A Primal-Dual Bicriteria Distributed Algorithm for Capacitated
Vertex Cover*

F. Grandoni J. Kbnemanh A. Panconesi M. Sozio'

January 16, 2008

Abstract

In this paper we consider the capacitated vertex cover enolwhich is the variant of vertex cover
where each node is allowed to cover a limited number of ed@éspresent an efficient, deterministic,
distributed approximation algorithm for the problem. Olgaasithm computes &2 + ¢)-approximate
solution which violates the capacity constraints by a facfo(4 + ¢) in a polylogarithmic number of
communication rounds. On the other hand, we also show tleay @fficient distributed approximation
algorithm for this problem must violate the capacity coaisits.

Our result is achieved in two steps. We first develop-approximate, sequential primal-dual al-
gorithm that violates the capacity constraints by a facfo2.oSubsequently, we present a distributed
version of this algorithm. We demonstrate that the seqakstjorithm has an inherent need for synchro-
nization which forces any naive distributed implementatio use a linear number of communication
rounds. The challenge in this step is therefore to achieesladtion of the communication complexity
to a polylogarithmic number of rounds without worsening déipgroximation guarantee too much.

Keywords: Vertex Cover, Approximation Algorithms, Distributed Algorithms, Primal-Dual éithms

*A preliminary version of this paper appeared in the Proceedings of theS34nposium on Principles of Distributed Computing,
Las Vegas, Nevada, USA, 2005

TDipartimento di Informatica, Sistemi e Produzione, Universit Roma Tor Vergata, Via del Politecnico 1, 00133, Roma, Italy.
Email: gr andoni @li sp. uniroma2.it.

{Department of Combinatorics and Optimization, University of Waterlod @@iversity Avenue West, Waterloo, ON N2L
3G1, Canada. Emaii:ochen@wat er | 0o. ca. This work was done while being on leave at the Dipartimento di Informatica
Sapienza Universitdi Roma.

Dipartimento di Informatica, Sapienza Univetsitdi Roma, Via Salaria 113, 00198, Roma, ltaly. Email
ale@i.uniromal.it.

11Department of Databases and Information Systems, Max-Planttutnfir Informatik, Stuhlsatzenhausweg 85, 66123
Saarbiicken, Germany. Emaitrsozi o@rpi - i nf . npg. de.

1 Introduction

The capacitated vertex cover problem ¢€apVC) is the variant of vertex cover in which there is a limit on
the number of edges that a vertex can cover. A precise formulation ofrtidem is as follows. We are

given ann-vertex undirected grapfi = (V, E'), non-negative weightst , and vertex capacitieB, > 1 for

all verticesv € V. A solution to a givercapVC instance consists of a subgétC 1V and an assignment

7w : E — C of edges to vertices such that

1. w(e) € {u,v} N C forall edges = (u,v) € E, and

2. |77 1(v)| < B, forallv € C.

The first set of constraints says that every edge must be coveredrs gertex in the covet'. The second
condition limits the number of edges that can be assigned to any cover vedd®,. The goal is to find a
feasible solution that has minimum total weight

W (C) = Wty

veC

We emphasize the difference between the alawd-capacity version ofcapVC and itssoft-capacity coun-
terpart €apVC,): in capVC,, each vertew € V may be included:, > 0 times in a cover. Vertex then
contributesr, W ,, to the weight of the cover, and the maximum number of edges that can beexbsgig is
Ty By.

In this paper we presebtcriteria sequential and distributed approximation algorithms for the (hard) capac-
itated vertex cover problem. Given a feasible instance of the problemtiof@pveightopt , our sequential
primal-dual algorithm computes a vertex coverof weight) " _-w , < 2opt, which assigns at most
2B, edges to each cover vertexc C. Note that, differently from the hard-capacity case, capacities might
be violated. However, the amount of the violation is bounded, which is natabke forcapVC,. We also
remark that, unlikeapVC,, everyv € C contributesm ,, to the weight of the cover even when its capacity
B, is exceeded.

The distributed implementation of our method has an additional input parametef and computes a
cover of weight at mosf2 + €)opt that violates the capacity bound of each cover vertex by a factor of at
most (4 + ¢€). In the synchronous, message-passing model of computation the distrddgtgithm takes
O(log(nW)/e) many rounds, where

W =w max/vvt min

is the ratio of largest to smallest vertex weight in the given instance. ThigesdoO(logn/e) for the
interesting case of unit weights. We remark that our algorithm is determinishide typically efficient
distributed algorithms for graph problems require randomization (see (122223, 27, 28] among others).

Observe that any sub-linear distributed algorithmdapVVC must violate the capacity constraints. Consider
for instance a ring where every vertex has unit capacity. A feasibl¢éi@olprovides a consistent orientation
of the ring, something that requires a linear number of communication rolthésefore a bicriteria solution

is the best one can hope for in a distributed setting. In this paper we showndleed every efficient
distributed approximation algorithm farapVC must violate the capacity constraints by a large additive
term.

In our opinion the most interesting aspect of our work is that the distribdggdithm is derived in a sys-
tematic fashion from a sequential primal-dual algorithm. To our knowledgdirt result of this kind is the
(2 + €)-approximate vertex cover algorithm described in [16]. Although desdrfbr the PRAM setting,
the algorithm can be easily adapted to the distributed case. Our paper tel@sihl-dual approach pio-
neered in [16] one step further, giving a new and considerably mptastacated example. Chudak et al. [4]
recently showed that the techniques introduced in this paper can be eatenglield efficient distributed
primal-dual algorithms for vertex cover with soft capacities and for thiditiatocation problem. The power
of the primal-dual method in the design of approximation algorithms is well estellisim this paper we
provide further evidence to the fact that it is also a valuable tool in the mesidistributed algorithms.

Capacity constraints arise naturally in distributed computing and computernkétgoE.g., the scatternet-
formation problem of ad hoc Bluetooth networks asks for a small dominatingtese each vertex in the
set dominates at most 7 vertices [6]. More generally, a small dominatingasedat as the backbone of
the routing infrastructure of an ad hoc network (see [29, 26] andarbes therein). Capacities model
computational and energy limitations and provide effective means to enfmdedistribution among the
vertices of the backbone. To the best of our knowledge, our paperfigghresult that considers a capacitated
network design problem from the distributed computing point of view. Rigévioscibroda and Kuhn gave
an LP-based, bicriteria distributed solution to the capacitated dominatingofgépr[17].

Related work. Vertex cover with capacities has received considerable attention intrgears in the se-
gquential setting, while our main motivation is to study it from a distributed poini@f/v The capacitated
vertex cover problem was first introduced by Guha et al. [12] whegreed a simpld-approximate LP-

rounding based algorithm farapVC,. Later on, the authors showe@-@pproximate primal-dual algorithm.
Subsequently, Gandhi et al. [10] presentedapproximate LP-rounding algorithm foapVC,.

The hard-capacitated vertex-cover problem is significantly harderthaaoft-capacitated variant. Chuzhoy
and Naor [5] first gave a sophisticat&épproximate LP-rounding algorithm for the special caseayfVvVC
with uniform vertex weights. Finally, in [9], Gandhi et al. presented ar@dhding-based-approximation
algorithm forcapVC with uniform weights.

In [5], Chuzhoy and Naor also showed tleatpVVCin the presence of non-uniform vertex weights is as hard
to approximate as set-cover. Lund and Yannakakis [24] proved tha iv@oo(log n)-approximation for
the latter problem unless N DTIME (nC(cglogn)) (see also [8] for a refined result). Based on work by
Bellare et al. [3], and Raz and Safra [30], Alon et. al [1] recently inuptbupon this result and showed that
no o(log n)-approximation for the set-cover problem is possible unless¥P. Chuzhoy and Naor’s work
implies that these hardness bounds translate to &ipd/C problem.

The best known approximation algorithm for the vertex-cover problemoatthapacity constraints, is due
to Karakostas [15] who presented2— ©(1/+/log(n))-approximation for the problem. This improves
upon earlier(2 — o(1))-approximation algorithms due to Halperin [13], Bar-Yehuda and Everefi]
Hochbaum [14]. As mentioned, the same bound is essentially achievabledisttieuted setting [16].

Unconditional lower-bounds based on communication constraints, asegpo unproven complexity the-
oretic assumptions, have been proved since the early stages [21025hoFe recent work see [18]. Also,
Elkin [7] recently established trade-offs between the performanceagtes of a distributed approximation
algorithm for the minimum-cost spanning tree problem and the number of comationicounds it needs.

Finally, we mention that LP-duality has been previously used to design digtilalgorithms for the domi-
nating set problem [19, 28].

Our contribution. The first result we give is a bicriteria primal-dual approximation algorithnctpVC.

Theorem 1 Given afeasible capVC instance with capacities B, > 1 for all v € V. Thereisa polynomial-
time primal-dual algorithm that computes a vertex cover (C,) of weight at most 2opt that assigns at most
2B, edgesto each vertexv € C.

We remark that if the input instance does not have a feasible solution, thieaigorithm either computes
a feasible solution for the (capacity) relaxed version of the problem, orntitates with a certificate of
infeasibility.

Theorem 1 is a natural step toward proving the main result of this paper.

Theorem 2 Given a feasible instance of capVC with capacities B, > 1 for all v € V, and let ¢ € (0, 1]
be an input parameter. There is a distributed deterministic algorithm that computes a vertex cover (C,) of
weight at most (2 4 ¢)opt that assigns at most (4 + €) B, edgesto each vertex v € C'. The algorithm needs
O(log(nW)/e) rounds.

We remark that the message-size of our algorith@(i®g n + log Wt ,4.)-

Note that the running time is strongly polylogarithmic for polynomially large weightg. oThis includes
the important special case of unit weights. Obtaining a strongly polylogarithlgarithm in general is a
challenging open problem.

Similar to the sequential case, if the input instance does not have a feadiltiersthe algorithm either
computes a feasible solution for the relaxed version of the problem, or teawiwéth a certificate of infea-
sibility. The latter however is necessarily local in nature. That is, some gsnvdl know that the algorithm
has failed, but it requires a linear number of communication rounds to ditribis information across the
network in general.

These theorems are complemented by the following lower-bound on the conatiomicomplexity of any
algorithm for the weightedapVC problem with hard capacities:

Theorem 3 Let B, k > 1 beinteger parameters. Thereisa capVC instance with uniform vertex capacities
B, for which any distributed approximation algorithm that assigns less than (1 + 1/k) - B edges to all
vertices, must take at least £ communication rounds.

This result shows in particular that violating the capacity constraints is s&geand provides a trade-off
between violation of capacities and running time.

Organization of the paper. In the following Section 2 we describe a sequential algorithm for the capedtita
vertex-cover problem and give a proof of Theorem 1. The nexigeshows how to turn the sequential
algorithm into a distributed one. This is done in two steps. First, we show howrieed the sequential
algorithm into a distributed one that computes a vertex cover that satisfiepghexanation requirement.
In this step we assign only a subset of the edges. In the second anstépale assign all the remaining
edges. The proof of Theorem 3 is given in Section 4.

2 A sequential primal-dual algorithm

We present a so callggtimal-dual algorithm for thecapVC problem. The algorithm and its analysis are
based on linear programming duality. In the next section we therefore urtteod linear programming
formulation of the problem together with its dual. Following that we describeseguential algorithm and
we conclude this section with an analysis of the presented method.

2.1 A linear programming formulation

The problem can be formulated as an integer program where we intrachinary indicator variable,, for

eachv € V. We letz, = 1 if v € C' andz, = 0 otherwise. For each edge= (u,v) € E we introduce two
binary variables;. , andy. . Forw € {u,v} we lety.,, = 1 ifand only if 7(e) = w. In the following let
d(v) be the set of edges incident to vertex V in G.

min Z\Ntvav (IP)
veV
St Yew +Yeu =1 Ve = (u,v) € E (1)
Yew < Ty Ve = (u,v) € E,
Vw € {u,v} (2)
> Yew<Byow, Vo eV 3)
e=(v,u)€8(v)
Y, v € {0,1} Ve€c E,veV (4)

We now let (LP) be the standard LP relaxation obtained from (IP) by caygahe constraints (4) by

Yew = 0 Ve = (u,v) € FE

0<z, <1 YveV (5)

In the following we us€i),, (i), and(i).,, to denote constrair(t) for vertexv € V, edgee € E, and pair
(e,v) € E x V, respectively. In the linear-programming dual of (LP) we associatablasc., 3. ., v, and
w, With constraintg1)e, (2)e.w, (3)y, and(5),, respectively. The linear programming dual of (LP) is then

max Y ae- Y w,)

eck veV
St ae < Bew + Yw Ve = (u,v) € E,
Vw € {u,v} (6)
Y7 Bew W+ (wo — By) Yoev (7)
e=(u,v)EE
a,B,7,w >0

2.2 Thealgorithm

We remark that the following simple LP rounding scheme similar to that propgs€diba et al. [12] yields
a 2-approximate vertex cover in which each vertexovers at mos2B, edges: Solve the LP relaxation

5

(LP) and let(z, y) be its optimal solution. The cover sétconsists of all vertices with =, > 1/2. For

e = (u,v) € E, constraint(1). implies that there isv € {u,v} such thaty.,, > 1/2. We assign edge
e to vertexw in this case. Clearly, the weight of the vertices(inis at most twice the optimal LP value.
Moreover, each vertex € C has at mos2 B, assigned edges.

We provide an alternate primal-dual algorithm in this section. As we shall seretlais algorithm possesses
an efficient distributed implementation.

The high-level idea in primal-dual algorithms is to find a pair of feasible solstion(D) and (IP). Subse-
quently we upper-bound the performance ratio of the algorithm by bogridenmultiplicative gap between
the objective values of the two solutions. Thus, our goal is to find a primallhir of solutions whose
objective functions values are within a small multiplicative constant of eadr.oBrimal-dual algorithms
typically construct such a pair in an iterative manner: starting from a trieadible dual solution and an
infeasible primal one, the algorithm continuously raises the objective valihe alual solution while main-
taining its feasibility, and it changes the partial primal solution in order to attaisitidity.

Our primal-dualcapVC algorithm starts with the dual feasible solution= g = v = w = 0 and the
infeasible primal solutiom: = y = 0. In order to obtain a feasible vertex cover, we have to a) select a set
of cover vertices, and b) assign each edge E to one of its end-points (which must be in the cover). As
is typical in primal-dual approximation algorithms, these decisions are geddayprimal complementary
slackness.

In the following we say that a vertexe V' is tight for a current dual solutiofw, 3, v, w) if constraint(7),
holds with equality. Similarly, a paife, w) € E x V is tight if constraint(6). ., is satisfied with equality.
Our algorithm will now increase the value of some of the dual variables srgdc@nsequence create tight
vertices and tight edge-vertex pairs. Tight vertices are candidatesifdinal cover and we will eventually
choose a subset of these. Each e¢lgall eventually be assigned to one of its tight endpoints. In particular,
edgee = (u,v) € E will only be assigned to endpoint € {u, v} if (e, w) is tight. Once an edge is assigned
to a vertex, we will remove it from the graph and continue. Similarly, oncedales incident to a certain
vertexv € V have been decided, the vertex is removed from the graph. The algoritmm>es, when the
graph is empty and, hence, when all edges have been assigned.

We now describe the algorithm. As customary with primal-dual algorithms, weribest as a continuous
process that can be implemented in polynomial-time by standard techniquesllylaiti@dges are unas-
signed. At any given point, the algorithm increases the value of duahblasa. of all unassigned edges
uniformly at the same (unit) rate. Increasing variaklegor unassigned edges increases the left-hand side
of constraints of type (6) and we will have to also increase some ¢f #rad variables in order to maintain
dual feasibility. We describe the update process for these variableadbrvertexy € V' depending on its
tightness:

visnon-tight In this case, we increagg , for all e € §(v) uniformly. Thus, the left- and right-hand side
of constraint(6).,, for all e € §(v) increase at the same rate and feasibility is maintained.

vistight If v has at mos? B, incident edges, we addto the cover, assign all edgesdifv) tov and delete
and the newly assigned edges frainOtherwisev has more tha B, incident edges. In this case, we
increasew, at rateB,, v, at unit rate and we leave. , as is for alle € §(v). As a consequence, left-
and right-hand side df7),, remain unchanged, and left- and right-hand sid&of ,, for all e € §(v)
change at the same (unit) rate. Feasibility is therefore maintained also in this cas

u v u Y,
/i%: f :

OM

a b c d e a b c d €

(i) (ii)
Figure 1: An example instance for the primal-daalpVVC algorithm.

We emphasize that our algorithm maintains a feasible dual solution for (Dhéooriginal instance. In
particular, deleting a vertex and an edge € ¢(v) means that the values of variables, 5. ., w, and~,
are frozen at their current state from this point on in the algorithm. Theidigoterminates when all edges
have been assigned.

We demonstrate the algorithm using the example instance in Figure 1 (i) whée¢ Be= 2, B, = 3 and
B,, = oo for all other verticesv. We also chooset , = 2, wt , = 5, wt , = 6 and all other vertices have
infinite weight. In the following we us& andE to refer to the vertex and edge sets of the given instance.

Running our algorithm for one time unit resultsdp = 1 for alle € E andg, ,, = 1 for all w € V" and for
all e € 6(w). At this point, constrainf7), is tight. Asu has5 > 2 - B,, = 4 unassigned incident edges, we
can not assign any edge at this point. Thus, we continue to inctedse all edges € E. Simultaneously,
we increased. ,, for all w € V'\ {u} and for alle € §(w) at unit rate, we increase, at rateB,, = 2 and-~,

at unit rate.

After 1 more time unit, the positive dual variable values are

a. = 2 VeeFE
Bew = 1 Veed(u)
Bew = 2 Ywe V\{u},Veei(w)
Wy = 2
Y = L
At this point, vertices:, v andv are tight. Vertexas andv have one and three incident edges, respectively,
and we can hence add both vertices to the cover and delete them and titinireziges from the graph.

The number of remaining edges all of which are incident ts now4 = 2B,,. We can assign all of them to
u.

Figure 1 (ii) shows the computed primal solution; cover vertices are shattedrc directions indicate edge
assignment. We note that the primal solution is feasible for (IP) only if we thlexcapacity constraint of
vertexwu. In fact, it is not hard to see that any feasible solution to (IP) for this imgtanust have infinite

weight.

2.3 Analysis

In this section we present a proof of Theorem 1.

Assume first that the algorithm from Section 2.2 does not terminate for a gipait instance. It is then

not hard to see that the algorithm must reach a point in the execution, waehetight vertex € V has
degree more thatB,, and where each remaining edge is incident to tight vertices on both enitgy the
pigeon-hole principle it follows that, in any assignment of edges to verticess must be at least one tight
vertexv that is assigned more thd®, edges. Thus the given input instance is infeasible, and the set of tight
vertices together with the set of unassigned edges certifies this fact.

In the following we focus on feasibleapVC instances. For such instances our algorithm terminates with a
coverC, an assignmenfy. ., }ccrvcv Of edges to vertices in the cover, and a corresponding dual solution
(o, B,w, 7). We first show that the dual is feasible for (D).

Lemmal Thedual solution («a, 3,w,y) isfeasiblefor (D).

Proof: We can think of the execution of the algorithm as a process over Tihealgorithm starts at time
0 and then raises, by 1 for all edges per unit of time. We prove the lemma by induction on (approfyriate
discretized) time.

Our initial dual solution is clearly feasible. Now consider a later time in the alguritbet O be the set of
tight vertices at that time.

For a vertexo € V' \ O and for an edge € 6(v) we raisecx,. and g, , simultaneously and hence maintain
dual feasibility. For a vertex € O we raisew, at a rate ofB, per time unit and we raisg, at unit rate. For

all edges: € §(v) we raisea, at unit rate as well. It is not hard to see that we maintain dual feasibility this
way. |

We are ready to prove that our algorithm comput@sagproximate primal solution.

Lemma?2 Our algorithm terminates with a vertex cover C and a corresponding feasible dual solution
(o, B,7v,w) whenever there exists a feasible solution (z, y) for (LP). In particular, we must have

ZW[” <2 (Zae—ZwU> .
veC eclb veV

Proof:

Letv € C be a vertex in the computed vertex-cover anc:leté(v) be an edge that is incident to Notice
that our algorithm always maintains

Qe > ﬁe,v (8)
sincec is raised wheneves, , increases and the rate of increase is the same.
Observe also that, is only increased if the degrekeg(v) of vertexv exceedB,,. Letd;(v) C §(v) be

the set of edges that are incidenttavhen-, is increased for the last time in the algorithm and notice that
we must haved, (v)| > 2B,,.

Consider an edge € ¢;(v) and note that,, anda, increase at the same rate after the point of time where
v becomes tight. Notice also that the algorithm increageand j3. ,, at the same rate beforebecomes

8

tight. Variableg, , is not increased aftar becomes tight, ang, is not increased before becomes tight.
Therefore, for ale € §;(v) we must have

Qe = ﬁe,v + Yo- (9)

Sincew is tight when the algorithm adds it to the cover and deletes it from the graplusitalso be the case
that

Zﬁe,U:th"i_wv_BU"YU:th (10)
e€d(v)

where the last equality follows from the fact that we raigeat a rate ofB, if and only if we raisey, at a
rate of1.

We usedy(v) = d(v) \ 41(v) and obtain

\M:US Z ﬁe,vg Z (ae_’)/v)"i_ Z aeg Z ae_sz’Yv (11)
)

e€d(v) e€d1(v) e€da(v) e€d(v
where the first inequality uses (10), the second inequality uses (8)9ndnd the last inequality follows
from the fact thav is incident to at leas2B,, edges whenevey, is increased.
Summing (11) over alb € C gives

dwt, <> [enCl-ac—2-Y By (12)

veC ecE veC

Now observe that we raisg, andw, only for tight vertices in our algorithm. Given that the input instance
is feasible, the degree of any tight vertexvill eventually drop below2B,,. It therefore follows from the
algorithm description that any vertex that becomes tight during the exealftitie algorithm is eventually
included in the vertex covet. Hence (12) implies

>ty <> [enClac—2-) By

veC ecE veV

The lemma follows fronB,~, = w, for all v € V" and from the fact thae N C| < 2. [|

Lemmas 1 and 2 complete the proof of Theorem 1.

3 Adistributed algorithm

In this section we will describe a distributed primal-dual algorithmdapVC which uses the ideas de-
veloped in Section 2. As before, the algorithm maintains a pair of (infeagbil@al and (feasible) dual
solutions at all times. However, these solutions need to be stored in a distribsbéon: each vertex e V'
stores and manipulates

(a) primal variables:, andy. ,, for all e € 6(v), and

(b) dual variablesy,, w,, o andg, , for all e € §(v).

T ght |

degi,(v) < 2B, Wi <60-w, degi(v) =0

Figure 2: The figure shows the possible states of vertex V' in the vertex-selection phase. The arrows
indicate the possible transitions between the states. Shaded states arelaitgiothers are inactive states.

Note that, for every edge = (u,v), bothu andv store a copy ofv.. The algorithm guarantees the
consistency of the two copies.

Observe that a naive distributed implementation of the method described inrS2gtields an algorithm
that needs a linear number of communication rounds in the worst casect|rcdasider a graply’ with
vertex se{vy, ..., v, u1,...,usp} for somen, B > 1. Let the edge-set af be

E={(vi,viy1) : 1 <i<n—-1}U{(v;,uj) : 1 <i<n,1<j<2B—1}U{(vp,u2B)}

and notice that vertex; has degre2B while verticesvs, . . . , v, have degre@ B+ 1. Let the cost of vertices
v1,. .., v, bed and assign a unit cost to all other verticeg4inin the execution of the sequential primal-dual
algorithm, all vertices, ..., v, are tight imnmediately and all other vertices are non-tight. Venteis the
only tight vertex with degree at mo8B. After assigning th&B edges inj(v;) to vy, the degree of vertex
v drops to2B. In general, the degree of vertexdrops to2 B after assigning edges to vertices. .., v;_1
forall 1 < i < n. Doing this in in a distributed fashion takescommunication rounds.

Adapting the algorithm in order to cope with the above synchronization prolsi@ot an easy task. In fact
it can be seen that synchronous increase of the duals is at the heamofa 2 where it is used to argue that
the dual constraints of type (6) are satisfied with equality at all times.

The distributed algorithm has two main phases:

Vertex-Selection In this phase we compute a vertex cogef V thatis(2 + ¢)-approximate. Itis here that
we solve the above mentioned synchronization problem. While computing aoxapgte cover, we
also assign part of the edges to the verticeS.iAt most2B, edges are assigned to each C.

Edge-Assignment Here, we assign all the remaining edges to the vertic€s rhis time, at most2 +¢) B,
edges are assigned to each C.

For ease of presentation we assume from now on that the gaeWC instance is feasible.

3.1 Vertex-selection phase

As said, the distributed algorithm mimics the primal-dual algorithm from Sectionah Eertexv € V
stores part of the dual solution and it initially sets= w,, = 0 and it also letsy. = 3., = 0 for all edges
e €90(v).

The distributed algorithm works in rounds. At the beginning of any givemd:, we let theresidual weight
wt ¢ of vertexv be the difference between the right-hand side and the left-hand sidg,dbr the current
feasible dual solution. Thus, we initializwtg towt , forallv € V. A vertexv € V is eitheractive or
inactive in any given round. An active vertexs can be in one of two states:

10

non-ti ght Vertexwv isnon- t i ght whenever the slack in constraiftt), is more thard - wt , for a
parametef > 0 whose exact value will be determined later.

tight We let the state of vertex beti ght if w! < 6 -w, and if v has more tharB,
non-tight neighbors. Intuitively, a tight vertexwill eventually be part of the computed
cover. It will be assigned a subset of at md8, of the edges to its hon-tight neighbors.

We will say that an edgéu,v) € E is active in round if both « andv are active in that round. For any
vertexv € V, we letdeg!(v) anddeg’, (v) be the number of its tight and non-tight neighbors in rourd/e
also letdeg’(v) = deg!(v) + deg’,(v) be the active neighbors ofin roundi. An inactive vertexo can be
in one of two states:

i nsi de Ati ght vertex switches its state tmsi de if the numberdeg’ , (v) of non-tight neigh-
bors is at mos2B,. Vertexv will be part of the final cover and we assign all edges
betweerv and any of its non-tight neighbors to vertex

out si de We switch the state of aon-ti ght vertexv to out si de if it has noti ght or
non-ti ght neighbors. We will later argue that all neighborsugh G arei nsi de in
this case.

The vertex-selection phase terminates when no active vertices remairesitigng vertex covef consists
of all vertices whose final stateiiqisi de.

We proceed with a detailed description of rounaf the distributed algorithm. The round has two steps:

Step 1: All non-tight vertices are dormant. Each tight vertexc V' counts the number of active non-tight
neighbors. If this number is at ma&B, we assign all edges connectindo non-tight neighbors to. We
also switchv’s state ta nsi de and letv communicate its state-switch to all active neighbors. At this point
each active vertex € V knows the numbedeg’(v) of active neighbors ird.

Step 2: The behavior of an active vertexe V' depends on its current state:

visnon-ti ght: If deg®(v) is 0 we know that all edges incident tohave been assigned to other vertices.
Therefore, we can switch the statewofo out si de.

On the other hand, assume thatas active neighbors. Raising andj. , uniformly bywt ¢ /deg®(v) for
all active edges € §(v) decreases the residual weightato 0. Vertexwv strives for tightness and therefore
proposes to any active neighboto raisec, ., and alsa3, ., ., by its proposal

WA

P = degi(v)’

Consider an active edge= (u,v) € 6(v). We raisex, andf, , by min{p,, p, } and decrease the residual
weightwt ¢ of v by the same amount.

visti ght: Notice that stepl guarantees thai has more thar2B, non-ti ght neighbors. Vertex
receives proposals from all such neighbors andgdgtse their minimum. Vertex then sendg, to all such
neighbors.

For allnon-ti ght neighborsu of v we increasey, ., by p,. In order to maintain dual feasibility, we
cannot increasg,, ., Sincev isti ght . Hence we increase, by B,p, and~, by p,.

11

Observe that i ght vertices have to wait for the proposals of their non-tight neighborsreefaking their
own proposal. Hence two communication rounds are needed to update\aridiges.

We can show that the number of communication rounds needed to completattresaection phase is
small. Recall thatV denotes the ratio of largest to smallest vertex weights.

Lemma 3 The vertex-selection phase endsin O(log(nW)/6) rounds.

Proof: We use a potential function argument in order to show the boumtideomumber of communication
rounds. For roungl > 0 we define the potential of each vertexc V as®?), = wt ,,/deg’ (v) if deg’(v) > 0
and we letd], = wt ,,,.. Otherwise. Then let

I = min 7.
v hnon-tight

Note that®’ is a non-decreasing function ¢f In fact, we will show thatb/ doubles at least ever2 /6]
rounds. The lemma then follows sin&‘é;ﬂ < ®F < W0, for all rounds;.

Consider any given round Let Vij be the set of non-tight vertices at the beginning of rogngl > ¢, with
P} < 297, l.e. ‘ ‘ A ‘ ‘

VIi={veV :deg(v)>0,wI >0 -w,, & <20}
Observe that//*" C V7, since thewt J’s and deg’(v)’s are non-increasing, while thé)’s are non-
decreasing. Consider any vertexc V. We will show thatv ¢ Vij' for j/ > i + [2/6]. As a consequence,
for any non-tight vertex, ®J > 20, and henc@’’ > 2d'

Assume by contradiction thate Vij/. Then, by the observation above¢ V;j foranyj € {i,i+1,...,5'}.
Suppose thaty € V is anon-t i ght vertex with the smallest proposg), in round;. Recall that 7, >
Ow ,, fornon-ti ght vertices. We then have

w 0-W o, A
min,j — Pw = - > - >0, 13
Puing = Pv = Hogi(w) - deg)(u) (13)

It follows that the reduction of the residual weightwoin roundj is at least
deg? (v) - pmin; > deg?(v) -0 - ® > deg’(v)-0- &' > deg’(v)- 0 - B /2 =0 -wt ,/2,
where the first inequality uses (13) and the third inequality uses the definitibe setVij. Hence

oW ,
2

wi <wt, — [2/0] <0< 0-wt,,

which contradicts the assumption that Vij/. |

We now prove that the weight of the vertice<ims small.

Lemma 4 Thetotal weight of the verticesin C is at most 12, times the optimum.

12

Proof: Assume that the distributed algorithm finishes after 0 rounds and let«, 3, v, w) be the final
dual. A proof very similar to that of Lemma 1 shows that the dual is indeedbleasgVe proceed as in the
proof of Lemma 2.

Consider a vertex € C and observe that must have beehi ght before switching to thé nsi de state.
Thuswt { < 6wt ,, and

Z ﬂe,v > wt v(l - 9) (14)
e€d(v)
We will now show that:
Z ﬁev < Z e — 2wy. (15)
e€d(v) e€d(v)

Equation (15) is trivially satisfied if we consider only the steps in whigsnon-ti ght . In fact, in these
stepsv, = 0 andp., = o, foralle € §(v).

Consider now a step in whiahis t i ght . The value of the left-hand side of Equation (15) does not change.
If w, increases by a quantit}, - p,, v, increases by a quantipy,. It follows that, for all edges = (v, u)
betweerw and anon- t i ght neighboru of v in the current step, the value of also increases by at least
py. Since there are at lea&B,, such neighbors, the right-hand side of (15) cannot decrease.

Letapx denote the weight af. Hence,

apx—Zch_—Z > Bew <7 QZ Z e — 2wy),

veC veC e€d(v) veC e€d(v

where the first inequality uses (14) and the second inequality (15). 8usg edge is incident to at most
two vertices fronC we have that the right hand-side of the last inequality is bounded by

;(Zae—zwv)

eckE veV
The claim follows by weak-duality. [|

For a given accuracy parameter> 0 we now letd = 1 — 2/(2 + ¢). Note that this choice implies that
1/6 = O(1/e) for e € (0,1]. Hence, given a feasible instancecafpVC our distributed algorithm terminates
within O(log(nW)/e) communication rounds with a cover of weight at m@st- e)opt as was claimed in
Theorem 2.

3.2 Edge-assignment phase

At the end of the vertex-selection phase we are left with a suliset C of the tight vertices such that all
unassigned edges have both their end-pointg’inin the following we letG® = G[C’'] = (V, E) be the
graph induced by the vertices {i. Assuming that the givenapVC instance is feasible, there must be an
assignment of the edges @i to the vertices irC’ that obeys the original capacity bounds. We describe
a deterministic distributed algorithm which assigns at ni@st ¢) B, edges to each € C’ in O(logn/e)
rounds.

Our algorithm starts with all edges unassigned and computes a final asaigteratively. In each round
we consider all vertices € V' with at most(2 + ¢) B, incident unassigned edges, and we assign all such
edgequ,v) € d(v) tov. We continue until no unassigned edges remain.

13

To prove that the number of rounds is polylogarithmic we need the following lenh@iaH be the set of
vertices with degree more thd + ¢) B, and letE(H) be the set of those edges that have both of their
endpoints in H. Finally usé&’'(H) as an abbreviation for the sét\ F(H) of edges that have at most one
endpoint inH.

Lemma5 If thereisa feasible assignment, then we must have |E(H)| > ¢|E(H)|.

Proof: Letr : E — V be a feasible assignment of edges to vertices. We have that:

> 16(v)| < 20E(H)| + |E(H)

veH

(16)

as every edge ily(H) is counted exactly twice in the sum on the left-hand side while an edg# i) is
counted at most once. Moreover,

H)[<) |7 '(v)| (17)
veH
since every edge iv(H) must be assigned to some vertexdn From equations (16) and (17) it follows
that:
2+ By <Y [5() <2 |7 (v)| + [E(H)| <2 B, +|E(H)|
veEH veEH veEH veEH
Hence
[E(H)| > ¢ By > c[E(H)|
veH

which proves the lemma. |

Lemma6 If there is a feasible assignment, then the algorithm above assigns at most (2 + ¢) B, edges to
each v € V. The number of rounds required is O(logn/¢).

Proof: The capacity bound in the theorem follows immediately since for eaxtbxw in V' there is at most
one round in which we assign at mos2 + ¢) B, edges to it.

Let E be the set of unassigned edges at the beginning of iteratiad letG* = G[E!] be the subgraph of
G induced byE®. We also uséi® to denote the set of verticess V whose degree is more théd+¢) B, in
G'. Note that for any, there must exist a feasible assignmentinasG? is a subgraph of the initial graph
G where a feasible assignment exists. So we can apply Lemma 5 and coneltide th

|E"| = [E(H")| + |E(H")] > (1+ €)| E(H")].

In roundt all the edges inE(H*) are assigned to some vertex and B&6™!| < |E(H?)|. Hence |E'*!| <

1+6 |Et| and the number of unassigned edges decreases by a fa¢tor-af) in every round. |

Since at mos2B,, edges are assigned to eaclduring the vertex-selection phase, this concludes the proof
of Theorem 2.

14

Lo Lo

Ly Ly
L2 L2
Ls Ls

Figure 3: The figure shows graptis; , (on the left) andZ , for B = 2 andk = 3.

4 A Lower Bound

In this section we show that every efficient distributed approximation algoffithh capVC needs to violate
the capacity constraints by a large additive term.

Consider the following two families of grapli#), , andG; ,., whereB, k > 1. GraphGY, , hask + 1 levels

Lo, L1 ... L, each one containingB + 1 vertices. Each vertex in levél;, i = 0,1...%k — 1, is adjacent

to exactly B vertices in levell;, ;. Symmetrically, each vertex in levél;, : = 1,2...k, is adjacent to
exactly B vertices in levelL;_;. There are no other edges in the graph. In particular, eachlgurtiuces

an independent set. Graph; ,, is obtained frorrG%’k by adding an edge between each pair of vertices in
L. Let the capacity of all vertices in both graphsBeMoreover, all vertices have cost zero, except for the
vertices in levelL, which have cost one. Figure 3 shows an instance of the two graphs.

For0 < i < k—1, letd; be the set of edges that connect verticek,ito those inL; ;. We obtain a feasible
solution forGY , as follows: Let
C=LoULiU...ULjp_4

and assign all edges i to the vertices in; for0 < i < k — 1.

Grath}&k hasn = (k + 1)(2B + 1) vertices andBn edges. Thus, any feasible capacitated vertex cover
must contain all vertices. Moreover, the edges belonging to the cliqug atearly have to be assigned to
the vertices iny. Thus, the unique feasibteapVVC solution forGOByk assigns all edges i} to the vertices
inL;pqforall0 <i<k-—1.

The following lemma turns out to be useful in the proof of the lower bound.

Lemma 7 Consider a solution for G}M that assigns at most (B + ¢) edges to each vertex, for somec > 1.
For 0 <i<k—1,let A; bethe number of edgesin ¢, that are assigned to verticesin L;. Then

A <(2B+1)(i+1)c
forall 0 <i<k-—1.

15

Proof: The proof is by induction oi Fori = 0, all clique edges need to be assigned to verticdg)inrhe
spare capacity of the vertices Iy is thus(2B + 1)c and this is the maximum number of edgesjrthat
can be assigned to the verticedip

Now assume that the claim is true for@lK i < k. Using the induction hypothesis, atmégB +1)(i+1)c
edges i; are assigned to the verticesin. Therefore, the remainin@B + 1)(B — (i + 1)c) edges need
to be assigned to vertices I} 1 1. The remaining capacity of the verticesiin, ; is thus

(2B+1)(B+¢)— (2B+1)(B— (i + 1)¢) = (2B + 1)(i + 2)c

and this is the maximum number of edgesgin; that can be assigned to vertices/ifp, ;. [

Armed with the above lemma we are now ready to provide a proof of TheoreWe3restate it here for
completeness.

Theorem 3 Let B, k > 1 beinteger parameters. Thereis a capVC instance with uniform vertex capacities
B, for which any distributed approximation algorithm that assigns less than (1 + 1/k) - B edges to all
vertices, must take at least k& communication rounds.

Proof: The proof is by contradiction. Let< B/k and consider a distributed approximation algorithm for
capVCthat assigns at mo$B + ¢) edges to each vertex for any given (uniform capacity) instance whose
running time is less thah.

We first execute this algorithm on graﬁk}a - Lemma 7 shows that at mo§tB + 1) - kc of the edges in
di_1 are assigned to the verticesiin_;. The number of edges that need to be assigned to vertidesim
therefore at least

(2B+1)(B—ke) >0

where the inequality uses our assumptiorcoilence at least one vertex i), needs to be in any cover of
G'p , that assigns at mod? + c edges to each vertex. Letbe this vertex.

We now run the algorithm again afif; ;. Since the graph&'; , andG ;. are identical up to distande
from u, this vertex will be included in the cover in this case too. On the other handgnex inL; can be
part of any approximate solution f(ﬁfoByk. [

For instance, consider an (efficient) distributed approximation algorithmt &pVC with running time
O(logd n), whered is a positive constant. Theorem 3 then shows that there is a family of (omdapacity)

capVCinstances for which this algorithm must assign at |dast Q(loggB) edges to some vertex.

We observe that grapt&}; , andG; , haven = (2B + 1)(k + 1) vertices. This implies thaB = © (),
which is large in the interesting case whers polylogarithmic. However, thikitch is easily removed by
defining a graplt (resp.G1) consisting oft disjoint copies of the main building bloakY, K (resp.GL i)
Using the new parametémve can now produce instances in whiBhs arbitrarily small in E:omparisori to
while our proof argument goes through unchanged.

Acknowledgments We would like to thank Volker Kaibel for pointing out a much simplified proof of
Lemma 5.

16

References

[1] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of detsk-restrictions.ACM Trans.
on Algorithms, 2(2):153-177, 2006.

[2] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximétiegwveighted vertex cover prob-
lem. Annals of Discrete Mathematics, 25:27—45, 1985.

[3] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficientbptalistically checkable proofs:
Applications to approximation. Ifroceedings, ACM Symposium on Theory of Computing, pages
294-304, 1993.

[4] F. Chudak, T. Erlebach, and A. Panconesi. Primal-dual basédbdigd algorithms for vertex cover
with soft capacities and facility locatiofanuscript, 2004.

[5] J. Chuzhoy and J. Naor. Covering problems with hard capacitidrdeeedings, | EEE Symposium on
Foundations of Computer Science, pages 481-489, 2002.

[6] D.Dubhashi, O. Fggstdm, G. Mambrini, A. Panconesi, and C. Petrioli. Blue pleieades, a new solution
for device discovery and scatternet formation in multi-hop bluetooth nesvé®M-Kluwer Wreless
Networks (W net), 13(1):107—125, 2007.

[7] M. Elkin. Unconditional lower bounds on the time-approximation trade&df the distributed mini-
mum spanning tree problem. Rroceedings, ACM Symposium on Theory of Computing, pages 331—
340, 2004.

[8] U. Feige. A threshold of In n for approximating set cov&rACM, 45(4):634—652, 1998.

[9] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srinivas&n improved approximation algo-
rithm for vertex cover with hard capacities (extended abstractPrdeeedings, International Collo-
guium on Automata, Languages and Programming, pages 164-175, 2003.

[10] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasapebdent rounding in bipartite graphs. In
Proceedings, |EEE Symposium on Foundations of Computer Science, pages 323-332, 2002.

[11] D. Grable and A. Panconesi. Nearly optimal distributed edge colgimin(log log n) roundsRandom
Sructures and Algorithms, 10(3):385-405, 1997.

[12] S. Guha, R. Hassin, S. Khuller, and E. Or. Capacitated vertearitmy J. Algorithms, 48(1):257-270,
2003.

[13] E. Halperin. Improved approximation algorithms for the vertex coveblgm in graphs and hyper-
graphs.SAM J. Comput., 31(5): 1608-1623, 2002.

[14] D. S. Hochbaum. Approximation algorithms for set covering and xexser problemsSAM J. Com-
put., 11:555-556, 1982.

[15] G.Karakostas. A better approximation ratio for the vertex coveslpro. InProceedings, International
Colloguium on Automata, Languages and Programming, pages 1043-1050, 2005.

17

[16] S. Khuller, U. Vishkin, and N. Young. A primal-dual parallel apypiroation technique applied to
weighted set and vertex covers.Algorithms, 17(2):280-289, 1994.

[17] F. Kuhn, T. Moscibroda. Distributed Approximation of Capacitatedridwating Sets. IfProceedings,
ACM Symposium on Parallelismin Algorithms and Architectures, pages 161-170, 2007.

[18] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannotdmeputed locally! InProceedings, ACM
Symposium on Principles of Distributed Computing, pages 300—-309, 2004.

[19] F. Kuhn and R. Wattenhofer. Constant-time distributed dominating peb=imation. InProceedings,
ACM Symposium on Principles of Distributed Computing, pages 25-32, 2003.

[20] L. Jia, R. Rajaraman and T. Suel. An efficient distributed algorithntémstructing small dominating
sets.Distributed Computing, 15(4):193-205, 2002.

[21] N. Linial. Locality in distributed graph algorithm&AM J. Comput., 21(1):193-201, 1992.

[22] M. Luby. A simple parallel algorithm for the maximal independent sebfgm. SAM J. Comput.,
15:1036-1053, 1986.

[23] M. Luby. Removing randomness in parallel without processor Ihenal. Comput. System i,
47(2):250-286, 1993.

[24] C. Lund and M. Yannakakis. On the hardness of approximating mintraizg@roblems. J. ACM,
41(5):960-981, 1994.

[25] M. Naor. A lower bound on probabilistic algorithms for distributive riogjoring. SAM J. Discrete
Math., 4(3):409-412, 1991.

[26] P. Wan, K. M. Alzoubi and O. Frieder Distributed construction afrmected dominating set in wireless
ad hoc networksProceedings of INFOCOM, 2002.

[27] A. Panconesi and A. Srinivasan. The local nature of deltartgaand its algorithmic applications.
Combinatorica, 15(2):255-280, 1995.

[28] S. Rajagopalan and V. Vazirani. Primal-dual RNC approximation @hgos for (multi)set (multi)cover
and covering integer programS.AM J. Comput., 28(2):525-540, 1998.

[29] R. Rajaraman. Topology control and routing in ad hoc networksnaey. S GACT News, 2002.

[30] R. Raz and S. Safra. A sub-constant error-probability loweedest, and a sub-constant error-
probability PCP characterization of NP. Rroceedings, ACM Symposium on Theory of Computing,
pages 475-484, 1997.

18

