformed' in the sense that comparatively little information 
is considered for computing the gradient . 

-

Williams showed that these methods, which he called extended REINFORCE algorithms, can be 
expected to perform hill climbing in a quantity that measures the expectation of the cumulative rein­
forcement to be received during one training episode . More precisely, for a given w, the inner product 

'1 

is positive , as long as the second factor is not zero. (Here r(t) is the reinforcement at timet, w is the 
network's weight vector, D.w is its increment, t ranges over all time steps of a training· episode, and E is 
the expectation operator .) However, it should be noted that Williams' result does not necessarily hold 
in the case of external feedback. 

Another approach for reinforcement learning in recurrent networks, the 'neural bucket brigade algo­
rithm', is described in [28]. This algorithm translates reinforcement given from the environment into 
'weight-substance'. By performing only local computations the algorithm establishes recursive depen­
dencies between strengths of connections that transport activation information during successive time 
steps. The result is a dissipative system which consumes weight substance given in the moments of 
reinforcement. Weight substance flows through the network in the opposite direction of the activation 
flow. A competition based on local computations aims at maximizing the amount of reinforcement (= 
weight substance) to be received. 
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Barto, Sutton, and Anderson's reinforcement learning algorithm (the AHC algorithm) [3] involves 
two 'networks' consisting of single units without recurrent connections, thus allowing only external feed­
back. One of the units is a 'self-supervised' learner that makes predictions about future reinforcement. 
Differences of successive predictions are used to compute internal reinforcement for the second unit, even 
in the absence of an external signal . The algorithm may be viewed as an extension of Samuel 's early 
work [26], and bears interesting relationships to the bucket brigade algorithm. 

Anderson [1] further extended the approach to systems consisting of feedforward networks. In [32] 
and [29] the approach was further extended to a combinat ion of a recurrent reinforcement learner and 
a static supervised learner. Combinations of two interacting recurrent networks based on that principle 
were also considered. 

Using only Supervised Techniques for Reinforcement Learning. 

Although connectionist supervised learning techniques generally are not considered to be very fast, 
conventional r.einforcement learning tends to be notoriously slow when compared to supervised learning 
(in-tasks where both learning paradigms are applicable) . There have been various approaches to employ 
the more informed supervised techniques for reinforcement learning tasks. In the next subsections we 
outline principles of previous approaches based on system identification and gradient descent through 
frozen model networks. 

Munro 

Munro [15] implemented a system identification approach to reinforcement learning that uses supervised 
learning techniques only. His system consists of two feedforward networks, which we call the control 
network and the model network, both being trained by.conveniional back-propagation. The system to 
be identified by the model network is the external process which maps pairs of situations and controller 
outputs to reinforcement . There may not be delayed reinforcement . The model network has a one­
dimensional output and is tra ined in an exploratory phase to produce the reinforcement corresponding 
to the inputs and outputs of the control network. This is done by providing random examples of 
input/output pairs and the corresponding reinforcement. After the model network has learned a sufficient 
description of these relationships, its weight changing mechanism becomes disengaged , and the training 
phase of the control network takes place. During this phase differences between actual and desired 
reinforcement are propagated through the model network down into the control network, where they 
cause weight changes according to the rules of gradient desc�nt . 

Robinson and Fallside 

Robinson and Fallside described an extension of Munro's approach to dynamic recurrent networks ([23] 
[21]). J3oth the model network and the control network may have internal and external feedback. A 
significknt difference to Munro's approach (b�sides the recurrency of the networks involved) is that both 
the model network and the control network learn in parallel. Learning is based on the 'unfolding in 
time '-method which requires the existence of episode boundaries. 

In order to make one network out of two, a single cost function is constructed by linearily com­
bining the difference between the .observed reinforcement signal and the predicted reinforcement signal , 
and the difference between the desired reinforcement signal and the predicted reinforcement signal. A 
consequence of this approach is that there are less-informed weight changes ; since errors for the model 
network are mixed with errors for the control network. 

As in Munro's approach, the only aspect of the external world which is explicitly described by 
Robinson and Fallside 's recurrent model network is the reinforcement's dependence on past inputs and 
outputs. There is no model for the dependence of (non-reinforcement) inputs on past outputs (or on past 
inputs which again may have been caused by past outputs) . This makes the model for the reinforcement 
itself incomplete: Paths for credit assignment leading 'through the environment' cannot be considered. 
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Werbos , Jordan, Widrow 

In (8] and (10] Jordan uses a model network for constructing a mapping from output actions of a 
control network to the environmental effects caused by these actions. His approach again involves two 
connected networks being trained in two separate phases. Jordan '8 work emphasizes the role of additional 
smoothness constraints on the output units of the controller. The output units of the control network , 
called 'articulatory units', are the input units for the model network. The output units of the model 
network, called 'target units', feed back to 'state units', which are among the input units for the control 
network. At every time step, a teacher provides desired states for the target units. In the meanwhile 
familiar way, errors can be propagated from the target units back through the model network into the 
control network. 

A similar off-line approach (without internal feedback) also was described in Nguyen and Widrow's 
work (see [17] for an interesting application that does not require internal feedback) . A related on-line 
approach has been applied to difficult problems of attentive vision (37]. There it has been shown that 
an imperfect model network (which does not see the full state of the environment) can nevertheless 
contribute to perfect start/goal trajectories . 

Werbos .sometimes also employs the system identification approach (e.g. [42J). An overview of adap­
tive system identification and Werbos' 'Heuristic Dynamic Programming ' (related to Barto and Sutton's 
'adaptive critic') as well as references to Werbos' earlier relevant work on reinforcement learning and 
control are given in (44](see also [13J). Barto also gives an overview of algorithms for neural controllers 

(2]. 

Viewing Reinforcement as 'Another Type of Input' 

In this section we consider reinforcement as a special type of input to a fully recurrent dynamic control 
network. We dedicate one or more conventional input units for the purpose of reporting the actual 
reinforcement to the system, so there is a possibility for multidimensional reinforcement. We call these 
units reinforcement units or pain units and pleasure units. Since pain and pleasure units may have an 
influence on actions to be taken, they possess outgoing connections leading to other units of the control 
network. In contrast to pure supervised learning where the output units are provided with 'desirable 
activations', in our case only the reinforcement input units have desirable values at certain times. At 
each time step the desirable activation of a pain unit is zero. At each time step the desirable activation 
of a pleasure unit is equal to some predefined positive value. (The activation of a pain unit corresponds 
to negative reinforcement. The activation of a pleasure unit corresponds to positive reinforcement. The 
goal is to maximize the reinforcement received over time .) 

In the case where there are episode boundaries (later we will try to avoid episode boundaries) the 
quantity to be minimized is 

'1 
t,i 

where ri(t) is the activation of the ith pain 6r pleasure unit at timet, ci is its constant desired value , 
and t ranges over all time steps of a training episode. (If, for instance, different types of pain have to 
be weighted in an asymmetric manner, then the quantity to be minimized may be a linear combination 
of reinforcement signals from different pain units. Such a linear combination can be implemented in a 
straight-forward manner by a linear unit whose input is the vector of all pain units , and whose fixed 
weights emphasize certain types of reinforcement. The quantity to be minimized then is the sum of all 
activations of this linear unit at different times.) 

· 

As a complicated example consider an autonomous agent whose movements are controlled by the 
output units of the control network , and which also receives sensory informatim:i through its input units. 
In the kitchen there is a socket . If the agent manages to put its plug into the socket then its battery 
will be recharged . In another room there is an oil can. The agent is able to experience different types 
of undesirable. inputs by means of pain units that become activated whenever the agent bumps into 
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an obstacle with one of its extremities. Another pain unit gets activated whenever the agent's battery 
charge falls below a certain threshold. Yet another pain unit gets activated whenever the agent's joints 
begin to rust. The agent is autonomous in the sense that no intelligent external teacher is required to 
provide goals or subgoals for it. 

A pure supervised learning algorithm will not help the autonomous agent to detect appropriate 
behavior for achieving its goal, namely to exist without ever getting undesirable inputs (corresponding 
to negative reinforcement). However, a supervised learning algorithm can be employed for training a 
fully recurrent model network to model the relationships between environmental inputs, output actions 
of the robot, and corresponding reinforcement. The model network in turn allows the system to compute 
gradients for 'minimizing pain ' and 'maximizing pleasure'. 

Since gradients for reinforcement and pain depen .d on 'credit assignment paths' leading 'backwards 
through the environment', the model should not only predict the reinforcement units but also the other 
input units. Here our approach extends the approach of Robinson and Fallside (which bears the most 
resemblance to ours). The purpose of the adaptive 'model network' is to 'make the whole visible dynamics 
of the external world differentiable'. 

In Jordan's terminology. we may say that the purpose of the.model network's 'target units' is to 
predict activations partly of the conventional input units and partly of the reinforcement units. Only a 
few of the target units, namely those corresponding to pain units, 'want' to predict zero values. But all 
target units contribute to credit assignment, as will b e  seen in what follows. 

The adaptive model network bridges the whole 'credit assignment gap' between the output units and 
the input units of the controller. Since the model network is a fully recurrent one, the model represented 
by. it may be as complete as can b e. Unlike with Robinson and Fallside's approach credit assignment 
paths are provided that lead from pain units back to output units back to all input units and so on. 
Thus credit assignment is also possible for output units that had an influence on later inputs, which 
caused ne\v outputs that later caused pain, etc .... 

Unlike with certain 'adaptive critic' approaches ([3] [1] [13]) we are not limited to 'game-like' Marko­
vian environments . Specifically, the model network is potentially able to represent the environmental 
dynamics even if future inputs are not always· fully determined by current activations of the control 
network's input and output units, providing they can be derived through consideration of past inputs 
and outputs. This feature allows credit assignment for the controller even in the general case. (Later we 
will introduce a combination of an adaptive critic component and a recurrent modelfcoritroller compo­
nent. Such a combiation may be even more appropriate for certain spatio-temporal credit assignment 
problems.) 

Note that the model network also bridges the credit assignment gap between time-varying activations 
of the input units. For instance, there are credit assignment paths leading from input units back to other 
input units, and from there· to the output units. These paths are important in the common case whey;t 
the environment can change even if there are no recent output actions. 

Consider figure 2. It shows a control network with internal feedback, which is connected to a robot. 
It also �bows a recurrent network which is supposed to model the dynamics of th'e environment, including 
the effetts caused by the output units of the �ontrol network. The model network receives as input the 
current activation levels of the control network's input (including the current reinforcement) and output 
units. The output of the model network at a given time is trained to be equal to the complete input of 
the control network, including the state of the reinforcement units and pain units. 

Preliminarily let us assume that the model network has already learned to predict future inputs 
exactly. The learning procedure can be any supervised learning algorithm for fully recurrent dynamic 
networks. The training sequences can be chosen from a random distribution of possible sequences of 
interactions between control network and environment. 

Following th� system identification approach of Werbos, Jordan, Munro, Robinson and Fallside, and 
Nguyen and Widrow, we can compute a gradient for the weights ofthe control network with respect 
to undesirable activations (errors) of the reinforcement unit( s). In case of existing externally defined 
'episode boundaries', this can be done by using the 'unfolding in time' techniq�e: After the activation 
spreading phase of an episode, in the conventional cyclic manner errors can be prop<,\gated from the 
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Figure 2: A control network with internal and external feedback is shown. For simplicity, only one 
nonnal input unit {IN}, only one reinforcement input un it (R}, only one hidden unit and only one 
output unit (OUT} are depicted. A model network (only one hidden unit is shown) is trained to simulate 
the environmental dynamics by predicting the control network's input (P RED1N and P REDR ). The 
model J\elwork provides credit assignment paths for the control network. 
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pain units back through the model network and partly through the control network back into the model 
network etc., until all activation stacks are empty. Alternatively we can also employ the liD-Algorithm 
[22] which only needs computations that go forward in time. 

Of course, in both cases only weights of the control network may change according to the rules of 
gradient descent. The weights of the model network have to remain fixed. 

Parallel On-Line Learning of Model Network and Controller 

The scheme outlined in the last section assumes that the model network has already learned to be a 
perfect predictor of the environmental dynamics. This requires an exploratory training phase for the 
model network before training of the control network can start . This approach will be referred to as the 
sequential version. 

With the sequential version, the search element that is usually incorporated within reinforcement 
learning systems through probabilistic activation rules [46] [3] is buried in the exhaustive search of the 
first phase . In theory all possible kinds of relations between inputs and actions of the control network 
and subsequent inputs have to be explored. However, this set of possible relations is infinite in general. 
An alternative approach would employ an external teacher who provides carefully chosen examples of 
typical event sequences in the environment. Then one might hope that the model network correctly 
generalizes from these examples to unseen event sequences. In that case the teacher must know more 
about the environment. 

For realistic large scale applications it is highly desireable for the model network and the control 
network to learn in parallel. (This approach will be referred to as the parallel version .) In general, 
with the sequential version the model network will not b e  able to explore all possible combinations of 
inputs and actions and their consequences. The control network must therefore start learning.with an 
incomplete representation of the external dynamics in the model network. The model network should 
concentrate just on those parts of the external dynamics that are necessary for achieving the goals of the 
control network. Just as Kohonen's self organizing feature maps [11] dedicate more storage capacity to 
fine grained representations of common similar inputs, the model network should dedicate more storage 
capacity and time for fine grained modeling of those aspects of the world that are likely to be relevant 
for the system's main goal. 

Besides efficiency, there are other fundamental reasons for considering parallel on-line learning pro­
cedures. Consider the evolution of language in the case of two communicating agents, where each agent 
includes a model of the other's output and its meaning. If their communication ability actually improves 
then this implies that the outputs and their meanings change. This in turn also requires the respective 
models to change on-line. In general: Changing environments require changing models. 

The parallel on-line version faces other problems as well, due to a trade-off between mathematical 
exactness and the degree of 'on-line-ness'. If we want an on-line procedure th�n we will have to devi­
ate from pure gradient descent in several respects. A list of potential problems associated with such 
deviati'pns from pure gradient descent will follow. 

1. Immediate weight changes. One deviation which is common to both the parallel and the sequential 
version is the following: Instead of accumulating contributions to weight changes over time and actually 
changing the weights after spreading activation , the weights are changed immediately. Here the assump­
tion is that the model network's learning rate is small enough to avoid instabilities [47]. ·Immediate 
weight changes relieve dependence on 'episode boundaries'. 

2. Imperfect mode1 networks. A problem which particularily affects the beginning of the learning 
phase of the parallel version is that the model which is used to compute gradient information for the 
controller may be wrong. What should we expect to happen if the weights of the control network start 
changing inappropriately because of an inaccurate model? 

2.A.: A situation where the control network experiences pain and where its weights are based on an 
inaccurate model will not remain stable, as long as the model network and the control network are not 
both trapped in local minima. If we assume that the model network always finds a zero-point of its error 
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function (which means that it sooner or later will always correctly predict future inputs no matter how 
the controller behaves) , then over time we can expect the control network to perform gradient descent 
according to a perfect model of the visible parts of the real world. 

2.B: The assumption that the model network can always find a zero-point of its error function is not 
valid in the general case. One of the reasons is the old problem of local minima, for which this paper 
does not suggest any solutions . 

2. C: It should be noted that even before the model becomes perfect performance can improve: 
Robinson and Fallside's approach [23] to parallel learning was mentioned above. In the context of 
environments where the environmental state is fully determined by the current input, Jordan [8] al!;!o 
notes that a model network does not need to be perfect to allow increasing performance of the control 
network . 

If the error of the control network is not given by the difference of the desired input (zero pain) for 
the control network and the model .output but by the difference of the desired input and the actual input 
of the control network , then the minima of this difference still are fixed points of the weight changing 
mechanism, as long as the model network has already reached a local minimum . The zero-points of the 
controller's pain are fixed points even if the model network has not yet found a local minimum . The 
minima of the error for the control network can be found if the inner products of the approximated 
gradients for the control network's weights and the exact gradients (according to a perfect model) tend 
to be positive.  (See [37) for an application of imperfect models to attentive vision.) 

9. Instabilities. One additional source of instability (apart from immediate weight changes a Ia [47)) 
could arise if the model network 'forgets' information about the environmental dynamics because the 
activities of the controller push it into a new sub-domain, such that the weights responsible for the old 
well-modeled sub-domain become over-written . 

4. Deadlock. One remaining problem may turn out to be the most serious . Even if the model's 
predictions are perfect for all actions executed by the controller, this does not imply that the algorithm 
will always behave as desired. There is the possibility of a special kind of deadlock: Let u� assume that 
the controller enters a local minimum relative to the current state of an imperfect model network. This 
'relative' minimum does not have to be a minimum relative to a hypothetical perfect model of the world. 
However, it might cause the controller to execute the same action again and again (in a certain spatio­
temporal context) , such that the model does not get a chance to learn something about th e consequences 
of alternative a ctions. This in turn may cause a state of the model/controller system from which it 
cannot escape any more (the deadlock) . 

The sequential version of the algorithm described below represents a rather safe way of eliminating 
these deadlock and instability problems. However, it lacks the flavor of on-line learning and is bound to 
fail as soon as the environment changes significantly. 

To attack the deadlock problem of the parallel version we will introduce probablilistic output units for 
the controller . This requires a modification of the deterministic algorithm (given in the section 'Useful 

Extensions of the Algorithm') . 
DYJ1amic stability problems in general seem to be mathematically quite intractable, since they are 

domairt-dependent . I assume that experiments are needed to find out whether they have to be taken 
seriously. In the �perimental section the sequential version of the algorithm is contrasted with the 
parallel version . 

The Algorithm ' 
The reinforcement learning algorithm described in this section attempts to be a very general one [27] . 
The quantity to be minimized by the model is Et i(Yi (t) - Yipred (t))2 , where Yi(t) is the activation of the 
ith input unit at time t , and Yipred(t) is the mod�l's prediction of the activation of the ith input unit at 
time t. The quantity to be minimized by the controller is Et i (ci - ri (t))2 , where ri (t) is the activation 
of the ith reinforcement input unit at time t and Ci is its desired activation for all times. t ranges over 
all (discrete) time steps. Here the assumption is that what can be learned from the past will be useful 
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in the future . 
There are two different versions of the algorithm :  There is the sequential version and the parallel 

version. With the sequential version, the model network is first trained by providing it with randomly 
chosen examples of sequences of interactions between controller and environment . Then the model 's 
weights are fixed to their current values, and the controller begins to learn. 

With the parallel version both the controller and the model learn concurrently. As mentioned above, 
the advantage of the parallel version is that the :model network focusses only on those parts of the 
environmental dynamics with which the controller typically is confronted. The disadvantages are the 
various problems mentioned in the section on parallel learning, particularily the deadlock problem. 

Below we describe the parallel version (an improved version of the systems described in [30] , [33] , 
and the February version of this report) . The sequential version can be obtained in a straight-forward 
manner. An on-line version of the Infinite Input Duration (IID) learning algorithm for fully recurrent 
networks [22] is employed for training both the model network and the control network . (The liD 
algorithm was first experimentally tested in [47] .) 

At every time step , the parallel version of the algorithm is performing essentially the same operations: 
In step 1 of the main loop of the algorithm, actions to be performed in the external world are 

computed. Due to the internal feedback , these actions are based on both current and previous inputs 
and outputs. For all new activations, the corresponding derivatives with respect to all controller weights 
are updated. 

· 

In step 2 actions are executed in the external world, and the effects of the current action and/or 
previous actions may become visible. 

In step 3 the model network sees the last input and the current output of the controller at the same 
time. The model network tries to predict the new input without seeing it . Again the relevant gradient 
information is computed. 

In step 4 the model network is updated in order to better predict the input (including reinforcement 
and pain) for the controller. The weights of the control network are updated iri order to minimize the 
cumulative differences between desired and actual activations of the pain and pleasure units . Since the 
control network continues' activation spreading based on the actual inputs instead of using the predictions 
of the model network, 'teacher forcing' [47] is used in the model network (although there is no teacher 
besides the environment) . The partial derivatives of the controller 's inputs with respect to the controller's 
weights are approximated by the partial derivatives of the corresponding predictions generated by the 
model network. 

i 
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Notation (the reader may find it convenient to compare with [47]) :  

C is the set of all non-input units of the control network, 
A is the set of its output units, 
I is the set of its 'normal'  input units, 
P is the set of its pain and pleasure units, 
M is the set of all units of the model network, 
0 is the set of its output units, 
Op C 0 is the set of all

.
units that predict pain or pleasure, 

WM is the set of variables for th e weights of the model network, 
We is the set of variables for the weights of the control network, 
Yk ... , is the variable /or the updated a ctivation of the kth unit from M U C U I U P, 
Ykold is the variable for the last valu e  of Yk ... , ,  
Wij is the variable for the weight of the directed conn ection from unit j t o  unit i, 
Due is the Kron ecker- delta, which is 1 for i =  k and 0 otherwise, 
P�j ... , is the variable which gives the current {approximated} value of 8t�;:"', 
P�iold is the variable which gives the last valu e  of Pt., , 
if k E P then CJ: is k 's desired activation for all times, 
if k E I U P, then kpred is the unit from 0 which predicts k, 
ae is th e learning rate for the control network, 
a/l.f is the learning rate for the m odel network. 

I ! U P  1=1 0 I ,  
l Op I=I P I .  

Each unit in I U P U A has one forward connection to each unit in M U C, 
each unit in M is connected to each other unit in M, 
each unit in C is connected to each other unit in C, 
each weight variable of a connection leading to a unit in M is said to belong to W M ,  
each weight variable of a connection leading t o  a unit in C is said t o  belong to We, 
for each weight Wij E WM there are P�rvalues for all k E M, 
For each weight Wij E We there are P�j -values for all k E M U C U I  U P. 

The parallel version of the algorithm works as follows: 

i 
INITIALIZATION: 
For all Wij E WM U We : 

begin Wij - ran dom, 
for all possible k: Ptj.14 - O, ptj,.., - 0  end. 

For all k E M U C ,: Yko1d - 0, Yk ... , - 0. 
For all  k E I U P : 

Set YTr:014  according to the current environment, Yk ... , - 0.  
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UNTIL TERMINATION CRITERION IS REA CHED : 
1. For all i E C : Yi,.., +- £1 · 

l +e - i "'iJIIiol d 
For all Wij E We , k E C: 

PfJ,.., +- Y�< .. . ..  (1 - Yk,..,.) (Ll Wi<lP�iold + DiJ:YJ.,d ) .  
For all k E C:  

YJ:old +- Yk,..,. ,  
for all Wij .E We : Pf;014 +- Pf;,..,. 

2. Execute all actions based on activations of 
units in A. Update the environment. 
For all i E I U P: 

Set Yi,..,. according to environment. 
3. For all i E M : Yi,..,. +- £1 • 

l+e-
i "'iJ IIiold  

For all wo; E WM U Wc , k E M: 
Pfj,..,. +- YJ:,..,. (l - YJ:,..,,) (E, WklP�;.,d + DuYiold ) .  

For all k E M: 

YJ:old +- YJ:ne,. 1 Ylcpredold +- YJ:,. ... , 1 
· Tc · ed · for all Wij E WM : p1J:;4 +- 0, 

� 11 W. . k Tcpred JOT a Wij E e . Piiold +- Pijold . 

Comments on the algorithm. 

1. The on-line algorithm described above is local in time , but not in space. The computation complexity 
per time step is given by 

0(1 WM U We I I  M I I  M U I U P U A I + I We I I  C I I  I U P U C l) .  

2. As mentioned above, we use 'teacher forcing' in  the model network (step 4) . This means that the 
state of the output units of the model network is replaced by the new inputs to the control network, 
and all variables storing gradient information for these units are set equal to zero. This is a natural 
approakh, since the control network continues activation spreading based on the actual inputs, instead 
of using the predictions of the model network The dynamics of the model network therefore are altered 
according to the 'real world' . ·  Williams and Zipser describe an experiment where teacher forcing was 
actually necessary to achieve satisfactory performance [47] . · 

3.  In the version above, no teacher forcing is used for the control network. (Teacher forcing would 
need to continue with zero pain inputs even if there were undesirable activations of the pain units. Here 
the idea. is that a little pain may be informative for the agent, a11d may have an explicit influence on 
future actions.) 

4. Note that the cumulative updates of the control network 's variables for its 8�':;;� .. values do not 
require the knowledge of such variables from the model network, but they do require knowlege about 
unit activations of the model network . · 
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Useful Extensions of the Algorithm 

More Network Ticks than Environmental Ticks 

The algorithm above assumes that from one time step to the next the environment changes in a fashion 
that is predictable by linearly separable mappings from past states . If there is a 'higher degree of 
environmental non-linearity' ,  then the algorithm has to be modified in a trivial manner such that the 
involved networks perform more than one iteration of step 1 and step 3 at each time step . In · any case 
it suffices if there are four network time steps for each environmental time step . This is due to the fact 
that 4-layer-operations in principle are enough for an arbitrary approximation of any desired mapping . 

Explicit Random Actions versus 'Imp orted Randomness' 

As long as the model is inaccurate , the controller partly functions as a random explorer which unin­
formedly causes situations that help the model network to collect new data about the environmental 
dynamics, in order to make the relevant dynamics of the world differentiable. Note that in the version 
above , the control network does not have any explorative capabilities that are independent from the 
environment . One might say that randomness is imported from the environment. 

To attack the deadlock proplem with the parallel version of the algorithm we can introduce a prob­
abilistic element for the controller actions. By employing probabilistic output units for G and by using 
'gradient descent through random number generators' [45] we can introduce explicit explorative ran­
dom search capabilities into the otherwise deterministic algorithm. In the context of the IID algorithm, 
this works as follows: A probabilistic output unit k consists of a conventional unit kp which acts as a 
mean generator and a conventional unit klT which acts as a variance generator. At a given time , the 
probabilistic output' Yk ... ,. is computed by 

where i is distributed e.g. according to the normal distribution. The corresponding Pf; must then be 
updated according to the following rule: 

..... 

Augmenting the Algorithm by Temp oral Difference Methods 

So far; unlike 'adaptive critics' the approach does not profit from approximations to dynamic program­
ming. The model network 's prediction of total future reinforcement is only implicit , the model does not 
try to make a one-shot predic�ion of the overall usefulness of the controllers current 'program' (weight 
matrix) . And, unlike TD-based systems [26] [39] M does not use its own prediction for learning to ex­
plicit!� predict the sum of all future reinforcement : However, it is easy to augment the algorithm with 
such aJ 'adaptive critic ' method . . 

To simplify the discussion, let us assume that the only reinforcement units are pain units. (This is 
just a matter of scaling) . The algorithm's goal is to minimize cumulative pain . Now we introduce the 
TD-principle by changing the error function ofthe units in Op : 

At a given time t, the contribution of each unit kpred E Op to the error of the model network is 

Ykprea(t) - iYkpred(t + 1) - Yk (t + 1) .  

Here again Yi (t) is the activation of unit i at time t. {One must therefore wait for the prediction of 
the next time step to compute this part of M 's error function .) 0 < ;  < 1 is a discount factor which 
serves to avoid predictions of infinite sums. (This procedure affects the first For-loop in step 4 of the 
algorithm.) By learning to predict the sum of the next pain vector plus the next prediction of cumulative 
pain vectors , Op is trained to predict the sum of all (discounted) future pain vectors. 
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The controller's goal is to minimize the absolute value of M's pain predictions. Thus, the contribution 
of time t to the error function of the controller now becomes 

� (Ykpred(t))2 . 
kpredE Op 

This affects the second For- loop in step 4 of the algorithm. 
It should be noted that unlike the approach described in [3] , it is not a state which is evaluated by 

the adaptive critic component, but a combination of a state and an action. In this sense the approach 
resembles the approaches of Watkins [40] and Jordan and Jacobs [9] . 

Note that we obtain a multi- dimensional and recurrent adaptive critic in contrast to previous adaptive 
critics . Since the model network tries to build a model of the context sensitive dependencies of actions 
and their cumulative negative or positive consequences, informed weight changes for the controller may 
be generated . This again contrasts with previous adaptive critics as described in [3] and [1] , which use 
'statistical' update rules. Here the current report and [29] converge. (In [29] a pole balancing experiment 
with a non-recurrent, vector-valued· adaptive critic is described .) · 

It is assumed that model-building adaptive critics have better scaling properties than adaptive critics 
with statistical update rules [34] , particularily when it comes to controllers with multi-dimensional 
actions. The adaptive critic component is responsible for looking into the future, while the recurrent 
model/controller component is responsible for looking into the past and for producing 'individually 
tailored reinforcement signals' (an expression created by Williams [46]) .  I believe that combinations 
of adaptive critics and recurrent ·model/controller systems will often be more appropriate than simple 
model/controller systems. However, only experiments with the simple version have been conducted so 
far. 

Exp eriments in Non-Markovian Environments 

The algorithm possesses a theoretical potential for reinforcement learning in non-Markovian environ­
ments, where at a given time the currently visible part of the world is not enough to make an optimal 
decision for the next action. Can this potential be realized, particularily if the safer, sequential version 
is relaxed in favor of the parallel on-line method? 

Evolution of a Flip-Flop by Reinforcement Learning 

This section demonstrates experimentally that the answer to the above question is 'yes' . Programming 
and tests were conducted by Josef Hochreiter, a student at TUM. 

A controller C had to learn to behave like a flip-flop as described in [47] . C saw a continuous stream 
of input events . The task was to. switch on an output unit whenever an event 'B' occurred for the first 
time after the last event 'A' had happened. In all other cases the output unit had to be switched off. 

On� difficulty with the problem was that there could be arbitrary time ·lags between relevant events . 
An additional difficulty was that no information about 'episode boundaries' was given. The activations 
of the networks were never reset . Thus , activations caused by events from past 'episodes' could have a 
disturbing influence on activation states appearing during later episodes. 

The main difficulty (the one which makes this different from the supervised approach as described in 
[47])  was that there was no teacher for C's output units. Instead, the system had to generate alternative 
outputs in a variety of�patio-temporal contexts, and to build a model of the often 'painful' consequences. 
C's only goal information was the activation of a pain input unit in proportion to the difference between 
C's last real-valued action (from the interval [0 . . .  1]) and the correct action (which would not have been 
punished by the environment) . The proportionality factor was 0.5 .  

Figure 3 shows the topology of the controiler/model combination. The controller had 5 input units, 
3 of them being 'normal' input units for 3 possible events 'A', 'B', and 'X'. Events were represented in a 
local manner: At a given time, a randomly chosen normal input unit was activated with a value of 1 .0 ,  
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the others were de-activated . An additional input unit which was always on provided a modifiable bias 
for each other unit . Finally there was one pain input unit. The controller's output was probabilistic and 
based on one unit for variance generation and one unit for mean generation. The contribution v of the 
variance generator to the probabilistic output was given by its current activation multiplied by 

1 
-ln(rnd - 1) ,  

where rnd was a uniformly distributed random variable with values between 0 .2 and 0.8.  The activation 
of the ouput node was set equal to 0 for m +  v < 0 ,  it was set equal to 1 for m +  v > 1, and it was set 
equal to m + v in all other cases . (Here m is the current output of the mean generator) . The model 
network M had three hidden units and one output unit for predicting the activations of the pain unit . 
To save computing time, M did not try to predict the random activations of the other input units. 

Test runs for the parallel version and for the sequential version were conducted. In both cases, C 
performed one activation update per time step . M, whose task was more complex (since it had to model 
the consequences of all types of errors produced by C) ,  was allowed to perform two activation updates 
per time step. 

With the sequential version M first was trained for 150000 time steps (a uniform random number 
generator replaced the controller outputs) . Then M's weights were frozen , and 50000 time steps were 
used for C's training. Both ac _and OtM were equal to 1 .0.  With 6 out of 10 test runs, the algorithm 
found a working weight matrix for the controller. (The weight matrices were inspected 'manually ' to 
determine whether or not th.ey worked correctly.) 

Why does it take so much more time solving the reinforcement flip-flop problem than solving the 
corresponding supervised flip-flop problem [47])? One answer is: With supervised learning the controller 
gradient is given to the system, while with reinforcement learning the gradient has to be discovered by 
the system. 

The parallel version also led to useful results (in [6] the behavior of the adaptive variance generator 
during the learning phase is described). The parallel version was even more time consuming than the 
sequential version. With ac = 0.1 and OtM = 1.0 only 20 out of 30 test runs required less than 1000000 
time steps to produce a solution. 

This example indicates that with small problems the sequential version can be advantageous . It is 
assumed that a more complex environment would demonstrate the potential advantages of the parallel 
version. However, our current computer equipment does not allow the time consuming simulation of 
network combinations much larger than the · one described above . 

Modifying the algorithm such that C's error was not given by the difference between C's desired input 
(zero pain) and the actual input , but by the difference between C's desired input and M 's corresponding 
prediction, did not lead to significant improvement . The reason was that M never becaxp.e a perfect 
prophet . Often M tended to predict weak (but in the long term hazardous) pain activations , although 
C did not actually experience pain. It was important to use the real error instead of the predicted error. 

Non-ivrarkovian Bal�ncing with a 'Perfect' Model 
Instead of training a model network to simulate the environment one can sometimes gain a 'perfect' 
model by constructing an appropriate mathematical description of the environmental dynamics. This 
saves the time needed to train the model. However, additional external knowledge is required. 

For instance, the description of the environment might be in form of differential or difference equa­
tions . In the context of the algorithm above, this means introducing new P?j variables for each Wij E We 
and each relevant state variable q(t) of the dynamical environment. The new variables serve to accumu­
late the values of �':J:}. To update these variables at time t ,  one must simply differentiate the current 
environmental state variables with respect to the controller weights, instead of differentiating the acti­
vations of the model network (which does not exist any more) . This can be done in exactly the same 
cumulative manner as with the algorithm described above . 
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Figure 3: Topology of the controller/model combination for the flip-flop experiment. · The block below 
represe nts the env·ironment. The dashed line includes the sub-nodes for mean and variance generat ion 
for the controller 's output unit. 
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Josef Hochreiter introduced these modifications for the special case of a non-Markovian balancing 
task. The outputs of the control network served to control forces applied to a cart to which a rigid pole 
was hiD,ged . The cart was able to move along a one-dimensional track.  The cart pole system was modeled 
by the same differential equations (given in the appendix) which were used for a related balancing task 
described in [3] . The task was to learn to balance the pole for as long as possible without hitting the 
edges of the track. 

The task was difficult, because the input was real-valued (no decoder was used) , and no information 
about temporal derivatives of z and () was provided. (Steven Piche conducted experiments with a similar 
task [20] .) Here we have again an example of an environment whose state is not directly visible. The 
environmental state must be derived by considering past inputs as well . This violates one of the precon­
ditions of Markovian processes, which are eSsential for certain 'adaptive critic' approaches as described 
in [3] , [1] , and [13] . With Markovian processes one need not be concerned with the history that led to a 
given state in order to find an optimal strategy for future actions . (Most control problems that humans 
are faced with are not Markovian .) However , it should also be noted that in a certain sense the task was 
less difficult than the flip-flop task: To compute internal representations of pole and angle velocity it is 
not necessary to look back for an arbitrary number of time steps . The last few time steps are sufficient 
in principle. 

The control network consisted of 8 non-input units and 3 input units. The inputs were the 2 'visible ' 
scaled state variables z, 9 (defined in the appendix) , and a bias value which was always 1 .  One of the 
non-input units (called unit o) also served as the output unit . In step 1 of the algorithm a force of 
(50yo,.e .. - 25)N was applied to the cart . There was no pain unit (although there could have been one, 
of course) . Instead , since M was replaced' by a perfect model as described above, the model contained 
a 'pain vari�ble' which at a given time was activated by the value of 

Therefore the maximal value of the pain variable was 1 (see appendix) . The goal was to minimize the 
activations of this variable . C performed one iteration per environmental time step . In contrast to the 
flip-flop experiment , at a given time step it was advantageous not to perform credit assignment for all 
past time steps: All Pt;-variables of the system were set to zero at every 8th time step . In the beginning 
of each test run, the weights were randomly initialized between -0.1 and 0 . 1 .  In step 2 of the algorithm 
the input of the continually running recurrent net changed according to a simulation of the cart-pole 
system (see the appendix) by Euler's method.  The frequency of the simulation was 100Hz, two 'visible' 
time steps were separated by 0 .02s. For the first time step, as well as for each time step following a 
failure state , a random state for the cart-pole system was generated according to the following rule: z 
was randomly chosen from a uniform distribution of all possible positions. () was randomly chosen from 
a uniform distribution of all values from the interval [-0.1 , . . .  1 0 . 1] .  The time derivatives of both state 
variables were initialized with 0. (The randomness introduced in the beginning of each trial sometimes 
led to 't near-failure state which made it impossible to obtain a long trial .) 

In our experiments the cart-pole system would not stabilize indefinitely. However, significant perfor­
mance improvement was obtained. To test learning performance, the following procedure was carried 
out: In the beginning of each test run (aft�r weight initialization) , 100 trials were conducted with the 
learning mechanism being disengaged. The average time until failure was about 25 time steps . Then 
1000 training trials with ac = 1 . 0  were conducted . In 17 out of 20 test runs it was possible to obtain 
(within a few hundred; trials) trials with more than 1000 time steps balancing time. 

The frozen weight matrix with the longest average balancing time was again tested for 100 additional 
trials. The average balancing time often had increased significantly. When a trial was started with 
'friendly' initial conditions, balancing times of mo.re than 3000 time steps were often achieved, sometimes 
even many more than that . 
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Learning t o  Communicate 

In future work I intend to investigate another interesting experiment :  a study of the evolution of language 
in the case of two communicating agent!!, both using the algorithm above. Each agent will not only able 
to manipulate 'real world' objects but also to produce 'acoustic' outputs and to receive 'acoustic' inputs. 
Each agent will include a model of the other's output and its meaning. ('Meaning' is only implicitly 
given by an evaluative critic who judges the effects of what the agents do.) Tasks are given to the agents 
that cannot be solved by one agent alone such that there is a n eed for cooperation. This means that the 
agents will be forced to learn to communicate in a sequential manner. 

Using the Model Network for Planning Action S equences 

Robinson and Fallside stated that their approach corresponds to Barto, Sutton, and Anderson's 'Adap­
tive Heuristic Critic' (AHC) algorithm [3] , and said that the model network corresponds to the adaptive 
heuristic critic. A major difference, howeve�, between the AHC and the model network is that the AHC 
has the potential to immediately look far into the future, while the model network usually looks forward 
just one time step. The ARC's evaluation of a system's state at time t can become overwritten by its 
evaluation at time t + 1 .  Thus during successive training episodes expectations about future events can 
be transported 'back into time' for arbitrary numbers of time steps . This is a main motivation behind 
the adaptive critic/model/controller combination described in the section on 'Useful Extensions of the 
Algorithm' . . 

It is also possible to use the model network for predicting events that are 'hidden deep in the future' 
[30] . The model network, as long as it is perfect, contains all information about future reinforcement . 
By letting the combination of model network and control network 'run forward in time' for a predefined 
number of time steps, one can perform a simulation of future events . .  If such a. run predicts pain, then 
the system can perform gradient descent in predicted pain without actually experiencing pain . This 
means that an immediate decision can be made about how to change future behavior. 

The disadvantage of this is that a lot of computation is required to extract this information . With 
on-line learning, the consequences are high peak computation times. For instance, if the system at 
certain time steps plans future actions by looking 10 time steps into the future (without neglecting its 
usual credit assignment tasks) , then it consumes about 10m times the amqunt .of computation per step 
as without such simulation (using essentially the same algorithm for simulation-based weight changing 
as for normal weight changing) , where m is the number of successive simulation repititions required for 
convergence of the gradient descent procedure. · 

The reason for this inefficiency is that every future event is predicted, not just the relevant events. 
The problem is, of course, to decide in the general case which future events will be relevant for planning, 
and which will not. {This leads to the old frame-problem of conventional AI.) 

Implementing Dynamic Curiosity and Boredom 
Only if the model network is a good predictor of the environmental dynamics can w e  expect the controller 
to converge. In the current section we motivate the introduction of the explicit desire to improve the 
world model and show a possibility for implementing it in on-line model-building systems such as the 
ones described above [3 1] . 

Many biological learning systems, particularily the more complex ones, show an interplay of goal­
directed learning and explorative learning. In addition to certain permanent goals (like avoiding pain) , 
goals are generated whose immediate purpose seems to be solely an increase of knowledge about the 
world. So far this interplay has not been addressed at all in the connectionist literature. 

The explorative side oflearning (related to something that usually is called curiosity) is not completely 
unsupervised, as is sometimes assumed. Curiosity helps to learn how the world works, which in turn 
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helps to satisfy certain goals . However, the goal-directedness of curiosity is less obvious than the goal­
directedness of the algorithm described above (and of less general algorithms described in other papers 
on goal-directed learning). 

Curiosity is related to what one already knows about the world. One gets curious as soon as one 
believes that there is som ething that one does not know. However, the goal of learning how the world 
works is dominated by other goals (like avoiding pain) : One does not know exa ctly how it feels to put 
one's hand into a meat grinder; however, one does not want to know. 

Since curiosity only makes sense for systems that can dynamically influence what they learn, and since 
curiosity aims at minimizing a dynamicaily changing value, namely, 'the degree of ignor�nce about some­
thing, it makes sense only in on-line learning situations where there is some sort of dynamic. attention. 
Thus the precondition of curiosity is som ething like the parallel version of our on-line learning algorithm 
described a bdve. This algorithm builds a world model for goal-directed learning of the controller. The 
controller's potentialfor dynamic attention is given by the external feedback. The world model adapts 
itself to whatever the controller focusses on (see [37] for an application of similar adaptive control tech­
niques to the problem of learning selective attention) . The direct goal of curiosity and boredom is to 
improve the world model . The indirect goal is to ease the learning of new goal-directed action sequences. 
The contribution of this section is to show one possibility for augmenting the algorithm by curiosity and 
its counterpart boredom. 

The ba.Sic idea is simple: We introduce .an additional reinforcement unit for the controller (see figure 
4.) . This unit, hereafter called the curiosity unit, gets activated by a process which at every time step 
measures the Euclidian distance between reality and prediction of the model network. The activation 
of the curiosity unit is a function of this distance. Its desired value is a. positive number corresponding 
to the ideal mismatch between belief and reality. The effect of the algorithm described in the first 
section is that there is positive reinforcem ent whenever the model .network fails to correctly predict the 
environment. Thus the usual credit assignment process for the controller encoura.ges · certain past actions 
in order to repeat situations similar to the mismatch situation. 

As soon as the modernetwork has learned to correctly predict the environment in former 'mismatch 
situations' ,  actions leading to such situations are automatically weakened. This is because the activation 
of the curiosity unit goes back to zero. Boredom becomes associated with the corresponding situations. 

Th e same complex mechanism which is used for 'normal'  goal-directed learning is used for imple­
menting curiosity and boredom. Th ere is no need for devising a separate system for improving th e world 
model. 

The controller's credit assignment process is aimed at repeatedly entering situations where the model 
network's performance is not optimal. It is important to o bserve that this process itself makes use of the 
m odel n etwork! The model network has to predict the activations of the curiosity unit . Thus the model 
network partly has to model its own ignorance, it has to learn to know that it does not know certain 
details. 

What is the ideal mismatch mentioned above? In conventional AI the saying goes that a system 
can not learn· something that it does not already almost know. A consequence of this is that the 
functid:t which translates mismatches into rei:Uforcement should not be a linear one. Zero reinforcem ent 
should be given in case of perfect matches, high reinforcement should be given in case of 'near-misses ', 
and low reinforcement again should be given in case of strong mismatches. This corresponds to a 
notion from 'esthetic information theory' which tries to explain the feeling of 'beauty' by means of 
the quotient of 'subjective complexity' and 'subjective order' or the quotient of 'unfamiliarity' and 
'familiarity' (measured, in an information-theoretic manner) . This quotient should achieve a certain ideal 
value. (See N ake [16] for an overview of approaches to formalizing 'esthetic information' .  Interestingly, 
the number t plays a significant role in at least some of these approaches. )  However, at the moment, 
the precise nature of a good mapping between (mis)matches and reinforcement is unclear and subject 
of ongoing research . 

Our currently experimental research is aimed at answering the following questions: What are useful 
learning rates? (The model network should clearly learn faster than the controller.)  What are useful 
relative strengths of pure goal-directed reinforcement and 'curiosity reinforcement ' ?  And what are the 
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Figure 4: This figure is derived from figure �- An additio nal reinforcement unit CUR for the control 
netwo rk gets activated by 'ideal mismatches ' bet ween ezp�ctations of the model network a nil reality. The 
model network needs an additional output unit {P REDcu R) for predicting CUR. It models its owu 
ignora nce, thus showing a rudimentary form of introspective beh avior. 
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properties of a good mapping from mismatches to reinforcement? 
Although these questions are still open, in some preliminary experiments with a linear mapping from 

mismatches to reinforcement it has already been demonstrated that errors of the model network can be 
reduced by generating curiosity reinforcement in an on-line manner. 

It should be mentioned that the basic idea of implementing curiosity and boredom is not limited 
to the particular algorithm described in the first section. Every model-building on-line algorithm for 
learning goal directed behavior might be augmented by a similar implementation of the desire to improve 
the world model. The basic motivation is: Instead of using some separate mechanism for improving the 
world model, we want to make use of the capabilities of the goal-directed learning algorithm itself. 

In· the context of learning algorithms as above, the interesting side effect is: Since the learning 
algorithm depends on the model network, the model network has to make a prediction about its own 
current prediction capabilities. The activations of the model network are (partly) interpreted as a 
statement about the quality of the current weights of the model network. Note that this is a rudimentary 
form of introspective behavior .  

· 

A Connection to Meta-Learning. 
In the context of the previous section, a very interesting aspect of the notion of model networks should 
be mentioned.  A model network can be used not only for predicting the controller's inputs but also 
for . predicting its future outputs. A perfect model of this kind would model the internal changes of the 
control network. It would predict the evolution of the controller, and therby the effects of the gradient 
descent procedure itself. In this case, the flow of activation in the model network would model the 
weight changes of the control network. This in turn comes close to the notion of 'learning how to learn'. 
l believe that extensions of these rudimentary forms of intraspective neural algorithms will be the key . to 
learning systems which are much more �phisticated than the ones 'we know so far. However, although 
such concepts of 'meta-learning' are interesting by themselves and also potentially useful for systern8 
with introspective capabilities, their consequences are beyond the scope of this paper. 

Concluding Remarks 

Program Inputs Differentiable with Respect to Programs 

Let us view a network with a fixed topology as a computer. Its program is the weight matrix. One of the 
most interesting aspects of many connectionist algorithms is that program outputs are differentiable with 
respect to programs. A simple program generator (the gradient descent procedure) produces increasingly 
successful programs if the desired outputs are known. 

In typical reinforcement learning situations, the environment is not a priori represented in a differ­
entiabl,e form. So the main reason for building connectionist world models in the style above is to 'make 
the wolld differentiable' .  Thus even program jnpv.ts crui. become differentiable with respect to programs. 
World models thereby close the gap between outputs and inputs. A differentiable world model allows 
the program generator to perform an informed search for better goal directed programs. 

The degree of informedness of this search for suitable programs is a principle difference between 
the approach presented in this paper and the reinforcement learning algorithms for recurrent nets in 
the style of Williams (46] or Schmidhuber [28] [35] . This degree of informedness also is not present in 
the system which bears the most relationships to our approach, namely, Robinson and Fallside's two­
network-reinforcement-learner. As described above, they also model the reinforcement's dependence on 
past inputs and outputs, but their model is comparatively incomplete: Many credit assignment paths 
through the environment are lacking. The more general on-line approach described in this paper views 
reinforcement as another type of input, where all inputs have to be modelled, and where a few have 
desired (zero) activations at every step . This approach is based on the idea that understanding the world 
can greatly reduce the complexity of the search for adequate goal directed behavior. 

·,, 
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Limitations 

1. The algorithm is not local in space. 
2. As with all gradient descent algorithms for complex non-linear error functions, there is the problem 

of local minima. This paper does not offer any solutions to this problem. 
3. Even if the system described in this paper is augmented by probabilistic output units for the 

controller, deterministic reactions from the environment are assumed. In case of non-deterministic 
environments , the model network has a tendency to predict average values for non-deterministic inputs . 
This is not always what we want: There is no guarantee that gradient descent 'through the model 
network' will still make sense in this case. 

· A  solution to this problem might be to employ differentiable random number generators for the output 
units of the model network itself, in order to approximate the 'true' context-sensitive probabilities of 
certain inputs . However, this possibility has not yet been investigated. 

3 .  More severe limitations of the algorithm are the inherent problems of the concepts of 'gradient 
descent through tim e ' and adaptive critics themselves. I have argued that neither gradient descent nor 
adaptive critics are practical for large scale dynamic problems where there are long time lags between 
actions and ultimate consequences [36] . Gradient descent procedures always consider all past events 
for credit �signment , which is too much. They do not selectively concentrate on certain relevant past 
events. They do not aim at incrementally composing long control sequences from short ones. They do 
not aim at 'dividing and conquering', and they do not have the concept of something like a sub-program. 
For this reason, first steps are made in [36] towards adaptive sub-goal generators and adaptive 'causality 
detectors '. 
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App endix: Det�ils of Cart-Pole Simulation 

The cart-pole system, taken from [3] , [38] , and [1] , was modeled by the equations 

":1 • 
gsinO + cosO -F-ml8 dnB+Pc•un(.i) _ !:!z.! 

jj = mc+m ml 
1(.1 - �) 3 m0+m 

.. . F + ml(02sin0 - OcosO) � P.eBgn(i) z = --->--------''--....:....;;;_.:;;.........:.. ...... 
me + m  

where -0.21 < () < 0 .21 (angle of pole with the vertical) , -2.4m < z < 2 .4m (position of cart on track) , 
g = 9.8� (gravitational acceleration) , me = lkg (mass of cart) , m = 0 . 1kg (mass of pole) , 1 = 0.5m 
(half poie length) , P.e ' =  0 .0005 (coefficient of friction of cart on track), Jlp = 0.000002 (coefficient of 
friction of pole on cart) , F E [-25N, 25N] (force applied to cart 's center of mass, parallel to track) . 
(Note that there is a typing error in the equations given in [3] , [38] , and [1] : There the gravitational 
constant is given as g = ·-9 .8� ) . 

The two scaled input variables were z = t + 4�8z and 0 = t + 0.�20. 
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