
Faster Steiner Tree Computation in

Polynomial-Space

Fedor V. Fomin1?, Fabrizio Grandoni2??, and Dieter Kratsch3

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway,
fomin@ii.uib.no

2 Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor
Vergata”, via del Politecnico 1, 00133, Roma, Italy, grandoni@disp.uniroma2.it

3 LITA, Université Paul Verlaine-Metz, 57045 Metz Cedex 01, France,
kratsch@univ-metz.fr

Abstract. Given an n-node graph and a subset of k terminal nodes,
the NP -hard Steiner tree problem is to compute a minimum-size tree
which spans the terminals. All the known algorithms for this problem
which improve on trivial O(1.62n)-time enumeration are based on dy-
namic programming, and require exponential space.
Motivated by the fact that exponential-space algorithms are typically
impractical, in this paper we address the problem of designing faster
polynomial-space algorithms. Our first contribution is a simple polynomial-
space O(6knO(log k))-time algorithm, based on a variant of the classical
tree-separator theorem. This improves on trivial O(nk+O(1)) enumeration
for, roughly, k ≤ n/4.
Combining the algorithm above (for small k), with an improved branch-
ing strategy (for large k), we obtain an O(1.60n)-time polynomial-space
algorithm. The refined branching is based on a charging mechanism
which shows that, for large values of k, convenient local configurations
of terminals and non-terminals must exist. The analysis of the algorithm
relies on the Measure & Conquer approach: the non-standard measure
used here is a linear combination of the number of nodes and number of
non-terminals.
As a byproduct of our work, we also improve the (exponential-space)
time complexity of the problem from O(1.42n) to O(1.36n).

1 Introduction

The Steiner tree problem is one of the best-known optimization problems: Given
a connected graph G = (V, E) on n = |V | nodes, edge costs c : E → R

+ and
a set T ⊆ V of k = |T | terminals, the objective is to find a subtree S of G
spanning T such that the cost of S (i.e. the total cost of its edges) is minimum.
Steiner trees are important in various applications such as VLSI routings [22],
phylogenetic tree reconstruction [21] and network routing [24]. We refer to the

? Supported by the Norwegian Research Council
?? Partially supported by MIUR under project MAINSTREAM.



book of Prömel and Steger [27] for an overview of the results and applications
of the Steiner tree problem.

The Steiner tree problem is known to be NP-hard [18]. Furthermore, it is
APX-complete, even when the graph is complete and all edge costs are either 1
or 2 [3]. Finding the best approximation algorithm for the Steiner tree problem
has been a challenge and many papers have been written on this subject. The cur-
rently best polynomial-time approximation algorithm for the Steiner tree prob-
lem, due to Robins and Zelikovsky, has approximation ratio 1 + (ln 3)/2 < 1.55
[28]. Among other results, Robins and Zelikovsky establish an approximation
ratio of 1.28 for complete graphs with edge costs 1 or 2. The Steiner tree prob-
lem remains NP-hard for Euclidean and rectilinear metrics [17]. On the positive
side, Arora established polynomial-time approximation schemes for those two
important variants of the Steiner tree problem [1].

The Steiner tree problem plays a crucial role also in parameterized algorithms
[9,12,26]. The aim here is designing the fastest possible algorithm under the (re-
alistic) assumption that k � n. For more than 30 years the fastest parameterized
algorithm for the Steiner Tree problem was the classical O∗(3k) dynamic pro-
gramming algorithm by Dreyfus and Wagner [10].4 Dreyfus-Wagner’s algorithm
is still probably the most popular algorithm used for solving different variants
of the Steiner tree problem in practice [8,16]. This algorithm and its variations
are also used as a subroutine in many other algorithms. For example, recent ap-
plications of it can be found in fixed parameter tractable algorithms for certain
vertex cover problems [19] and for near-perfect phylogenetic tree reconstruction
[6]. Recent progress in parameterized complexity and exact algorithms led to
new insights on the Steiner tree problem. Mölle, Richter, and Rossmanith [25]
(see also [15]) improved the running time to O∗((2+ε)k), for any constant ε > 0.
More recently, Björklund, Husfeldt, Kaski, and Koivisto [5] obtained an O∗(2k)
time algorithm for the version of the problem where edges have bounded integer
weights. All the mentioned algorithms are based on a dynamic programming ap-
proach: they store useful auxiliary information for every subset of the terminal
set, and thus use exponential space Ω(2k).

For arbitrary values of k, the fastest known O∗(1.4143n)-time (exponential-
space) algorithm for the Steiner tree problem is obtained by combining the al-
gorithm by Mölle et al. [25] (for small k) with trivial enumeration (for large
k).

Exponential-space versus polynomial-space. The situation with exact al-
gorithms for the Steiner tree problem is quite typical for a number of other
NP-hard problems: the best exponential time complexity is achieved by algo-
rithms with exponential space complexity [29]. However, algorithms with very
high space complexity are unlikely to be fast in practice, especially when exter-
nal memory accesses are frequent. This kind of phenomena is not captured by
the standard RAM model. Hence it makes sense to search for algorithms with

4 Throughout this paper we use the O∗ notation which suppresses polynomial factors:
for any polynomial p(n), O(p(n)f(n)) is O∗(f(n)).



low memory requirements, even if they are asymptotically slower than their
exponential-space counterpart. Polynomial-space exact algorithms have been
studied for various NP-hard problems, among them Hamiltonian Path [2,20,23]
and Coloring [4].

For k = ω(log n), the existing parameterized algorithms for the Steiner tree
problem are not polynomial-space. Under that assumption, the fastest known
polynomial-space algorithm is the (almost) trivial enumerative algorithm, based
on the following observation. Since all the leaves of any optimal Steiner tree are
terminals, the number of Steiner nodes T ′ of degree 3 or larger is at most k.
Given T ′, the Steiner tree problem is equivalent to the minimum spanning tree
problem on GM [T ∪ T ′], where GM is the metric closure of G. Such problem
can be solved in polynomial time. Hence it is sufficient to list all the subsets
T ′ ⊆ N := V \ T of size at most k, and then apply the observation above. This

takes time O(
∑k

i=1

(

n−k
i

)

nO(1)). For k � n this running time is O∗(nk), while
for arbitrary values of k it is O∗(1.6181n).

Our Results and Techniques. Motivated by the practical limitations of
exponential-space algorithms and by the theoretical interest of the topic itself,
in this paper we address the problem of designing faster polynomial-space exact
algorithms for the Steiner tree problem. In particular, we present an exact algo-
rithm for the cardinality version of the problem (where every edge is of weight
one), of running time O∗(1.5949n). This result is achieved in three steps:

• We describe a new, easy-to-implement, Steiner tree algorithm, taking
O(5.96knO(log k)) time and polynomial space. This means an improvement on
known polynomial-space results for ω(log n) = k ≤ 0.269 n, which covers many
real-world instances. Our result is based on a simple variant of the classical tree-
separator theorem: shortly, there is a node in every Steiner tree which separates
two balanced subsets of terminals. This can be exploited in a top-down recursive
implementation of the classical algorithm by Dreyfus and Wagner, hence achiev-
ing running time O((27/4)knO(log k)) and polynomial-space. The running time
can be refined to O(5.96knO(log k)) by exploiting the properties of the Steiner
separators in combination with a more careful branching. This algorithm works
also in the weighted case, and might be of independent, practical interest5.

• We design an improved branching strategy, based on the following idea. When
k is small, it is convenient to use the algorithm above. Otherwise, there must be
clusters of terminals “close” to each other. This property can be used to guide
the branching process. From the technical point of view, we use a simple charging
mechanism to show that, for large k’s, the graph must contain one of a small list
of local configurations of terminals and non-terminals. On such configurations
we are able to branch better than trivially.

• We analyze the algorithm above with the Measure & Conquer technique de-
scribed in [13,14], and based on the quasiconvex analysis of multivariate recur-
rences by Eppstein [11]. The basic idea is designing a convenient (non-trivial)

5 An experimental analysis of our algorithms is postponed to future work.



measure of the size of the problem. This measure is used to bound in a tighter
way the progress made by the recursive algorithm considered at each branching
step. The running time obtained with respect to the refined measure is eventu-
ally turned into the equivalent running time in terms of the standard measure
considered (typically the number of nodes or edges for graph problems). As it
will be clearer from the analysis, a convenient measure in our case is a linear
combination of the number n of nodes and number nN = n− k of non-terminals
in the graph.

Preliminaries. In the following stG(T ) denotes the minimum number of edges
of a Steiner tree of graph G over terminal set T . When the graph G is clear from
the context, we will simply write st(T ). By contracting a subset of nodes V ′, we
mean (i) removing V ′ from the graph, (ii) adding a new node v′, and (iii) adding
one edge between v′ and each neighbor of V ′ not in V ′. The following lemma is
easy to verify.

Lemma 1. (Contraction Lemma) Let (G, T ) be an instance of the cardinality
Steiner tree problem. Also let V ′ be a connected component of terminals, G′ be the
graph resulting from contracting V ′ in a unique node v′, and T ′ = T ∪ {v′} \V ′.
Then

stG(T ) = |V ′| − 1 + stG′(T ′).

The rest of this paper is organized as follows. In Section 2 we present our
O(5.96knO(log k)) polynomial-space algorithm. The refined branching strategy
based on the charging argument is described in Section 3, and analyzed in Section
4 with the Measure & Conquer technique.

2 Steiner Tree via Steiner Separators

In this section we describe a simple polynomial-space algorithm for the Steiner
tree problem of running time O((27/4)knO(log k)). We later show how to reduce
the time complexity to O(5.96knO(log k)). We remark that, with minor modifica-
tions, this algorithm works also in the weighted case.

Our algorithm is inspired by the classical dynamic programming algorithm
D&W by Dreyfus and Wagner [10], which takes O∗(3k) time and exponential space.
Algorithm D&W is based on the following observation. Consider any Steiner tree
S on the set of terminals T , |T | ≥ 3. There must be an internal node s ∈ S, not
necessarily a terminal, such that the subtrees of S rooted at s can be partitioned
in two forests R1 and R2, each one containing at least one terminal. Let Ti be
the terminals in Ri, i ∈ {1, 2}. If we compute optimal Steiner trees on terminals
T1 ∪{s} and T2 ∪{s}, and we merge them, we obtain an optimal Steiner tree for
the original problem. Of course we do not know s nor (T1, T2) a priori, but we can
guess them by enumerating all the possible cases. Recall that stG(T ) = st(T ) is
the minimum cost of a Steiner tree of G on terminals T . The following equation
holds:

st(T ) = min
s∈V

min
(T1,T2)∈P(s,T )

{st(T1 ∪ {s}) + st(T2 ∪ {s})}, (1)



Figure 1 Tight example for Lemma 2 (black nodes are terminals): a Steiner
separator s, and the corresponding forests R1 and R2 with |T1| = k/3 and
|T2| = 2k/3 terminals, respectively. Note that in R2 ∪ {s}, node s separates two
perfectly balanced forests R2a and R2b.

s

R2b

R2a

R2 R1

where P(s, T ) is the set of possible partitions (T1, T2) of T \ {s} in two non-
empty subsets. Algorithm D&W simply applies Equation (1) to any subset of T ,
in a bottom-up fashion, storing each partial solution computed for later compu-
tations. Storing the partial solutions takes Ω(2k) space.

A simple-minded approach to obtain a polynomial-space variant of D&W is
to apply Equation (1) recursively, in a top-down fashion, without storing any
partial solution. When |T | ≤ 2, the problem is solved trivially in polynomial
time and space (base case). Unfortunately, this approach leads to a very high
running time. The main reason is that, by applying Equation (1) as it is, one
generates some subproblems with almost the same number of terminals as in the
original problem.

This problem can be circumvented by exploiting a variant of the classical
tree-separator theorem. It is well known that any n-node tree contains a node s
(separator) whose removal divides the tree in two forests, each one containing at
most 2n/3 nodes. The same basic result holds if we put weights on the nodes [7].
In particular, the following lemma holds (see Figure 1 for a tight example).

Lemma 2. [7] Consider any Steiner tree S on the set of terminals T , |T | = k ≥
3. Then there exists an internal node s ∈ S (Steiner-separator), not necessarily
a terminal, whose removal divides the tree in two forests, each one containing at
most 2k/3 terminals.

As a consequence of Lemma 2, when applying Equation (1), we do not really
need to consider all the partitions in P(s, T ), but it is sufficient to consider only
the subset B(s, T ) ⊆ P(s, T ) of (“almost balanced”) partitions (T1, T2) where
|T1| ≤ |T2| ≤ 2k/3:

st(T ) = min
s∈V

min
(T1,T2)∈B(s,T )

{st(T1 ∪ {s}) + st(T2 ∪ {s})}. (2)

Using Equation (2) instead of (1) makes no substantial difference with the dy-
namic programming approach by Dreyfus and Wagner: in fact, the most frequent



partitions (which determine the running time) contain a balanced number of ter-
minals, and such partitions are contained both in B(s, T ) and in P(s, T ). The
situation changes drastically in the top-down recursive implementation of the al-
gorithm: here the running time is essentially determined by the most unbalanced
partitions. Hence, replacing P(s, T ) with B(s, T ) has a tremendous impact on
the performance of the algorithm.

The following Steiner tree algorithm summarizes the discussion above:

• (base case) If T = {v}, return v. If T = {v, w}, return the shortest path
from v to w.

• (recursive case) For every s ∈ V and for every partition (T1, T2) of T \{s},
|T1| ≤ |T2| ≤ 2k/3, compute recursively optimal Steiner trees S1 and S2 over
T1 ∪{s} and T2 ∪ {s}, respectively. Return the cheapest Steiner tree S1 ∪S2

obtained.

Theorem 1. The Steiner tree algorithm above takes time O((27/4)knO(log k))
and polynomial space.

Proof. The correctness of the algorithm follows from the discussion above, and
its space complexity is trivially polynomial. Let P (k) be the number of base
instances generated by the algorithm to solve the problem. The time complexity
of the algorithm is O(P (k)nO(1) log k) = O(P (k)nO(1)), where we used the fact
that each branching step takes polynomial time and the depth of the recursion
is O(log k).

It remains to bound P (k). We will show by induction that P (k) ≤ Cnc ln kαk,
for some constants C > 0, c > 0, and α ≥ 4. Clearly the condition is true for
k ≤ 2. Now assume it is satisfied for every h ≤ k − 1, and consider an instance
with k terminals. For a given partition (T1, T2), the number of base instances
generated is P (|T1| + 1) + P (|T2| + 1). By construction, k/2 ≤ |T2| ≤ 2k/3 and
|T1|+ |T2| ≤ k. Hence, for sufficiently large constants C and c and for α = 8, the
following inequalities hold:

P (k) ≤ n

2k/3
∑

i=k/2

(

k

i

)

(P (i + 1) + P (k − i + 1)) ≤ 2n

2k/3
∑

i=k/2

(

k

i

)

P (i + 1)

≤ 2n P (2k/3 + 1)

2k/3
∑

i=k/2

(

k

i

)

≤ 2n Cnc ln(2k/3+1)α2k/3+1 2k

≤ C nc ln k(2α2/3)k
≤ C nc ln kαk.

Above we used the fact that 2α2/3 = α for α = 8. In order to obtain a better
value of α, we use the following observation.

Fact 1 For every fixed x ≥ 4, function f(y) = xy

yy(1−y)1−y is increasing on

interval (0, 2/3].



From Stirling’s formula and Fact 1, for i ∈ [k/3, 2k/3],

(

k

i

)

P (i + 1) ≤
Cnc ln(i+1)αi+1

((i/k)i/k(1 − i/k)1−i/k)k
≤

(αi/k)kα C nc ln(2k/3+1)

((i/k)i/k(1 − i/k)1−i/k)k

≤ α C nc ln(2k/3+1)

(

α2/3

(2/3)2/3(1/3)1/3

)k

= α C nc ln(2k/3+1)

(

3α2/3

22/3

)k

.

It follows that

P (k) ≤ 2n

2k/3
∑

i=k/2

(

k

i

)

P (i + 1) ≤ 2n k α C nc ln(2k/3+1)

(

3α2/3

22/3

)k

≤ C nc ln kαk,

for sufficiently large constants C and c and for α = 27/4. The claim follows.

2.1 A Refined Algorithm

The algorithm of the previous section can be refined thanks to the following
observation. Let S be an optimal Steiner tree. Consider the Steiner-separator
s ∈ S leading to the most balanced partition (T1, T2) of the terminals, |T1| ≤ |T2|.
In case of a tie, we choose s such that the forest R2 associated to T2 contains
the smallest possible number of nodes. In the worst possible case, |T1| = k/3
and |T2| = 2k/3. Note that in such case the forest R2 cannot be formed by a
unique subtree of S. This is because otherwise the root s′ of such a subtree would
contradict the minimality of s. It follows that we can further partition R2 in two
sub-forests R2a and R2b. Let T2x be the terminals of R2x, x ∈ {a, b}. Without
loss of generality, we assume that |T2a| ≤ |T2b|. Again by the minimality of s, we
have |T2b| ≤ |T1| = k/3. In fact, otherwise the partition (T2b, T2a ∪ T1) would be
more balanced than (T1, T2) = (T1, T2a ∪ T2b). It follows that |T2a| = |T2b|, that
is in the subproblem induced by T2 there is a perfectly balanced partition (see
Figure 1 for an example).

This argument can be generalized in the following way. Let γ ∈ (0, 1/6) be a
given parameter. With the same notation as above, suppose |T2| ≥ (2/3 − γ)k.

Then it must be |T2a| ≤ |T2b| ≤ |T1| ≤ (1/3 + γ)k. As a consequence, |T2b|
|T2|

≤
1/3+γ
2/3−γ . For γ < 1/15 this gives a more balanced partition than the one guaranteed

by Lemma 2 (which ensures |T2b|/|T2| ≤ 2/3 only).
The idea is then to modify the algorithm of the previous section in the

following way:

• For any partition (T1, T2) considered, if |T2| ≥ (2/3 − γ)k, then in the sub-
problem corresponding to T2 consider only partitions (T2a, T2b) satisfying

|T2a| ≤ |T2b| ≤
1/3+γ
2/3−γ |T2|.

We can ideally partition the subproblems generated in two classes: (i) the sub-
problems with |T2| < (2/3−γ)k and (ii) the subproblems with |T2| ≥ (2/3−γ)k.
For subproblems of type (i) the larger is γ, the better is the recurrence obtained



in the current step. For subproblems of type (ii), the smaller is γ, the better
is the recurrence obtained in the following step. Optimizing γ ∈ (0, 1/15) we
obtain the following result, whose proof is omitted for lack of space.

Theorem 2. For a proper choice of the parameter γ, the algorithm above solves
the Steiner tree problem in time O(5.96knO(log k)) and polynomial space.

In the following we will denote by smallST the algorithm of Theorem 2. We
remark that smallST is not fixed-parameter-tractable because of the factor
nO(log k) in its running time. Finding a polynomial-space fixed-parameter-tractable
algorithm for Steiner tree is left as a challenging open problem.

3 Branching on Small-Load Terminals

In this section we describe a simple, recursive algorithm steiner for the Steiner
tree problem, taking O(1.5949n) time and polynomial space. Our algorithm com-
putes the size stG(T ) of an optimal Steiner tree, but it can be easily modified in
order to produce one optimal Steiner tree.

The main idea behind our approach is as follows. If k ≤ cn for a suitable
constant c < 1, it is convenient to use the O(5.96knO(log k)) algorithm from
Section 2. Otherwise, there must be a terminal t which is at distance at most
one from “many” other terminals. Thus, if by branching we add to T one or more
non-terminals adjacent to t, we can contract a “large” connected component of
terminals afterwards (using the Contraction Lemma 1). This phenomenon is not
exploited in trivial enumeration, and it is at the base of our refined branching
algorithm.

In order to formalize in a convenient way the mentioned phenomenon, we
introduce the following definition of load of a terminal. Let each non-terminal
node s ∈ N := V \ T be initially assigned a load one. Node s evenly distributes
its load among the terminals adjacent to it (if any). The final load w(t) of each
terminal t is the sum of the loads received by its non-terminal neighbors. As it
will be clearer from the analysis, we can branch efficiently on terminals of small
load.

We are now ready to describe algorithm steiner:

1. (base) If |T | ∈ {0, 1}, stG(T ) = 0:

steiner(G, T ) = 0.

2. (contraction) If there is a connected component V ′ of at least 2 terminals,
we apply Lemma 1. Let G′ be the graph obtained from G by contracting V ′

in a node v′, and let T ′ = T ∪ {v′} \ V ′. Then

steiner(G, T ) = |V ′| − 1 + steiner(G′, T ′).

3. (reduction) If there is a terminal t adjacent to a unique (non-terminal)
node s, we add s to the terminals since s must belong to any Steiner tree
(being k ≥ 2):

steiner(G, T ) = steiner(G, T ∪ {s}).



4. (small k) If k ≤ n/4, we apply our algorithm smallST:

steiner(G, T ) = smallST(G, T ).

5. (simple branch) If there is a non-terminal s adjacent to at least 3 terminals,
we simply branch by either removing s from the graph, or by adding it to
the terminals:

steiner(G, T ) = min{steiner(G \ {s}, T ), steiner(G, T ∪ {s})}.

6. (multiple branch) Let t be a terminal of minimum load according to the
definition above, and let s1, . . . , sp be the (not-terminal) neighbors of t,
sorted in decreasing number of adjacent terminals. We branch on the p sub-
problems obtained by removing s1, . . . , si−1, and adding si to the terminals,
for i ∈ {1, . . . , p}:

steiner(G, T ) = min
i∈{1,...,p}

{steiner(G \ {s1, . . . , si−1}, T ∪ {si})}.

Observe that Algorithm steiner does not work in the weighted case. This is
essentially due to the fact that the Contraction Lemma 1 does not extend to
such case. Finding an improved algorithm for the weighted Steiner tree problem
is an interesting open problem.

4 Analysis

We next analyze algorithm steiner with the Measure & Conquer technique
described in [13,14]. Recall that nN = n − k is the number of non-terminals.

Theorem 3. Algorithm steiner solves the Steiner tree problem in O(1.6011n)
time and polynomial space.

Proof. The correctness of the algorithm is not hard to check. For k ≤ n/4 the
running time of the algorithm is O∗(5.96k) = O∗(5.96n/4) = O∗(1.5625n), so
assume that initially k > n/4. We let h := n + nN be the size of the problem,
and denote by T (h) the time required to solve a problem of size h. We will show
by induction that T (h) = O∗(1.3086h). The claim follows since, being nN ≤ 3n/4
by assumption, O∗(1.3086h) = O∗(1.30867n/4) = O∗(1.6011n).

Let poly(n) be the maximum (polynomial) time spent at each step of the
algorithm (excluding the recursive calls). For h = 0, k = 0 and hence T (h) ≤
poly(n) = O∗(1). Assume now that T (h′) = O∗(1.3086h′

) for any h′ < h, and
consider the different steps of the algorithm.

Case 1 (base). The problem is solved directly: T (h) ≤ poly(h).

Case 2 (contraction). The algorithm generates a unique subproblem contain-
ing at most n − 1 nodes and nN non-terminals:

T (h) ≤ poly(h) + T (h − 1) = poly(h) + O∗(1.3086h−1) = O∗(1.3086h).



(m1, . . . , mp) load nodes removed
(1, 1) 4/2 1, 2
(2, 1) 3/2 2, 2
(2, 2) 2/2 2, 3

(2, 1, 1) 5/2 2, 2, 3
(2, 2, 1) 4/2 2, 3, 3
(2, 2, 2) 3/2 2, 3, 4

(2, 2, 2, 1) 5/2 2, 3, 4, 4
(2, 2, 2, 2) 4/2 2, 3, 4, 5

(2, 2, 2, 2, 2) 5/2 2, 3, 4, 5, 6

Table 1: Feasible values of (m1, . . . , mp) for multiple branch, with the corre-
sponding load (strictly smaller than 3), and number of nodes removed in each
subproblem. The number of non-terminals removed in the ith subproblem is i.

Case 3 (reduction). The algorithm adds s to the set of terminals (and hence
removes one node from the non-terminals), and then removes at least one node
by Case 2:

T (h) ≤ 2poly(h) + T (h − 2) = 2poly(h) + O∗(1.3086h−2) = O∗(1.3086h).

Case 4 (small k). The problem is solved by applying algorithm smallST, in
time O∗(5.96k). Observe that, being k ≤ n/4, k = (n + nN )n−nN

n+nN
= h k

2n−k ≤

h n/4
7n/4 = h

7 . Hence the running time is T (h) = O∗(5.96k) = O∗(5.96h/7) =

O∗(1.2905h).

Case 5 (single branch). Let p ≥ 3 be the number of terminals adjacent to
the selected non-terminal s. The algorithm generates two subproblems. In the
first subproblem it removes s from the graph. In the second one it adds s to the
terminals, and then it removes p nodes by Case 2. Hence

T (h) ≤ 2poly(h) + T (h − 2) + T (h − 1 − p) ≤ 2poly(h) + T (h − 2) + T (h − 4)

= 2poly(h) + O∗(1.3086h−2) + O∗(1.3086h−4) = O∗(1.3086h).

Case 6 (multiple branch). Observe that, being k > n/4 by Case 4, the

minimum load of a node is at most n−k
k < 3n/4

n/4 = 3. In particular, for the selected

terminal t, w(t) < 3. Recall that s1, . . . , sp are the (non-terminal) neighbors of t,
in decreasing order m1, . . . , mp of the number of adjacent terminals. Note that
the load assigned by si to t is exactly 1/mi. By Case 5 it must be mi ∈ {1, 2} for
each i (each non-terminal has between 0 and 2 terminal neighbors). It follows
by w(t) < 3 and by a simple case enumeration that the sequence (m1, . . . , mp)
must be one of the sequences in Table 1.

In the ith subproblem, i ∈ {1, . . . , p}, the algorithm removes nodes s1, . . . , si−1

from the graph, and adds node si to the terminals, which later determines the
removal of mi nodes by Case 2. Note that in the ith step i non-terminals are
removed. Hence, by an easy case-by-case check,

T (h) ≤ (1 + p)poly(h) +

p
∑

i=1

T (h − (i − 1) − mi − i)

= O∗(

p
∑

i=1

1.3086h−(i−1)−mi−i) = O∗(1.3086h).



4.1 A Refined Measure

The running-time analysis can be refined (without modifying the algorithm) by
defining the size of the subproblems as h := n + α nN , for a proper constant
α > 0. Choosing α = 0.7297, and by essentially the same analysis as in Theorem
3, we obtain the following result.

Theorem 4. Algorithm steiner solves the Steiner tree problem in O(1.5949n)
time and polynomial space.

4.2 An Exponential-Space Algorithm

As a by-product of our approach, we are able to improve on the current best
O∗(1.4143n) exponential-space algorithm as well. This is achieved by modifying
algorithm steiner in the following way.

• In Step 4 replace smallST with the O∗(2k) algorithm of [5], and increase the
corresponding threshold from k ≤ n/4 to k ≤ 3n/7.

• In Step 5 increase the threshold number of adjacent terminals from 3 to 5.

As a consequence of these changes, in Step 6 the minimum load of a terminal

is strictly less than n−3n/7
3n/7 = 4

3 (instead of 3), and each non-terminal can have

between 0 and 4 (instead of 2) adjacent terminals. Note that this implies a
different list of feasible local configurations. The same kind of analysis as in
Theorem 3 leads to the following result.

Theorem 5. Algorithm steiner, modified as above, solves the Steiner tree prob-
lem in time O(1.3533n) and exponential space.

References

1. S. Arora. Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. J. ACM, 45:753–782, 1998.

2. E. T. Bax. Inclusion and exclusion algorithm for the hamiltonian path problem.
Information Proc. Letters, 47:203–207, 1993.

3. M. Bern and P. Plassmann. The Steiner tree problem with edge lengths 1 and 2.
Information Proc. Letters, 32:171–176, 1989.

4. A. Björklund and T. Husfeldt. Inclusion-exclusion algorithms for counting set
partitions. In FOCS 2006, pages 575–582, IEEE, 2006.

5. A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbious:
Fast subset convolution. In STOC 2007, pages 67–74, 2007. ACM Press.

6. G. E. Blelloch, K. Dhamdhere, E. Halperin, R. Ravi, R. Schwartz, and S. Sridhar.
Fixed parameter tractability of binary near-perfect phylogenetic tree reconstruc-
tion. In ICALP 2006, volume 4051 of LNCS, pages 667–678. Springer, 2006.

7. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.

Comp. Sci., 209:1–45, 1998.
8. L. L. Deneen, G. M. Shute, and C. D. Thomborson. A probably fast, provably

optimal algorithm for rectilinear Steiner trees. Random Structures and Algorithms,
5(4):535–557, 1994.



9. R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New
York, 1999.

10. S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks,
1:195–207, 1971/72.

11. D. Eppstein. Quasiconvex analysis of multivariate recurrence equations for back-
tracking algorithms. ACM Transactions on Algorithms, 2(4):492–509, 2006.

12. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, Berlin,
2006.

13. F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: domination - a
case study. In ICALP 2005, vol. 3580 of LNCS, pages 191–203, 2005.

14. F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: a simple O(20.288 n)
independent set algorithm. In SODA 2006, pages 18–25, 2006. ACM Press.

15. B. Fuchs, W. Kern, D. Mölle, S. Richter, P. Rossmanith, and X. Wang. Dynamic
programming for minimum Steiner trees. Theory of Computing Systems, to appear,
2008.

16. J. L. Ganley. Computing optimal rectilinear Steiner trees: a survey and experi-
mental evaluation. Discrete Applied Mathematics, 90(1-3):161–171, 1999.

17. M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-
complete. SIAM J. on Applied Mathematics, 32:826–834, 1977.

18. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the

Theory of NP-Completeness. Freemann, 1979.
19. J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of general-

ized vertex cover problems. In WADS 2005, volume 3608 of LNCS, pages 36–48.
Springer, 2005.

20. Y. Gurevich and S. Shelah. Expected computation time for Hamiltonian path
problem. SIAM J. Computing, 16(3):486–502, 1987.

21. F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. North-
Holland, Amsterdam, 1992.

22. A. Kahng and G. Robins. On Optimal Interconnections for VLSI. Kluwer, Dor-
drecht, 1995.

23. R. M. Karp. Dynamic programming meets the principle of inclusion and exclusion.
Operation Research Letters, 1:49–51, 1982.

24. B. Korte, H. J. Prömel, and A. Steger. Steiner trees in VLSI-layout. In Paths,

Flows, and VLSI-Layout, pages 185–214, 1990.
25. D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm for the Steiner tree

problem. In STACS 2006, pages 561–570, 2006.
26. R. Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lec-

ture Series in Mathematics and its Applications. Oxford University Press, Oxford,
2006.

27. H. J. Prömel and A. Steger. The Steiner tree problem. Advanced Lectures in
Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 2002.

28. G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In
SODA 2000, pages 770–779, 2000. ACM press.

29. G. Woeginger. Space and time complexity of exact algorithms: Some open prob-
lems. In IWPEC 2004, volume 3162 of LNCS, pages 281–290. Springer-Verlag,
Berlin, 2004.


