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Abstract

In this paper we consider the capacitated vertex cover problem which is the variant of vertex cover
where each node is allowed to cover a limited number of edges.We present an efficient, deterministic,
distributed approximation algorithm for the problem. Our algorithm computes a(2 + ǫ)-approximate
solution which violates the capacity constraints by a factor of (4 + ǫ) in a polylogarithmic number of
communication rounds. On the other hand, we also show that every efficient distributed approximation
algorithm for this problem must violate the capacity constraints.

Our result is achieved in two steps. We first develop a2-approximate, sequential primal-dual al-
gorithm that violates the capacity constraints by a factor of 2. Subsequently, we present a distributed
version of this algorithm. We demonstrate that the sequential algorithm has an inherent need for synchro-
nization which forces any naive distributed implementation to use a linear number of communication
rounds. The challenge in this step is therefore to achieve a reduction of the communication complexity
to a polylogarithmic number of rounds without worsening theapproximation guarantee too much.
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1 Introduction

The capacitated vertex cover problem (capVC) is the variant of vertex cover in which there is a limit on
the number of edges that a vertex can cover. A precise formulation of the problem is as follows. We are
given ann-vertex undirected graphG = (V, E), non-negative weightswtv and vertex capacitiesBv ≥ 1 for
all verticesv ∈ V . A solution to a givencapVC instance consists of a subsetC ⊆ V and an assignment
π : E → C of edges to vertices such that

1. π(e) ∈ {u, v} ∩ C for all edgese = (u, v) ∈ E, and

2. |π−1(v)| ≤ Bv for all v ∈ C.

The first set of constraints says that every edge must be covered by some vertex in the coverC. The second
condition limits the number of edges that can be assigned to any cover vertexv to Bv. The goal is to find a
feasible solution that has minimum total weight

wt(C) :=
∑

v∈C

wtv.

We emphasize the difference between the abovehard-capacity version ofcapVC and itssoft-capacity coun-
terpart (capVCs): in capVCs, each vertexv ∈ V may be includedxv ≥ 0 times in a cover. Vertexv then
contributesxvwtv to the weight of the cover, and the maximum number of edges that can be assigned tov is
xvBv.

In this paper we presentbicriteria sequential and distributed approximation algorithms for the (hard) capac-
itated vertex cover problem. Given a feasible instance of the problem of optimal weightopt, our sequential
primal-dual algorithm computes a vertex coverC of weight

∑

v∈C wtv ≤ 2opt, which assigns at most
2Bv edges to each cover vertexv ∈ C. Note that, differently from the hard-capacity case, capacities might
be violated. However, the amount of the violation is bounded, which is not thecase forcapVCs. We also
remark that, unlikecapVCs, everyv ∈ C contributeswtv to the weight of the cover even when its capacity
Bv is exceeded.

The distributed implementation of our method has an additional input parameterǫ > 0 and computes a
cover of weight at most(2 + ǫ)opt that violates the capacity bound of each cover vertex by a factor of at
most(4 + ǫ). In the synchronous, message-passing model of computation the distributed algorithm takes
O(log(nW )/ǫ) many rounds, where

W = wtmax/wtmin

is the ratio of largest to smallest vertex weight in the given instance. This reduces toO(log n/ǫ) for the
interesting case of unit weights. We remark that our algorithm is deterministic, while typically efficient
distributed algorithms for graph problems require randomization (see [11, 20, 22, 23, 27, 28] among others).

Observe that any sub-linear distributed algorithm forcapVC must violate the capacity constraints. Consider
for instance a ring where every vertex has unit capacity. A feasible solution provides a consistent orientation
of the ring, something that requires a linear number of communication rounds.Therefore a bicriteria solution
is the best one can hope for in a distributed setting. In this paper we show that indeed every efficient
distributed approximation algorithm forcapVC must violate the capacity constraints by a large additive
term.
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In our opinion the most interesting aspect of our work is that the distributed algorithm is derived in a sys-
tematic fashion from a sequential primal-dual algorithm. To our knowledge, the first result of this kind is the
(2 + ǫ)-approximate vertex cover algorithm described in [16]. Although described for the PRAM setting,
the algorithm can be easily adapted to the distributed case. Our paper takes the primal-dual approach pio-
neered in [16] one step further, giving a new and considerably more sophisticated example. Chudak et al. [4]
recently showed that the techniques introduced in this paper can be extended to yield efficient distributed
primal-dual algorithms for vertex cover with soft capacities and for the facility location problem. The power
of the primal-dual method in the design of approximation algorithms is well established. In this paper we
provide further evidence to the fact that it is also a valuable tool in the design of distributed algorithms.

Capacity constraints arise naturally in distributed computing and computer networking. E.g., the scatternet-
formation problem of ad hoc Bluetooth networks asks for a small dominating set where each vertex in the
set dominates at most 7 vertices [6]. More generally, a small dominating set can act as the backbone of
the routing infrastructure of an ad hoc network (see [29, 26] and references therein). Capacities model
computational and energy limitations and provide effective means to enforceload distribution among the
vertices of the backbone. To the best of our knowledge, our paper is the first result that considers a capacitated
network design problem from the distributed computing point of view. Recently, Moscibroda and Kuhn gave
an LP-based, bicriteria distributed solution to the capacitated dominating set problem [17].

Related work. Vertex cover with capacities has received considerable attention in recent years in the se-
quential setting, while our main motivation is to study it from a distributed point of view. The capacitated
vertex cover problem was first introduced by Guha et al. [12] who presented a simple4-approximate LP-
rounding based algorithm forcapVCs. Later on, the authors showed a2-approximate primal-dual algorithm.
Subsequently, Gandhi et al. [10] presented a2-approximate LP-rounding algorithm forcapVCs.

The hard-capacitated vertex-cover problem is significantly harder thanits soft-capacitated variant. Chuzhoy
and Naor [5] first gave a sophisticated3-approximate LP-rounding algorithm for the special case ofcapVC
with uniform vertex weights. Finally, in [9], Gandhi et al. presented an LP-rounding-based2-approximation
algorithm forcapVC with uniform weights.

In [5], Chuzhoy and Naor also showed thatcapVC in the presence of non-uniform vertex weights is as hard
to approximate as set-cover. Lund and Yannakakis [24] proved that there is noo(log n)-approximation for
the latter problem unless NP⊆ DTIME(nO(log log n)) (see also [8] for a refined result). Based on work by
Bellare et al. [3], and Raz and Safra [30], Alon et. al [1] recently improved upon this result and showed that
no o(log n)-approximation for the set-cover problem is possible unless P= NP. Chuzhoy and Naor’s work
implies that these hardness bounds translate to thecapVC problem.

The best known approximation algorithm for the vertex-cover problem without capacity constraints, is due
to Karakostas [15] who presented a(2 − Θ(1/

√

log(n))-approximation for the problem. This improves
upon earlier(2 − o(1))-approximation algorithms due to Halperin [13], Bar-Yehuda and Even [2]and
Hochbaum [14]. As mentioned, the same bound is essentially achievable in thedistributed setting [16].

Unconditional lower-bounds based on communication constraints, as opposed to unproven complexity the-
oretic assumptions, have been proved since the early stages [21, 25]. For more recent work see [18]. Also,
Elkin [7] recently established trade-offs between the performance guarantee of a distributed approximation
algorithm for the minimum-cost spanning tree problem and the number of communication rounds it needs.

Finally, we mention that LP-duality has been previously used to design distributed algorithms for the domi-
nating set problem [19, 28].
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Our contribution. The first result we give is a bicriteria primal-dual approximation algorithm for capVC.

Theorem 1 Given a feasible capVC instance with capacities Bv ≥ 1 for all v ∈ V . There is a polynomial-
time primal-dual algorithm that computes a vertex cover (C, π) of weight at most 2opt that assigns at most
2Bv edges to each vertex v ∈ C.

We remark that if the input instance does not have a feasible solution, then our algorithm either computes
a feasible solution for the (capacity) relaxed version of the problem, or it terminates with a certificate of
infeasibility.

Theorem 1 is a natural step toward proving the main result of this paper.

Theorem 2 Given a feasible instance of capVC with capacities Bv ≥ 1 for all v ∈ V , and let ǫ ∈ (0, 1]
be an input parameter. There is a distributed deterministic algorithm that computes a vertex cover (C, π) of
weight at most (2 + ǫ)opt that assigns at most (4 + ǫ)Bv edges to each vertex v ∈ C. The algorithm needs
O(log(nW )/ǫ) rounds.

We remark that the message-size of our algorithm isO(log n + log wtmax).

Note that the running time is strongly polylogarithmic for polynomially large weights only. This includes
the important special case of unit weights. Obtaining a strongly polylogarithmicalgorithm in general is a
challenging open problem.

Similar to the sequential case, if the input instance does not have a feasible solution the algorithm either
computes a feasible solution for the relaxed version of the problem, or terminates with a certificate of infea-
sibility. The latter however is necessarily local in nature. That is, some vertices will know that the algorithm
has failed, but it requires a linear number of communication rounds to distribute this information across the
network in general.

These theorems are complemented by the following lower-bound on the communication complexity of any
algorithm for the weightedcapVC problem with hard capacities:

Theorem 3 Let B, k ≥ 1 be integer parameters. There is a capVC instance with uniform vertex capacities
B, for which any distributed approximation algorithm that assigns less than (1 + 1/k) · B edges to all
vertices, must take at least k communication rounds.

This result shows in particular that violating the capacity constraints is necessary and provides a trade-off
between violation of capacities and running time.

Organization of the paper. In the following Section 2 we describe a sequential algorithm for the capacitated
vertex-cover problem and give a proof of Theorem 1. The next section shows how to turn the sequential
algorithm into a distributed one. This is done in two steps. First, we show how to convert the sequential
algorithm into a distributed one that computes a vertex cover that satisfies the approximation requirement.
In this step we assign only a subset of the edges. In the second and finalstep we assign all the remaining
edges. The proof of Theorem 3 is given in Section 4.
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2 A sequential primal-dual algorithm

We present a so calledprimal-dual algorithm for thecapVC problem. The algorithm and its analysis are
based on linear programming duality. In the next section we therefore introduce a linear programming
formulation of the problem together with its dual. Following that we describe oursequential algorithm and
we conclude this section with an analysis of the presented method.

2.1 A linear programming formulation

The problem can be formulated as an integer program where we introducea binary indicator variablexv for
eachv ∈ V . We letxv = 1 if v ∈ C andxv = 0 otherwise. For each edgee = (u, v) ∈ E we introduce two
binary variablesye,v andye,u. Forw ∈ {u, v} we letye,w = 1 if and only if π(e) = w. In the following let
δ(v) be the set of edges incident to vertexv ∈ V in G.

min
∑

v∈V

wtv · xv (IP)

s.t ye,v + ye,u ≥ 1 ∀e = (u, v) ∈ E (1)

ye,w ≤ xw ∀e = (u, v) ∈ E,

∀w ∈ {u, v} (2)
∑

e=(v,u)∈δ(v)

ye,v ≤ Bv · xv ∀v ∈ V (3)

ye,v, xv ∈ {0, 1} ∀e ∈ E, v ∈ V (4)

We now let (LP) be the standard LP relaxation obtained from (IP) by replacing the constraints (4) by

ye,v ≥ 0 ∀e = (u, v) ∈ E

0 ≤ xv ≤ 1 ∀v ∈ V (5)

In the following we use(i)v, (i)e, and(i)e,v to denote constraint(i) for vertexv ∈ V , edgee ∈ E, and pair
(e, v) ∈ E×V , respectively. In the linear-programming dual of (LP) we associate variablesαe, βe,w, γv and
ωv with constraints(1)e, (2)e,w, (3)v, and(5)v, respectively. The linear programming dual of (LP) is then

max
∑

e∈E

αe −
∑

v∈V

ωv (D)

s.t αe ≤ βe,w + γw ∀e = (u, v) ∈ E,

∀w ∈ {u, v} (6)
∑

e=(u,v)∈E

βe,v ≤ wtv + (ωv − Bv · γv) ∀v ∈ V (7)

α, β, γ, ω ≥ 0

2.2 The algorithm

We remark that the following simple LP rounding scheme similar to that proposed by Guha et al. [12] yields
a 2-approximate vertex cover in which each vertexv covers at most2Bv edges: Solve the LP relaxation
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(LP) and let(x, y) be its optimal solution. The cover setC consists of all verticesv with xv ≥ 1/2. For
e = (u, v) ∈ E, constraint(1)e implies that there isw ∈ {u, v} such thatye,w ≥ 1/2. We assign edge
e to vertexw in this case. Clearly, the weight of the vertices inC is at most twice the optimal LP value.
Moreover, each vertexv ∈ C has at most2Bv assigned edges.

We provide an alternate primal-dual algorithm in this section. As we shall see later, this algorithm possesses
an efficient distributed implementation.

The high-level idea in primal-dual algorithms is to find a pair of feasible solutions for (D) and (IP). Subse-
quently we upper-bound the performance ratio of the algorithm by bounding the multiplicative gap between
the objective values of the two solutions. Thus, our goal is to find a primal-dual pair of solutions whose
objective functions values are within a small multiplicative constant of each other. Primal-dual algorithms
typically construct such a pair in an iterative manner: starting from a trivialfeasible dual solution and an
infeasible primal one, the algorithm continuously raises the objective value of the dual solution while main-
taining its feasibility, and it changes the partial primal solution in order to attain feasibility.

Our primal-dualcapVC algorithm starts with the dual feasible solutionα = β = γ = ω = 0 and the
infeasible primal solutionx = y = 0. In order to obtain a feasible vertex cover, we have to a) select a set
of cover vertices, and b) assign each edgee ∈ E to one of its end-points (which must be in the cover). As
is typical in primal-dual approximation algorithms, these decisions are governed byprimal complementary
slackness.

In the following we say that a vertexv ∈ V is tight for a current dual solution(α, β, γ, ω) if constraint(7)v

holds with equality. Similarly, a pair(e, w) ∈ E × V is tight if constraint(6)e,w is satisfied with equality.
Our algorithm will now increase the value of some of the dual variables and as a consequence create tight
vertices and tight edge-vertex pairs. Tight vertices are candidates forour final cover and we will eventually
choose a subset of these. Each edgee will eventually be assigned to one of its tight endpoints. In particular,
edgee = (u, v) ∈ E will only be assigned to endpointw ∈ {u, v} if (e, w) is tight. Once an edge is assigned
to a vertex, we will remove it from the graph and continue. Similarly, once all edges incident to a certain
vertexv ∈ V have been decided, the vertex is removed from the graph. The algorithm terminates, when the
graph is empty and, hence, when all edges have been assigned.

We now describe the algorithm. As customary with primal-dual algorithms, we describe it as a continuous
process that can be implemented in polynomial-time by standard techniques. Initially all edges are unas-
signed. At any given point, the algorithm increases the value of dual variablesαe of all unassigned edges
uniformly at the same (unit) rate. Increasing variablesαe for unassigned edges increases the left-hand side
of constraints of type (6) and we will have to also increase some of theβ andγ variables in order to maintain
dual feasibility. We describe the update process for these variables foreach vertexv ∈ V depending on its
tightness:

v is non-tight In this case, we increaseβe,v for all e ∈ δ(v) uniformly. Thus, the left- and right-hand side
of constraint(6)e,v for all e ∈ δ(v) increase at the same rate and feasibility is maintained.

v is tight If v has at most2Bv incident edges, we addv to the cover, assign all edges inδ(v) to v and deletev
and the newly assigned edges fromG. Otherwisev has more than2Bv incident edges. In this case, we
increaseωv at rateBv, γv at unit rate and we leaveβe,v as is for alle ∈ δ(v). As a consequence, left-
and right-hand side of(7)v remain unchanged, and left- and right-hand side of(6)e,v for all e ∈ δ(v)
change at the same (unit) rate. Feasibility is therefore maintained also in this case.
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Figure 1: An example instance for the primal-dualcapVC algorithm.

We emphasize that our algorithm maintains a feasible dual solution for (D) forthe original instance. In
particular, deleting a vertexv and an edgee ∈ δ(v) means that the values of variablesαe, βe,v, ωv andγv

are frozen at their current state from this point on in the algorithm. The algorithm terminates when all edges
have been assigned.

We demonstrate the algorithm using the example instance in Figure 1 (i) where welet Bu = 2, Bv = 3 and
Bw = ∞ for all other verticesw. We also choosewta = 2, wtu = 5, wtv = 6 and all other vertices have
infinite weight. In the following we useV andE to refer to the vertex and edge sets of the given instance.

Running our algorithm for one time unit results inαe = 1 for all e ∈ E andβe,w = 1 for all w ∈ V and for
all e ∈ δ(w). At this point, constraint(7)u is tight. Asu has5 > 2 · Bu = 4 unassigned incident edges, we
can not assign any edge at this point. Thus, we continue to increaseαe for all edgese ∈ E. Simultaneously,
we increaseβe,w for all w ∈ V \ {u} and for alle ∈ δ(w) at unit rate, we increaseωu at rateBu = 2 andγu

at unit rate.

After 1 more time unit, the positive dual variable values are

αe = 2 ∀e ∈ E

βe,u = 1 ∀e ∈ δ(u)

βe,w = 2 ∀w ∈ V \ {u},∀e ∈ δ(w)

ωu = 2

γu = 1.

At this point, verticesa, u andv are tight. Vertexa andv have one and three incident edges, respectively,
and we can hence add both vertices to the cover and delete them and their incident edges from the graph.
The number of remaining edges all of which are incident tou is now4 = 2Bu. We can assign all of them to
u.

Figure 1 (ii) shows the computed primal solution; cover vertices are shadedand arc directions indicate edge
assignment. We note that the primal solution is feasible for (IP) only if we relaxthe capacity constraint of
vertexu. In fact, it is not hard to see that any feasible solution to (IP) for this instance must have infinite
weight.
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2.3 Analysis

In this section we present a proof of Theorem 1.

Assume first that the algorithm from Section 2.2 does not terminate for a given input instance. It is then
not hard to see that the algorithm must reach a point in the execution, whereeach tight vertexv ∈ V has
degree more than2Bv and where each remaining edge is incident to tight vertices on both ends. Using the
pigeon-hole principle it follows that, in any assignment of edges to vertices,there must be at least one tight
vertexv that is assigned more thanBv edges. Thus the given input instance is infeasible, and the set of tight
vertices together with the set of unassigned edges certifies this fact.

In the following we focus on feasiblecapVC instances. For such instances our algorithm terminates with a
coverC, an assignment{ye,v}e∈E,v∈V of edges to vertices in the cover, and a corresponding dual solution
(α, β, ω, γ). We first show that the dual is feasible for (D).

Lemma 1 The dual solution (α, β, ω, γ) is feasible for (D).

Proof: We can think of the execution of the algorithm as a process over time:The algorithm starts at time
0 and then raisesαe by 1 for all edges per unit of time. We prove the lemma by induction on (appropriately
discretized) time.

Our initial dual solution is clearly feasible. Now consider a later time in the algorithm. LetO be the set of
tight vertices at that time.

For a vertexv ∈ V \ O and for an edgee ∈ δ(v) we raiseαe andβe,v simultaneously and hence maintain
dual feasibility. For a vertexv ∈ O we raiseωv at a rate ofBv per time unit and we raiseγv at unit rate. For
all edgese ∈ δ(v) we raiseαe at unit rate as well. It is not hard to see that we maintain dual feasibility this
way.

We are ready to prove that our algorithm computes a2-approximate primal solution.

Lemma 2 Our algorithm terminates with a vertex cover C and a corresponding feasible dual solution
(α, β, γ, ω) whenever there exists a feasible solution (x, y) for (LP). In particular, we must have

∑

v∈C

wtv ≤ 2

(

∑

e∈E

αe −
∑

v∈V

ωv

)

.

Proof:

Let v ∈ C be a vertex in the computed vertex-cover and lete ∈ δ(v) be an edge that is incident tov. Notice
that our algorithm always maintains

αe ≥ βe,v (8)

sinceαe is raised wheneverβe,v increases and the rate of increase is the same.

Observe also thatγv is only increased if the degreedeg(v) of vertexv exceeds2Bv. Let δ1(v) ⊆ δ(v) be
the set of edges that are incident tov whenγv is increased for the last time in the algorithm and notice that
we must have|δ1(v)| > 2Bv.

Consider an edgee ∈ δ1(v) and note thatγv andαe increase at the same rate after the point of time where
v becomes tight. Notice also that the algorithm increasesαe andβe,v at the same rate beforev becomes
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tight. Variableβe,v is not increased afterv becomes tight, andγv is not increased beforev becomes tight.
Therefore, for alle ∈ δ1(v) we must have

αe = βe,v + γv. (9)

Sincev is tight when the algorithm adds it to the cover and deletes it from the graph, itmust also be the case
that

∑

e∈δ(v)

βe,v = wtv + ωv − Bv · γv = wtv (10)

where the last equality follows from the fact that we raiseωv at a rate ofBv if and only if we raiseγv at a
rate of1.

We useδ2(v) = δ(v) \ δ1(v) and obtain

wtv ≤
∑

e∈δ(v)

βe,v ≤
∑

e∈δ1(v)

(αe − γv) +
∑

e∈δ2(v)

αe ≤
∑

e∈δ(v)

αe − 2Bvγv (11)

where the first inequality uses (10), the second inequality uses (8) and (9), and the last inequality follows
from the fact thatv is incident to at least2Bv edges wheneverγv is increased.

Summing (11) over allv ∈ C gives

∑

v∈C

wtv ≤
∑

e∈E

|e ∩ C| · αe − 2 ·
∑

v∈C

Bvγv. (12)

Now observe that we raiseγv andωv only for tight vertices in our algorithm. Given that the input instance
is feasible, the degree of any tight vertexv will eventually drop below2Bv. It therefore follows from the
algorithm description that any vertex that becomes tight during the executionof the algorithm is eventually
included in the vertex coverC. Hence (12) implies

∑

v∈C

wtv ≤
∑

e∈E

|e ∩ C| · αe − 2 ·
∑

v∈V

Bvγv.

The lemma follows fromBvγv = ωv for all v ∈ V and from the fact that|e ∩ C| ≤ 2.

Lemmas 1 and 2 complete the proof of Theorem 1.

3 A distributed algorithm

In this section we will describe a distributed primal-dual algorithm forcapVC which uses the ideas de-
veloped in Section 2. As before, the algorithm maintains a pair of (infeasible)primal and (feasible) dual
solutions at all times. However, these solutions need to be stored in a distributed fashion: each vertexv ∈ V
stores and manipulates

(a) primal variablesxv andye,v for all e ∈ δ(v), and

(b) dual variablesγv, ωv, αe andβe,v for all e ∈ δ(v).
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non-tighttight outsideinside
wti

v ≤ θ · wtvdegi
nt(v) ≤ 2Bv degi(v) = 0

Figure 2: The figure shows the possible states of vertexv ∈ V in the vertex-selection phase. The arrows
indicate the possible transitions between the states. Shaded states are activewhile others are inactive states.

Note that, for every edgee = (u, v), both u and v store a copy ofαe. The algorithm guarantees the
consistency of the two copies.

Observe that a naive distributed implementation of the method described in Section 2 yields an algorithm
that needs a linear number of communication rounds in the worst case. In fact, consider a graphG with
vertex set{v1, . . . , vn, u1, . . . , u2B} for somen, B ≥ 1. Let the edge-set ofG be

E = {(vi, vi+1) : 1 ≤ i ≤ n − 1} ∪ {(vi, uj) : 1 ≤ i ≤ n, 1 ≤ j ≤ 2B − 1} ∪ {(vn, u2B)}

and notice that vertexv1 has degree2B while verticesv2, . . . , vn have degree2B+1. Let the cost of vertices
v1, . . . , vn be0 and assign a unit cost to all other vertices inG. In the execution of the sequential primal-dual
algorithm, all verticesv1, . . . , vn are tight immediately and all other vertices are non-tight. Vertexv1 is the
only tight vertex with degree at most2B. After assigning the2B edges inδ(v1) to v1, the degree of vertex
v2 drops to2B. In general, the degree of vertexvi drops to2B after assigning edges to verticesv1, . . . , vi−1

for all 1 ≤ i ≤ n. Doing this in in a distributed fashion takesn communication rounds.

Adapting the algorithm in order to cope with the above synchronization problem is not an easy task. In fact
it can be seen that synchronous increase of the duals is at the heart ofLemma 2 where it is used to argue that
the dual constraints of type (6) are satisfied with equality at all times.

The distributed algorithm has two main phases:

Vertex-Selection In this phase we compute a vertex coverC ⊆ V that is(2 + ǫ)-approximate. It is here that
we solve the above mentioned synchronization problem. While computing an approximate cover, we
also assign part of the edges to the vertices inC. At most2Bv edges are assigned to eachv ∈ C.

Edge-Assignment Here, we assign all the remaining edges to the vertices inC. This time, at most(2+ǫ)Bv

edges are assigned to eachv ∈ C.

For ease of presentation we assume from now on that the givencapVC instance is feasible.

3.1 Vertex-selection phase

As said, the distributed algorithm mimics the primal-dual algorithm from Section 2. Each vertexv ∈ V
stores part of the dual solution and it initially setsγv = ωv = 0 and it also letsαe = βe,v = 0 for all edges
e ∈ δ(v).

The distributed algorithm works in rounds. At the beginning of any given roundi, we let theresidual weight
wti

v of vertexv be the difference between the right-hand side and the left-hand side of(7)v for the current
feasible dual solution. Thus, we initializewt0

v to wtv for all v ∈ V . A vertexv ∈ V is eitheractive or
inactive in any given roundi. An active vertexv can be in one of two states:
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non-tight Vertexv is non-tight whenever the slack in constraint(7)v is more thanθ · wtv for a
parameterθ ≥ 0 whose exact value will be determined later.

tight We let the state of vertexv betight if wti
v ≤ θ · wtv and if v has more than2Bv

non-tight neighbors. Intuitively, a tight vertexv will eventually be part of the computed
cover. It will be assigned a subset of at most2Bv of the edges to its non-tight neighbors.

We will say that an edge(u, v) ∈ E is active in roundi if both u andv are active in that round. For any
vertexv ∈ V , we letdegi

t(v) anddegi
nt(v) be the number of its tight and non-tight neighbors in roundi. We

also letdegi(v) = degi
t(v) + degi

nt(v) be the active neighbors ofv in roundi. An inactive vertexv can be
in one of two states:

inside A tight vertex switches its state toinside if the numberdegi
nt(v) of non-tight neigh-

bors is at most2Bv. Vertex v will be part of the final cover and we assign all edges
betweenv and any of its non-tight neighbors to vertexv.

outside We switch the state of anon-tight vertex v to outside if it has notight or
non-tight neighbors. We will later argue that all neighbors ofv in G areinside in
this case.

The vertex-selection phase terminates when no active vertices remain. Theresulting vertex coverC consists
of all vertices whose final state isinside.

We proceed with a detailed description of roundi of the distributed algorithm. The round has two steps:

Step 1: All non-tight vertices are dormant. Each tight vertexv ∈ V counts the number of active non-tight
neighbors. If this number is at most2Bv we assign all edges connectingv to non-tight neighbors tov. We
also switchv’s state toinside and letv communicate its state-switch to all active neighbors. At this point
each active vertexv ∈ V knows the numberdegi(v) of active neighbors inG.

Step 2: The behavior of an active vertexv ∈ V depends on its current state:

v is non-tight: If degi(v) is 0 we know that all edges incident tov have been assigned to other vertices.
Therefore, we can switch the state ofv to outside.

On the other hand, assume thatv has active neighbors. Raisingαe andβe,v uniformly bywti
v/deg

i(v) for
all active edgese ∈ δ(v) decreases the residual weight ofv to 0. Vertexv strives for tightness and therefore
proposes to any active neighboru to raiseα(u,v) and alsoβ(u,v),v by its proposal

pv =
wti

v

degi(v)
.

Consider an active edgee = (u, v) ∈ δ(v). We raiseαe andβe,v by min{pu, pv} and decrease the residual
weightwti

v of v by the same amount.

v is tight: Notice that step1 guarantees thatv has more than2Bv non-tight neighbors. Vertexv
receives proposals from all such neighbors and letspv be their minimum. Vertexv then sendspv to all such
neighbors.

For all non-tight neighborsu of v we increaseα(u,v) by pv. In order to maintain dual feasibility, we
cannot increaseβ(u,v),v sincev is tight. Hence we increaseωv by Bvpv andγv by pv.
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Observe thattight vertices have to wait for the proposals of their non-tight neighbors before making their
own proposal. Hence two communication rounds are needed to update all thevariables.

We can show that the number of communication rounds needed to complete the vertex-selection phase is
small. Recall thatW denotes the ratio of largest to smallest vertex weights.

Lemma 3 The vertex-selection phase ends in O(log(nW )/θ) rounds.

Proof: We use a potential function argument in order to show the bound onthe number of communication
rounds. For roundj ≥ 0 we define the potential of each vertexv ∈ V asΦj

v = wtv/degj(v) if degj(v) > 0
and we letΦj

v = wtmax otherwise. Then let

Φj = min
v non-tight

Φj
v.

Note thatΦj is a non-decreasing function ofj. In fact, we will show thatΦj doubles at least every⌈2/θ⌉
rounds. The lemma then follows sincewtmin

n
≤ Φj ≤ wtmax for all roundsj.

Consider any given roundi. Let V j
i be the set of non-tight vertices at the beginning of roundj, j ≥ i, with

Φj
v ≤ 2Φi, i.e.

V j
i = {v ∈ V : degj(v) > 0,wtj

v > θ · wtv, Φ
j
v ≤ 2Φi}.

Observe thatV j+1
i ⊆ V j

i , since thewtj
v ’s and degj(v)’s are non-increasing, while theΦj

v ’s are non-

decreasing. Consider any vertexv ∈ V i
i . We will show thatv /∈ V j′

i for j′ ≥ i + ⌈2/θ⌉. As a consequence,

for any non-tight vertexv, Φj′

v > 2Φi, and henceΦj′ > 2Φi.

Assume by contradiction thatv ∈ V j′

i . Then, by the observation above,v ∈ V j
i for anyj ∈ {i, i+1, . . . , j′}.

Suppose thatw ∈ V is anon-tight vertex with the smallest proposalpw in roundj. Recall thatwtj
w ≥

θ wtw for non-tight vertices. We then have

pmin,j = pw =
wtj

w

degj(w)
≥

θ · wtw

degj(w)
≥ θ · Φj . (13)

It follows that the reduction of the residual weight ofv in roundj is at least

degj(v) · pmin,j ≥ degj(v) · θ · Φj ≥ degj(v) · θ · Φi ≥ degj(v) · θ · Φj
v/2 = θ · wtv/2,

where the first inequality uses (13) and the third inequality uses the definitionof the setV j
i . Hence

wtj′

v ≤ wtv −
θ wtv

2
⌈2/θ⌉ ≤ 0 ≤ θ · wtv,

which contradicts the assumption thatv ∈ V j′

i .

We now prove that the weight of the vertices inC is small.

Lemma 4 The total weight of the vertices in C is at most 2
1−θ

times the optimum.

12



Proof: Assume that the distributed algorithm finishes aftert ≥ 0 rounds and let(α, β, γ, ω) be the final
dual. A proof very similar to that of Lemma 1 shows that the dual is indeed feasible. We proceed as in the
proof of Lemma 2.

Consider a vertexv ∈ C and observe thatv must have beentight before switching to theinside state.
Thuswtt

v ≤ θwtv, and
∑

e∈δ(v)

βe,v ≥ wtv(1 − θ). (14)

We will now show that:
∑

e∈δ(v)

βe,v ≤
∑

e∈δ(v)

αe − 2ωv. (15)

Equation (15) is trivially satisfied if we consider only the steps in whichv is non-tight. In fact, in these
stepsωv = 0 andβe,v = αe, for all e ∈ δ(v).

Consider now a step in whichv is tight. The value of the left-hand side of Equation (15) does not change.
If ωv increases by a quantityBv · pv, γv increases by a quantitypv. It follows that, for all edgese = (v, u)
betweenv and anon-tight neighboru of v in the current step, the value ofαe also increases by at least
pv. Since there are at least2Bv such neighbors, the right-hand side of (15) cannot decrease.

Let apx denote the weight ofC. Hence,

apx =
∑

v∈C

wtv ≤
1

1 − θ

∑

v∈C

∑

e∈δ(v)

βe,v ≤
1

1 − θ

∑

v∈C

∑

e∈δ(v)

(αe − 2ωv),

where the first inequality uses (14) and the second inequality (15). Sinceevery edge is incident to at most
two vertices fromC we have that the right hand-side of the last inequality is bounded by

2

1 − θ

(

∑

e∈E

αe −
∑

v∈V

ωv

)

.

The claim follows by weak-duality.

For a given accuracy parameterǫ ≥ 0 we now letθ = 1 − 2/(2 + ǫ). Note that this choice implies that
1/θ = O(1/ǫ) for ǫ ∈ (0, 1]. Hence, given a feasible instance ofcapVC our distributed algorithm terminates
within O(log(nW )/ǫ) communication rounds with a cover of weight at most(2 + ǫ)opt as was claimed in
Theorem 2.

3.2 Edge-assignment phase

At the end of the vertex-selection phase we are left with a subsetC′ ⊆ C of the tight vertices such that all
unassigned edges have both their end-points inC′. In the following we letG0 = G[C′] = (V, E) be the
graph induced by the vertices inC′. Assuming that the givencapVC instance is feasible, there must be an
assignment of the edges inG0 to the vertices inC′ that obeys the original capacity bounds. We describe
a deterministic distributed algorithm which assigns at most(2 + ǫ)Bv edges to eachv ∈ C′ in O(log n/ǫ)
rounds.

Our algorithm starts with all edges unassigned and computes a final assignment iteratively. In each roundt
we consider all verticesv ∈ V with at most(2 + ǫ)Bv incident unassigned edges, and we assign all such
edges(u, v) ∈ δ(v) to v. We continue until no unassigned edges remain.
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To prove that the number of rounds is polylogarithmic we need the following lemma. Let H be the set of
vertices with degree more than(2 + ǫ)Bv and letE(H) be the set of those edges that have both of their
endpoints in H. Finally useE(H) as an abbreviation for the setE \ E(H) of edges that have at most one
endpoint inH.

Lemma 5 If there is a feasible assignment, then we must have |E(H)| ≥ ǫ|E(H)|.

Proof: Letπ : E → V be a feasible assignment of edges to vertices. We have that:

∑

v∈H

|δ(v)| ≤ 2|E(H)| + |E(H)| (16)

as every edge inE(H) is counted exactly twice in the sum on the left-hand side while an edge inE(H) is
counted at most once. Moreover,

|E(H)| ≤
∑

v∈H

|π−1(v)| (17)

since every edge inE(H) must be assigned to some vertex inH. From equations (16) and (17) it follows
that:

(2 + ǫ)
∑

v∈H

Bv ≤
∑

v∈H

|δ(v)| ≤ 2
∑

v∈H

|π−1(v)| + |E(H)| ≤ 2
∑

v∈H

Bv + |E(H)|.

Hence
|E(H)| ≥ ǫ

∑

v∈H

Bv ≥ ǫ|E(H)|

which proves the lemma.

Lemma 6 If there is a feasible assignment, then the algorithm above assigns at most (2 + ǫ)Bv edges to
each v ∈ V . The number of rounds required is O(log n/ǫ).

Proof: The capacity bound in the theorem follows immediately since for each vertexv in V there is at most
one roundt in which we assign at most(2 + ǫ)Bv edges to it.

Let Et be the set of unassigned edges at the beginning of iterationt and letGt = G[Et] be the subgraph of
G induced byEt. We also useHt to denote the set of verticesv ∈ V whose degree is more than(2+ǫ)Bv in
Gt. Note that for anyt, there must exist a feasible assignment inGt asGt is a subgraph of the initial graph
G where a feasible assignment exists. So we can apply Lemma 5 and conclude that:

|Et| = |E(Ht)| + |E(Ht)| ≥ (1 + ǫ)|E(Ht)|.

In roundt all the edges inE(Ht) are assigned to some vertex and so|Et+1| ≤ |E(Ht)|. Hence,|Et+1| ≤
1

1+ǫ
|Et| and the number of unassigned edges decreases by a factor of(1 + ǫ) in every round.

Since at most2Bu edges are assigned to eachu during the vertex-selection phase, this concludes the proof
of Theorem 2.
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Figure 3: The figure shows graphsG1
B,k (on the left) andG0

B,k for B = 2 andk = 3.

4 A Lower Bound

In this section we show that every efficient distributed approximation algorithm for capVC needs to violate
the capacity constraints by a large additive term.

Consider the following two families of graphsG0
B,k andG1

B,k, whereB, k ≥ 1. GraphG0
B,k hask+1 levels

L0, L1 . . . Lk, each one containing2B + 1 vertices. Each vertex in levelLi, i = 0, 1 . . . k − 1, is adjacent
to exactlyB vertices in levelLi+1. Symmetrically, each vertex in levelLi, i = 1, 2 . . . k, is adjacent to
exactlyB vertices in levelLi−1. There are no other edges in the graph. In particular, each levelLi induces
an independent set. GraphG1

B,k is obtained fromG0
B,k by adding an edge between each pair of vertices in

L0. Let the capacity of all vertices in both graphs beB. Moreover, all vertices have cost zero, except for the
vertices in levelLk, which have cost one. Figure 3 shows an instance of the two graphs.

For0 ≤ i ≤ k− 1, let δi be the set of edges that connect vertices inLi to those inLi+1. We obtain a feasible
solution forG0

B,k as follows: Let
C = L0 ∪ L1 ∪ . . . ∪ Lk−1

and assign all edges inδi to the vertices inLi for 0 ≤ i ≤ k − 1.

GraphG1
B,k hasn = (k + 1)(2B + 1) vertices andBn edges. Thus, any feasible capacitated vertex cover

must contain all vertices. Moreover, the edges belonging to the clique onL0 clearly have to be assigned to
the vertices inL0. Thus, the unique feasiblecapVC solution forG0

B,k assigns all edges inδi to the vertices
in Li+1 for all 0 ≤ i ≤ k − 1.

The following lemma turns out to be useful in the proof of the lower bound.

Lemma 7 Consider a solution for G1
B,k that assigns at most (B + c) edges to each vertex, for some c ≥ 1.

For 0 ≤ i ≤ k − 1, let Ai be the number of edges in δi that are assigned to vertices in Li. Then

Ai ≤ (2B + 1)(i + 1)c

for all 0 ≤ i ≤ k − 1.
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Proof: The proof is by induction oni. For i = 0, all clique edges need to be assigned to vertices inL0. The
spare capacity of the vertices inL0 is thus(2B + 1)c and this is the maximum number of edges inδ0 that
can be assigned to the vertices inL0.

Now assume that the claim is true for all0 ≤ i < k. Using the induction hypothesis, at most(2B+1)(i+1)c
edges inδi are assigned to the vertices inLi. Therefore, the remaining(2B + 1)(B − (i + 1)c) edges need
to be assigned to vertices inLi+1. The remaining capacity of the vertices inLi+1 is thus

(2B + 1)(B + c) − (2B + 1)(B − (i + 1)c) = (2B + 1)(i + 2)c

and this is the maximum number of edges inδi+1 that can be assigned to vertices inLi+1.

Armed with the above lemma we are now ready to provide a proof of Theorem 3. We restate it here for
completeness.

Theorem 3 Let B, k ≥ 1 be integer parameters. There is a capVC instance with uniform vertex capacities
B, for which any distributed approximation algorithm that assigns less than (1 + 1/k) · B edges to all
vertices, must take at least k communication rounds.

Proof: The proof is by contradiction. Letc < B/k and consider a distributed approximation algorithm for
capVC that assigns at most(B + c) edges to each vertex for any given (uniform capacity) instance whose
running time is less thank.

We first execute this algorithm on graphG1
B,k. Lemma 7 shows that at most(2B + 1) · kc of the edges in

δk−1 are assigned to the vertices inLk−1. The number of edges that need to be assigned to vertices inLk is
therefore at least

(2B + 1)(B − kc) > 0

where the inequality uses our assumption onc. Hence at least one vertex inLk needs to be in any cover of
G1

B,k that assigns at mostB + c edges to each vertex. Letu be this vertex.

We now run the algorithm again onG0
B,k. Since the graphsG0

B,k andG1
B,k are identical up to distancek

from u, this vertex will be included in the cover in this case too. On the other hand, novertex inLk can be
part of any approximate solution forG0

B,k.

For instance, consider an (efficient) distributed approximation algorithm for capVC with running time
O(logd n), whered is a positive constant. Theorem 3 then shows that there is a family of (uniform capacity)
capVC instances for which this algorithm must assign at leastB + Ω( B

logd B
) edges to some vertex.

We observe that graphsG0
B,k andG1

B,k haven = (2B + 1)(k + 1) vertices. This implies thatB = Θ
(

n
k

)

,
which is large in the interesting case whenk is polylogarithmic. However, thishitch is easily removed by
defining a graphG0 (resp.G1) consisting oft disjoint copies of the main building blockG0

B,k (resp.G1
B,k).

Using the new parametert we can now produce instances in whichB is arbitrarily small in comparison ton
while our proof argument goes through unchanged.

Acknowledgments We would like to thank Volker Kaibel for pointing out a much simplified proof of
Lemma 5.
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