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Abstract. Many divide-and-conquer algorithms employ the fact that
the vertex set of a graph of bounded treewidth can be separated in two
roughly balanced subsets by removing a small subset of vertices, referred
to as a separator. In this paper we prove a trade-off between the size of
the separator and the sharpness with which we can fix the size of the
two sides of the partition. Our result appears to be a handy and powerful
tool for the design of exact and parameterized algorithms for NP-hard
problems. We illustrate that by presenting two applications.

Our first application is a parameterized algorithm with running time
O(16k+o(k) + nO(1)) for the Maximum Internal Subtree problem in
directed graphs. This is a significant improvement over the best pre-
viously known parameterized algorithm for the problem by [Cohen et
al.’09], running in time O(49.4k + nO(1)).

The second application is a O(2n+o(n)) time and space algorithm for the
Degree Constrained Spanning Tree problem: find a spanning tree
of a graph with the maximum number of nodes satisfying given degree
constraints. This problem generalizes some well-studied problems, among
them Hamiltonian Path, Full Degree Spanning Tree, Bounded
Degree Spanning Tree, Maximum Internal Spanning Tree and
their edge weighted variants.

1 Introduction

The aim of parameterized and exact algorithms is solving NP-hard problems
exactly, with the smallest possible (exponential) worst-case running time. While
exact algorithms are designed to minimize the running time as a function of the
input size, parameterized algorithms seek to perform better when the instance
considered has more structure than a general instance to the problem. Exact and
parameterized algorithms have an old history [14, 18], but they have been at the
forefront in the last decade. In the last few years, many new techniques have



been developed to design and analyze exact algorithms, among them Inclusion-
Exclusion, Möbius Transformation, Subset Convolution, Measure & Conquer
and Iterative Compression to name a few [2, 3, 9, 17, 24].

A classical approach to solve combinatorial problems is divide-and-conquer :
decompose the problem in two or more sub-problems, solve them independently
and merge the solutions obtained. Several divide-and-conquer algorithms rely
on the existence of a small separator, which is defined as follows. Let G be an
n-vertex graph with vertex set V = V (G) and edge set E = E(G). A set of
vertices S is called an α-separator of G, 0 < α ≤ 1, if the vertex set V \ S can
be partitioned into sets VL and VR of size at most αn such that no vertex of VL

is adjacent to any vertex of VR. For example, the classical result of Lipton and
Tarjan that every planar graph has a 2

3 -separator of size O(
√
n) can be used to

solve many NP-hard problems in planar graphs in time O(2O(
√

n)) [19].

1.1 Our Results

In this paper (see Section 2) we prove a trade-off between the size of the separator
S and the sharpness with which we can fix the size of VL and VR in the partition,
for graphs of treewidth t. Given a function w : X → R, we define w(Y ) =∑

y∈Y w(y) for any Y ⊆ X.

Theorem 1 (Sharp Separation). Let G = (V,E) be a graph of treewidth t and
w : V → {0, 1}. Then for any integer p ≥ 0 and 0 ≤ x ≤ w(V ) there is a partition
(VL, S, VR) of V such that |S| ≤ t p, w(VL) ≤ x+ w(V )

2p+1 , w(VR) ≤ w(V )−x+ w(V )
2p+1 ,

and there is no edge in G with one endpoint in VL and the other endpoint in VR,
that is, S separates VL from VR. Given a tree-decomposition of G of width t, S
can be computed in polynomial time.

Here w is used to model a subset W ⊆ V of vertices that we wish to separate.
Theorem 1 implies for example that, with a separator of logarithmic size (for
bounded treewidth graphs), we can obtain a perfectly balanced partition with
max{|VL|, |VR|} ≤ n/2. In this paper we will always set p ≥ logw(V ), which
makes the additive term w(V )/2p+1 disappear.

Our Sharp Separation Theorem is a handy tool in the design of parameterized
and exact algorithms based on the divide-and-conquer paradigm. We illustrate
that by presenting two applications.

k-Internal Spanning Tree Our first result is a parameterized algorithm for
the following problem.

k-Internal Out-Branching: Given a digraph D = (N,A) and a pos-
itive integer k, check whether there exists an out-branching with at least
k internal vertices.

The undirected counterpart to this problem, k-Internal Subtree was first
studied by Prieto and Sloper [22], who gave an algorithm with running time
24k log knO(1) and a kernel of size O(k2) for the problem. Recently, Fomin et



al. [10] gave an improved algorithm with running time 8knO(1) and a kernel
with at most 3k vertices. For k-Internal Out-Branching, Gutin et al. [13]
obtained an algorithm of running time 2O(k log k)nO(1) for and gave a kernel of
size of O(k2). A faster algorithm, running in time 49.4knO(1) was subsequently
improved by Cohen et al. [6]. In this paper we use the Sharp Separation Theorem
to obtain an algorithm with running time O(16k+o(k) + nO(1)).

Theorem 2. There is a one-sided-error Monte-Carlo algorithm for k-Internal
Out-Branching. The algorithm runs in polynomial-space and in time O(16k+o(k)+
nO(1)), where n is the size of the input digraph D. When an out-branching with
at least k internal nodes exists the algorithm fails to find one with probability
at most 1/4. This algorithm can be derandomized at the cost of an exponential
O(4kkO(log k)) space complexity.

Degree constrained spanning tree. The second application of the Sharp Sep-
aration Theorem is an algorithm for Degree Constrained Spanning Tree
defined below. For a given graph G = (V,E), let dG(v) denote the degree of
v ∈ V in G.

Degree Constrained Spanning Tree (DCST). Given a graph G =
(V,E) and a function D : V → 2{1,...,n}. Find a spanning tree T of G
maximizing |{v ∈ V : dT (v) ∈ D(v)}|.

Intuitively, D(v) can be seen as a set of desirable degrees for a vertex v in the
spanning tree. We have a hit each time dT (v) ∈ D(v) for some v. The goal is
maximizing the number of hits.

DCST naturally generalizes many NP-hard spanning tree and path problems
studied in the literature. For instance we can code the famous Hamiltonian
Path problem, find a spanning path of a given graph, by letting D(v) = {1, 2}
for all vertices; A spanning tree with n hits is a Hamiltonian path. By carefully
choosing the functions D(v) one can code many other problems as well, such as
Full Degree Spanning Tree [16], Bounded Degree Spanning Tree [12]
or Maximum Internal Spanning Tree [8]

For most special cases of DCST, no algorithm with running time O(2nnO(1))
was known until recently, and for Maximum Internal Spanning Tree Fernau
et al. [8] give a O(3nnO(1)) time algorithm, leaving the existence of a O(2nnO(1))
time algorithm open.

This year Nederlof [21] was able to give Inclusion-Exclusion based algorithm
running in time O(2nnO(1)) for DCST. We use the Sharp Separation Theorem
to give an alternate algorithm for the DCST problem, in particular we prove the
following result.

Theorem 3. [?] 4 The Degree Constrained Spanning Tree problem can
be solved in time and space O(2n+o(n)), where n is the number of nodes in the
graph.
4 Proof of results labelled by ? have been wholly or partially omitted due to space

constraints



Our algorithm differs from the work of Nederlof in the following ways. On
one hand, his algorithm takes polynomial space and works in 2nnO(1) time. On
the other hand, our approach is more robust. In particular our algorithm can be
easily extended to find subgraphs of constant treewidth instead of trees, and also
works for edge weighted variants of Degree Constrained Spanning Tree.

1.2 Preliminaries

For basic graph terminology we refer the reader, e.g., to [7]. We just recall the
definition of treewidth, and also the less standard digraph notions needed in this
paper.

A tree decomposition of a (undirected) graph G = (V,E) is a pair (X,U)
where U = (W,F ) is a tree, and X = ({Xi | i ∈W}) is a collection of subsets of
V such that

1.
⋃

i∈W Xi = V ,
2. for each edge vw ∈ E, there is an i ∈W such that v, w ∈ Xi, and
3. for each v ∈ V the set of vertices {i | v ∈ Xi} forms a subtree of U .

The width of (X,U) is maxi∈W {|Xi| − 1}. The treewidth tw(G) of G is the
minimum width over all the tree decompositions of G. By a classical result of
Arnborg, Corneil and Proskurowski [1], a tree-decomposition of G of width t, if
any, can be computed in O(nt+2) time. When this running time is dominated by
other steps of the algorithm considered, we will just consider this decomposition
as given. An r-out-tree in a digraph D = (N,A) is a subtree T of D rooted at
r, such that all arcs of T are oriented away from r. If T contains all vertices of
D, T is said to be an r-out-branching. For a vertex set R, an R-out-forest is a
collection of |R| vertex-disjoint r-out-trees, one out-tree for each r ∈ R.

2 Sharp Separation in Graphs of Bounded Treewidth

In this section we prove our Sharp Separation Theorem, which is at the heart
of the algorithms described in the following sections. In order to prove that, we
need the following well-known result.

Lemma 1 ([4]). Given a n-vertex graph G = (V,E) of treewidth t and w : V →
R+∪{0}. There is a set T of vertices of size at most t such that for any connected
component G[C] of G \ T , w(C) ≤ w(V )/2. Given a tree-decomposition of G of
width t, T can be computed in polynomial time.

Proof. (Theorem 1) We construct VL, VR and S iteratively, starting from empty
sets, as follows. By Lemma 1 there is a set T of size at most t such that for
any connected component G[C] of G \ T , w(C) ≤ w(V )/2. We add T to S and
for each component G[C] of G \ T , add C to VL or VR if this does not violate
w(VL) ≤ x or w(VR) ≤ w(V )− x, respectively.

Let us show that at the end of the process there is at most one component
G[C] left. Suppose by contradiction that there are at least 2 such components,



say G[C1] and G[C2]. W.l.o.g. assume w(C1) ≤ w(C2). This implies that w(VL)+
w(C1) > x and w(VR) + w(C1) > w(V )− x. Consequently,

w(VL) + w(VR) + 2w(C1) > w(V ).

However, this contradicts the fact that

w(VL) + w(VR) + 2w(C1) ≤ w(VL) + w(VR) + w(C1) + w(C2) ≤ w(V ).

Now we iteratively reapply the construction above for p− 1 times, each time
considering the component G[C] left from previous step. Eventually we add C
to either VL or VR.

Each time the weight of C halves, so at the end of the process w(C) ≤
w(V )/2p+1. The upper bound on the weight of VL and VR follows. Since at each
step we add to S a set of size t, we eventually obtain |S| ≤ p t. The running time
claim follows immediately from Lemma 1. This concludes the proof. ut

3 k-Internal Out-Branching

In this section we use Theorem 1 to give a parameterized algorithm with run-
ning time O(16k+o(k) + no(1)) for the k-Internal Out-Branching problem.
Our approach combines the Sharp Separation Theorem with the divide-and-
color paradigm in [5, 15] and a polynomial-sized kernel for the problem [13].
First we present a (polynomial-space) one-sided-error Monte-Carlo algorithm
for k-Internal Out-Branching with the claimed running time. We then de-
randomize the algorithm at the cost of an exponential space complexity.

3.1 A Monte-Carlo Algorithm

The first step of our algorithm is to apply the kernelization algorithm of Gutin et
al. [13]. Given an instance (D, k) of k-Internal Out-Branching the algorithm
of Gutin et al. produces a new instance (D′, k′) with |D′| = O(k2) and k′ ≤ k
such that D′ has an out-branching with at least k′ internal vertices if and only if
D has an out-branching with at least k internal vertices. After this step we can
assume that the number n of vertices in the input digraph D is at most O(k2).

Now, the algorithm guesses the root r of the out-branching, and verifies
that there indeed is some out-branching of D rooted at r. This guessing step,
together with the following observation, allows us to search for out-trees rooted
at r instead of out-branchings of D.

Lemma 2 ([6]). Let D be a digraph and r be a node of D such that there is an
r-out-branching of D. Then, for any r-out-tree T with at least k internal nodes
there is an r-out-branching T ′ with at least k internal nodes containing T as a
subtree.



When looking for r-out-trees with at least k internal nodes, it is sufficient to
restrict ourselves to r-out-trees with at most 2k nodes. The reason for this is
that if some internal node sees at least two leaves of the r-out-tree, then one of
the leaves can be removed without changing any internal nodes into leaves. We
formalize this as an observation.

Lemma 3 ([6]). Let D be a digraph and r be a node of D. If there is an r-out-
tree T with at least k internal nodes then there is an r-out-tree T ′ on at most 2k
nodes with at least k internal nodes.

With the described preliminary steps, we have arrived at the following problem,
which we call Rooted Directed k-Internal Out-Tree (k-RDIOT). Input
is a digraph D, node r and integer k. The digraph D has n = O(k2) nodes and
the objective is to decide whether there is an r-out-tree with at least k internal
nodes and at most 2k nodes in total.

Our algorithm splits the original problem into two smaller sub-problems by
means of a proper separator, guesses the “shape” of the intersection of the out-
branching with each side of the separator and solves each subproblem recursively.
There are two aspects of sub-problems which do not show up in the original
problem. First of all, the solution to a subproblem is not necessarily an out-tree:
it is an out-forest in general. Still, the union of such forests must induce an
r-out-tree. In order to take this fact into account, we introduce the notion of
signatures.

Definition 1. Let T = (NT , AT ) be an R-out-forest, and Z ⊆ NT be a set of
nodes such that R ⊆ Z. The signature ζZ(T ) of T with respect to Z is the R-
out-forest C = (Z,Q) where there is an arc from a vertex u ∈ R to a vertex
v ∈ Z \ R if and only if there is a path from u to v in T . All vertices of Z \ R
are leaves of C.

Notice that the signature of an out-forest is always a set of stars and singletons.
In our recursive steps we will guess the signature of the out-forest we are looking
for with respect to Z, where the set Z includes r and all the separators guessed
from the original problem down to the current subproblem.

Second, in order to obtain two independent sub-problems, we need to make
sure that separator nodes that are internal on both sides of the separator only
get counted once. To achieve this we guess a subset Y of the separator nodes, and
do not count the internal nodes of the out-forest in Y . Altogether, a subproblem
can be defined as follows.

Directed Rooted Out-Forest (DROF). Input is a tuple (D,R,
C, Y, k∗, t) where D = (N,A) is a digraph, C = (Z,Q) is an R-out-
forest with node set Z for R ⊆ Z ⊆ N , Y ⊆ Z is a node set and k∗ and
t are integers. The objective is to find an R-out-forest T in D with at
least k∗ internal nodes outside Y and at most t nodes outside Z such
that T contains Z and ζZ(T ) = C.

The input instance (D, k) of k-RDIOT is equivalent to an DROF instance
(D,R,C, Y, k, 2k), where t = 2k, C is the single node r and Y = ∅. Our algo-
rithm for k-RDIOT initially constructs a DROF instance equivalent to the input



k-RDIOT instance as described above. That k-RDIOT instance is solved recur-
sively in the following way. Consider a given subproblem (D,R,C, Y, k∗, t). If
t ≤ log k, that is the number of vertices outside Z in the out-forest sought for is
small enough, we solve the problem by brute force. In particular, we enumerate
all the possible R-out-forests in D on at most |Z|+ t nodes and check whether
they satisfy the conditions of DROF.

Suppose now t > log k, and that (D,R,C, Y, k∗, t) is a “yes”-instance. Then
there is an R-out-forest T = (NT , AT ) that satisfies the conditions of DROF. By
the Sharp Separation Theorem there is a partitioning of NT into (NT

L , S,N
T
R )

such that |S| = log k, |NT
L \ Z| ≤ t/2, |NT

R \ Z| ≤ t/2 and there are no arcs
between NT

L and NT
R in T . Define Z ′ = Z ∪ S and AZ′ to be the arcs of T [Z ′].

The algorithm guesses the separator S ⊆ N and for each of the
(
O(k2)
log k

)
guesses

for the separator it generates a random family of 3 · 2t · |Z ′|O(|Z′|) pairs of sub-
problems, that is instances of DROF PL and PR, which are solved recursively.

If for some pair PL and PR, the algorithm returns that both PL and PR

are “yes” instances, then the algorithm returns that (D,C, Y, k∗, t) is a “yes”-
instance as well. If the algorithm loops through all guesses of S and all the
3 · 2t · |Z ′|O(|Z′|) pairs and for each pair the algorithm returns that at least one
sub-problem is a “no”-instance, the algorithm returns that (D,C, Y, k∗, t) is a
“no”-instance. To conclude the description of the algorithm we need to describe
how the pairs (PL,PR) are generated.

Before describing how the pairs are generated, define the out-forests TL =
T [Z ′ ∪NT

L ] and TR = T [Z ′ ∪NT
R ] \AZ′ . Also, let YR be Y plus all the internal

nodes of TL in Z ′ and YL = (Z ′ \ YR) ∪ Y . Now, tL and tR are the number of
nodes outside Z ′ in TL and TR respectively. Finally k∗L and k∗R are the number of
internal nodes in TL outside YL and the number of internal nodes in TR outside
YR respectively.

We next describe how a random pair (PL,PR) is generated. The algorithm
generates the pairs in 3 · 2t groups, each group with |Z ′|O(|Z′|) pairs. For each
group the algorithm partitions the node set N \ Z ′ into two parts (NL, NR)
uniformly at random. For each partitioning, the algorithm guesses CL = ζZ′(TL),
CR = ζZ′(TR), YL, YR, k∗L, k∗R, tL and tR. Each set of guesses makes one pair
(PL,PR) of instances, where PL = (D[NL ∪ Z ′], RL, CL, YL, k

∗
L, tL) and PR =

(D[NR ∪ Z ′], RR, CR, YR, k
∗
R, tR). It is easy to see that the number of possible

guesses is at most |Z ′|O(|Z′|).
The algorithm makes the guesses in a special way, making sure that if both

PL and PR are “yes”-instances then (D,C, Y, k∗, t) is a “yes”-instance as well.
In particular, it makes sure that the arc sets of CL and CR are disjoint, that
CL ∪ CR is an out-forest and that ζ(CL ∪ CR) = C. Also, the algorithm makes
sure that YL ∪ YR = Z ′ and that Y ⊆ YL and Y ⊆ YR. Finally, it makes sure
that t∗L + t∗R − |Z ′| = t∗ and that k∗L + k∗R = k∗. This concludes the description
of the algorithm.

Lemma 4. There is a one-sided-error Monte-Carlo algorithm for k-Internal
Out-Branching running in time O(16k+o(k) + nO(1)). When the instance is a



“yes”-instance, the algorithm incorrectly returns “no” with probability at most
1/4.

Proof. Consider the algorithm above. It is enough to prove correctness and an-
alyze the running time for the part of the algorithm that solves DROF. We first
prove that when the algorithm answers yes, the answer is correct. We prove this
by induction on t. If t < log k then the algorithm resolves the problem in a brute
force manner and hence correctness follows. Suppose now that t ≥ log k. Since
the algorithm returned yes it made a guess for S, a random partitioning of N \Z ′
(where Z ′ = Z ∪ S) and guessed a pair PL = (D[NL ∪ Z ′], RL, CL, YL, k

∗
L, tL)

and PR = (D[NR ∪ Z ′], RR, CR, YR, k
∗
R, tR) such that the algorithm returned

that both PL and PR are “yes”-instances of DROF. By the induction hypothe-
sis there are out-forests TL = (NT

L , A
T
L) of D[NL] and TR = (NT

R , A
T
R) of D[NR]

with at least k∗L and k∗R inner nodes outside YL and YR respectively, such that
CZ′(TL) = CL and CZ′(TR) = CR. We prove that T = TL ∪ TR is an out-forest
that satisfies the conditions of DROF.

Since the arc sets of CL and CR are disjoint, CL ∪ CR is an out-forest and
CZ′(TL) = CL and CZ′(TR) = CR, T = TL ∪ TR is an out-forest. Since ζZ(CL ∪
CR) = C it follows that ζZ(T ) = ζZ(TL ∪ TR) = C. The number of nodes in T
is tL + tR − Z ≤ t and since Y ⊆ YL, Y ⊆ YR and YL ∪ YR = Z ′ the number of
inner nodes of T avoiding Y is at most k∗L + k∗R ≥ k∗. Hence the input instance
is indeed a “yes”-instance.

Now, we prove that if a given subproblem (D,R,C, Y, k∗, t) is a “yes”-instance,
then the probability that the algorithm returns “no” is pt ≤ 1/4. We prove this
by induction on t, and if t < log k the algorithm solves the problem by brute
force and correctness follows. If t ≥ log k, consider an out-forest T that satisfies
the conditions of DROF. Consider the run of the algorithm where the separator
S is guessed correctly.

Now, there are two possible reasons why the algorithm fails to answer “yes”.
Reason (a) is that the random partition (NL, NR) of N ∪ Z ′ could be done in
the wrong way, that is NT

L 6⊆ NL or NT
R 6⊆ NR. Reason (b) is that even though

NL and NR are guessed correctly, in the iteration of the algorithm where the
guesses for CL = ζZ′(TL), CR = ζZ′(TR), YL, YR, k∗L, k∗R, tL and tR are correct,
the algorithm could fail to recognize either PL or PR as “yes” instances.

The probability of the first event is at most 1−2−t. Recall that tL, tR ≤ t/2,
since the algorithm uses a perfectly balanced separator to split NT \Z ′. Hence,
by the union bound, the probability of event (b) is at most 2−t 2pt/2. Altogether
pt satisfies

pt ≤
(
1− 2−t + 2−t+1pt/2

)3·2t

.

Therefore, by the inductive hypothesis,

pt ≤
(
1− 2−t + 2−t+1/4

)3·2t

=
((

1− 1/2t+1
)2t+1

)1.5

≤ e−1.5 ≤ 1
4
.

Consider now the running time of the algorithm. Observe that in the begin-
ning t = 2k and that t always drops by a factor of one half in the recursive



steps. Furthermore the algorithm stops when t drops below log k. Hence the re-
cursion depth is at most log(2k). For each new level of the recursion the size of
Z ′ increases by log 2k. Hence |Z ′| never grows over log2(2k). In the base case
we try all possible subsets of A of size |Z|′ + t. Since D has at most O(k2) ver-
tices it has at most O(k4) arcs and hence in the base we need to try at most
O(
(

k4

log2 2k

)
) = O(2o(k)) different possibilities, each of which can be checked in

O(kO(1)) time.
Consider now the recursive step. There are

(
O(k2)
log 2k

)
choices for the separator.

For each choice of the separator the number of random partitions tried is 3 · 2k.
For each random partition, |Z ′|O(|Z′|) = O(2log3 k) pairs (PL,PR) of instances
are generated. Let T (n, t) be the running time of the DROF algorithm on an
instance where D has n nodes and the number of nodes in the tree searched for
that are not in Z ′ is t. Then the following recurrence holds.

T (n, t) ≤ nO(log3 2k) · 3 · 2t · (2T (n, t/2) + nO(1))

≤ nO(t log3 2k)2k · T (n, t/2)

= O((nO(t log3 2k))log k · 2(Plog t
i=0

t

2i )) = O(4t · nO(log4 k)).

Since we first run the kernelization algorithm from [13], the k-RDIOT instance
we solve recursively has O(k2) nodes. Since t = 2k in the instance of DROF we
construct from this k-RDIOT instance, the total running time for the algorithm
is bounded from above by O(42k ·(k2)O(log4 k)+nO(1)) = O(16k+o(k)+nO(1)). ut

Our algorithm for k-Internal Out-Branching can be derandomized using
the method presented by Chen et al. [5], which is based on the construction of
(n, k)-universal sets [20]. The main idea is to replace the random partitioning
of the host graph H by a partitioning that uses universal sets. Lemmas 4 and 5
together imply Theorem 2.

Lemma 5. [?] There is a deterministic algorithm for k-Internal Out-Branching
running in time O(16k+o(k) + nO(1)) and requiring O(4kkO(log k)) space.

4 Degree Constrained Spanning Tree

In this section we present our O(2n+o(n))-time algorithm for the Degree Con-
strained Spanning Tree problem (DCSS). We recall that in this problem we
are given an undirected graph G = (V,E), and a list of desirable degrees D(v)
for each vertex v. The aim is finding a spanning tree T of G which maximizes
the number of hits, i.e. the number of vertices v with dT (v) ∈ D(v).

Our algorithm is based on the divide-and-conquer approach, and has several
similarities with the algorithm for k-Internal Spanning Tree. The main differ-
ences are that the random partitioning and kernelization parts are no longer
required, and that the Sharp Separation theorem is used to divide the prob-
lem into very unbalanced subproblems. Consider a subproblem on the graph



H = (V,E). In the divide step we guess a proper (logarithmic-size) separator
S of the optimum solution, and the corresponding two sides VL and VR of the
partition. Set S is chosen such that VL is sufficiently small to make the guessing
of S, VL and VR cheap enough. The existence of S is guaranteed by our Sharp
Separation Theorem. The two sub-problems induced by VL ∪ S and VR ∪ S are
then solved recursively.

Just as for the case of k-Internal Spanning Tree there are two aspects of sub-
problems which do not show up in the original problem. First of all, the solution
to a subproblem is not necessarily a spanning tree: it is a spanning forest in
general. Still, the union of such forests must induce a tree. In order to take this
fact into account, we introduce a constraint forest C = (Z,Q), defined over a
proper subset of nodes Z ⊆ V . The set Z includes all the separators guessed
from the original problem down to the current subproblem. The components of
C describe which pairs of nodes of Z must and must not be connected in the
desired forest.

Second, in order to obtain two independent maximization sub-problems, we
need to guess the degree of the separator nodes in the optimum solution, and
force the solution to have that degree on those nodes. This is modeled via an
auxiliary function A : V → 2{1,...,n}. For z ∈ Z, A(z) is a singleton set containing
the mentioned guessed degree, while A coincides with D on the remaining nodes.
We remark that it might be that A(z) 6⊆ D(z) for some z ∈ Z, since not all the
nodes of Z need to be hits in the optimum solution. Altogether, a subproblem
(H,C,A) can be defined as follows.

Degree-Constrained Cut & Connect (DCCC). Given a graph H =
(V,E), a forest C = (Z,Q), Z ⊆ V , and a function A : V → 2{1,...,n},
|A(z)| = 1 for z ∈ Z. Find a spanning forest F of H maximizing the
number of hits, i.e. |{v ∈ V : dF (v) ∈ A(v)}|, such that: (i) every
connected component of F contains at least one vertex of Z; (ii) for any
u, v ∈ Z, u and v are connected in C if and only if they are connected
in F ; (iii) dF (z) ∈ A(z) for all z ∈ Z.

Observe that the original Degree Constrained Spanning Tree instance
(G,D) is equivalent to a Degree-Constrained Cut & Connect instance
where H = G, C = ({z}, ∅) for an arbitrary vertex z of G, A(z) = {dOPT (z)}
where dOPT (z) is the degree of z in an optimum solution OPT , and A(v) = D(v)
for any vertex v 6= z. We remark that we can guess dOPT (z) by trying all the
possibilities.

We give a memoization based algorithm for DCST. Initially the algorithm
encodes the input problem into a DCCC problem as described above. The latter
problem is then solved recursively. The solution to each subproblem generated
is stored in a memoization table, which is used to avoid to solve the same sub-
problem twice.

Let us describe the recursive algorithm for DCCC. Consider a given sub-
problem P = (H,C,A), with H = (V,E) and C = (Z,Q). If |V | ≤ n/ log2 n,
the problem is solved in a brute force manner by enumerating all the spanning



forests F of H. Otherwise, the algorithm splits the problem in two smaller in-
dependent sub-problems PL = (HL, CL,AL) and PR = (HR, CR,AR), which
are solved recursively. The desired solution F is obtained by merging the two
solutions obtained for the two sub-problems.

We next describe how PL and PR are obtained. Consider the optimum so-
lution OPT = OPT (H,C,A) to (H,C,A). For x = n/ log2 n, by the Sharp
Separation Theorem there is a separator S of OPT , |S| ≤ t log n = log n, which
splits V \ S in two subsets VL and VR, with |VL| ≤ x and |VR| ≤ |V | − x. Let
Z ′ = S ∪ Z. The algorithm guesses S, VL and VR, and sets HL = H[VL ∪ Z ′]
and HR = H[VR ∪ Z ′].

Consider the forest C ′ obtained from OPT by iteratively contracting the
edges with one endpoint not in Z ′. Note that, if we further contract C ′ on
vertices S \ Z, we must obtain the forest C. Each edge of C ′ corresponds to a
path in H whose vertices belong entirely either to VL ∪ Z ′ or to VR ∪ Z ′. (In
order to simplify the algorithm, we assume that edges between adjacent nodes of
Z ′ belong to the first class). Let QL and QR be the edges of the first and second
type, respectively. The algorithm guesses C ′,QL andQR, and sets CL = (Z ′, QL)
and CR = (Z ′, QR).

It remains to specify AL and AR. Consider the two forests OPTL and OPTR,
on vertex set VL∪Z ′ and VR∪Z ′, respectively, obtained from OPT by inserting
every edge ofOPT with both endpoints in VL∪Z ′ inOPTL, and all the remaining
edges in OPTR. Note that dOPT (z′) = dOPTL

(z′) + dOPTR
(z′) for all z′ ∈ Z ′.

The algorithm guesses dOPTL
(z′) (resp., dOPTR

(z′)) for all z′ ∈ Z ′, and sets
AL(z′) = {dOPTL

(z′)} (resp., AR(z′) = {dOPTR
(z′)}). Moreover, it sets AL(v) =

A(v) (resp, AR(v) = A(v)) for all the remaining nodes v.
Summarizing the discussion above, the following recurrence holds, where the

maximum, computed with respect to the number of hits, is taken over all the
possible choices of (HL, CL,AL) and (HR, CR,AR) such that the pair of feasible
solutions to the smaller instances can be combined to a feasible solution for the
original instance (H,C,A).

OPT (H,C,A) = arg max{OPT (HL, CL,AL) ∪OPT (HR, CR,AR)}. (1)

In particular, the maximum considers all the possible choices of the separator
S and of the partition (VL, VR), of the forest C ′ and of the partition (QL, QR)
of its edges, and of the degrees dOPTL

(z′) and dOPTR
(z′).

Due to correctness of Recurrence (1) the algorithm described above solves
Degree Constrained Spanning Tree. What remains for a complete proof
of Theorem 3 is a running time analysis, which has been omitted due to space
restrictions.

Remark: The algorothm for Degree Constrained Spanning Tree can be
applied to find spanning subgraphs of treewidth t satisfying degree constraints in
time O(2n+o(n)) for every fixed constant t. In addition to the degree constraints
one could require the spanning subgraph to belong to a minor-closed graph
family. Our approach is also easily generalizable to handle super-polynomial
edge weights.
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