
Solving Connected Dominating Set

Faster than 2n

Fedor V. Fomin1, Fabrizio Grandoni2, and Dieter Kratsch3

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway,
fomin@ii.uib.no

2 Dipartimento di Informatica, Università di Roma “La Sapienza”, Via Salaria 113,
00198 Roma, Italy, grandoni@di.uniroma1.it

3 LITA, Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France,
kratsch@univ-metz.fr

Abstract. In the connected dominating set problem we are given an n-
node undirected graph, and we are asked to find a minimum cardinality
connected subset S of nodes such that each node not in S is adjacent to
some node in S. This problem is also equivalent to finding a spanning
tree with maximum number of leaves.
Despite its relevance in applications, the best known exact algorithm
for the problem is the trivial Ω(2n) algorithm which enumerates all the
subsets of nodes. This is not the case for the general (unconnected) ver-
sion of the problem, for which much faster algorithms are available. Such
difference is not surprising, since connectivity is a global property, and
non-local problems are typically much harder to solve exactly.
In this paper we break the 2n barrier, by presenting a simple O(1.9407n)
algorithm for the connected dominating set problem. The algorithm
makes use of new domination rules, and its analysis is based on the
Measure and Conquer technique.

1 Introduction

Nowadays, it is common belief that NP-hard problems cannot be solved in poly-
nomial time. For a number of NP-hard problems, we even have strong evidence
that there are no sub-exponential algorithms [19]. Moreover, many relevant prob-
lems do not admit satisfactory approximation algorithms. For example, Max-

imum Independent Set is hard to approximate within n1−ε [17]. For these
problems a promising approach is to design exact algorithms with smallest pos-
sible exponential running times.

The recent interest in exact exponential algorithms has several motivations.
Indeed, there are applications that require exact solutions of NP-hard problems,
although this might only be possible for moderate input sizes. Decreasing the
exponential running time, say, from O(2n) to O(20.9n), increases the size of the
instances solvable within a given amount of time by a constant multiplicative
factor. This kind of improvements can be crucial in several applications. On the
other hand, the study of exact algorithms leads to a better understanding of
NP-hard problems, and initiates new combinatorial and algorithmic challenges.

In this paper we consider one of the classical NP -hard problems, the Con-

nected Dominating Set problem (CDS). A connected dominating set of a
graph G = (V, E) is a subset of nodes S ⊆ V such that S is a dominating
set of G and the subgraph of G induced by S is connected. The Connected

Dominating Set problem asks to find a connected dominating set of smallest
possible cardinality. This problem is also equivalent to finding a spanning tree
with maximum number of leaves. Connected Dominating Set is a fundamen-
tal problem in connected facility location and studied intensively in computer
science and operations research [16, 26]. Another recent application of this prob-
lem is in wireless ad-hoc networks: a small connected dominating set is often a
convenient backbone to route the flow throughout the network (see e.g. [2]). The
problem is NP-hard [13] and there is a (ln ∆ + O(1))-approximation algorithm,
where ∆ is the maximum degree [15]. Such approximation guarantee cannot be
improved unless NP ⊆ DTIME(nO(log log n)) [15]. Despite its relevance in appli-
cations, the current best exact algorithm for Connected Dominating Set is
the trivial Ω(2n) enumerative algorithm, which tries all possible subsets of nodes.
Better results are known for the general (unconnected) version of the problem
[8, 12, 14, 22]: the current best algorithm for Dominating Set has running time
O(20.598n) [8].

Though apparently closely related, Connected Dominating Set and
Dominating Set are rather different from the point of view of exact algo-
rithms. In particular, the techniques used to solve Dominating Set do not
seem to work for Connected Dominating Set. One of the main reasons of
this discrepancy is that connectivity is a global property: very often exact algo-
rithms are based on the local structure of the problem; these algorithms seem
not able to capture global properties such as connectivity.

Indeed, Connected Dominating Set belongs to a family of non-local prob-
lems which turns out to be particularly hard to solve exactly. Probably the best
known example of this kind of problems is the Travelling Salesman Prob-

lem: find a minimum cost tour which visits all the nodes of a weighted graph. The
fastest known algorithm for this problem, which dates back to the sixties [18], is
based on dynamic programming and has running time Ω(2n). Better results are
known only for special graph classes, such as cubic graphs [6]. For many other
non-local problems the current best known algorithms are still trivial. There
are only a few exceptions to this. A relevant example is Steiner Tree: find a
minimum size subtree of a given graph spanning a given subset of k nodes. For
this problem an O(1.4143n) time algorithm can be obtained by combining the
O((2 + ε)knO(1)) dynamic-programming (exponential space) algorithm in [21]
(for small k), with trivial O(2n−knO(1)) enumeration of Steiner nodes (for large
k). Finding a polynomial space algorithm faster than 2n is still open. Another
very recent example is a O(1.9053n) algorithm for Feedback Vertex Set:
find a minimum cardinality subset of nodes of a graph whose removal makes the
graph acyclic [23].

Our results. In this paper we make a further significant step in the design of
faster exact algorithms for non-local problems, by presenting the first algorithm

for Connected Dominating Set which breaks the 2n barrier: our recursive
algorithm takes polynomial space and runs in time O(1.9407 n). The algorithm
is based on the simple strategy “stay connected”, which means that all partial
solutions generated recursively must be connected. Local choices are performed
under this constraint. Our algorithm makes use of new domination rules, which
were designed with the stay-connected framework in mind.

If analyzed in the standard way, our algorithm performs very poorly. The re-
fined time bound is obtained with the Measure and Conquer approach described
in [8]. The idea is to lower bound the progress made by the algorithm at each
branching step according to non-standard measures of the size of the subprob-
lems. However, the measure used in [8] for Dominating Set does not seem
to work properly here. For this reason we designed a new, non-trivial measure:
for every vertex v our measure reflects both the “need for domination” of v,
and the ability of v “to dominate” the vertices that are not dominated yet. We
remark that here Measure and Conquer is crucial to break the 2n barrier. More-
over, we believe this approach is flexible enough to be applied to other non-local
problems.

Measure and Conquer does not necessarily provide tight upper bounds for the
worst case running time of recursive exponential algorithms, thus lower bounds
are of great interest. As a second contribution of this paper, we establish a lower
bound of Ω(4n/5) for the worst case running time of our algorithm.

Related Work. The design of exponential time algorithms has a long history
dating back to Held and Karp’s paper [18] on the travelling salesman problem in
the early sixties. The last years have seen an emerging interest in constructing
exponential time algorithms for combinatorial problems like Coloring [1, 4],
Max-Cut [27], 3-SAT [3, 5], Dominating Set [8], Treewidth [11], and In-

dependent Set [10]. There are two nice surveys of Woeginger [28, 29] describing
the main techniques that have been established in the field. We also recommend
the survey of Iwama [20] devoted to exponential algorithms for 3-SAT and the
paper of Schöning [25] for its introduction to exponential time algorithms. In [9]
we review some new techniques for the design and analysis of exponential-time
algorithms, among which “Measure and Conquer” and “Lower Bounds”.

One of the major techniques for constructing fast exponential time algo-
rithms, which is also used in our CDS algorithm, is the Branch and Reduce
paradigm. Roughly speaking, Branch and Reduce algorithms (also called search
tree algorithms, Davis-Putnam-style exponential-time backtracking algorithms
etc.) first apply some reduction rules, and then branch on two or more subprob-
lems, which are solved recursively. Their running time analysis is based on a
measure for the problem instance; reduction and branching rules lead to linear
recurrences in the measure and their solution by standard methods provides up-
per bounds for the worst case running time. Recently, non-standard measures for
problem instances have been used to improve the analysis of Branch and Reduce
algorithms. This approach is called Measure and Conquer in [8]. The analysis of
our algorithm for CDS is heavily based on this technique.

2 The Algorithm

Let G = (V, E) be an n-node undirected and simple graph. The open neigh-
borhood of a node v is denoted by N(v) = {u ∈ V : uv ∈ E}, and the closed
neighborhood of v is denoted by N [v] = N(v)∪{v}. The subgraph of G induced
by a set S ⊆ V is denoted by G[S]. A set S ⊆ V of nodes of G is connected, if
G[S] is connected.

Without loss of generality, we can assume (i) that the graph is connected
(otherwise there is no solution) and (ii) the minimum connected dominating
set has cardinality at least two (otherwise the problem is trivially solvable in
polynomial time). By the last assumption, we can consider the total variant of
CDS, where each node v dominates its neighbors N(v), but not the node v itself.
This will turn out to be useful in the analysis.

Our recursive CDS algorithm is based on the following approach. Suppose
we are given two subsets of nodes S (selected nodes), and D (discarded nodes),
where |S| ≥ 2 and G[S] is connected. We will describe a recursive algorithm
which finds an optimum solution OPT , if any, under the constraint that all the
nodes in S and no node in D belong to OPT :

S ⊆ OPT and D ∩ OPT = ∅.

In order to solve CDS it is sufficient to guess two adjacent nodes v′ and v′′ of
some optimum solution, and run the algorithm above on the instance (S, D) =
({v′, v′′}, ∅). So we run the algorithm O(n2) times.

Clearly, the instance is infeasible when V \D is not a connected dominating
set. For notational convenience, we will sometimes allow S and D to overlap,
and in that case we say that the instance is infeasible as well.

Before describing the algorithm, let us introduce some notation. The available
nodes A = V \(S∪D) are the nodes which are neither selected nor discarded. An
available node v is a candidate if it is adjacent to S, and a promise if its removal
makes the instance infeasible, i.e. V \(D∪{v}) is not a connected dominating set
of G. Intuitively, a candidate is a node that might be added to S in the current
step, while a promise is a node that must be added to S at some point (if the
instance is feasible). We say that a node is dominated if it is adjacent to some
node in S, and free otherwise. By F we denote the set of the free nodes

F = V \ ∪v∈SN(v).

The algorithm halts if either the instance is infeasible or S is a (connected)
dominating set. In the first case the algorithm returns no, while in the second
one it returns OPT = S. Otherwise the algorithm performs some reductions
on the problem instance, and then it branches on one or more subproblems,
which are solved recursively. In each subproblem the algorithm adds available
nodes to either S or D but always keeping S connected. The best solution of
the subproblems, that is the one which minimizes the size |OPT | of the solution
returned, is the solution to the original problem.

The reduction rules are:

(a) If there is a candidate v which is a promise, select it (add it to S);
(b) If there are two candidates v and w (which by (a) are not promises) such

that N(v) ∩ F ⊆ N(u) ∩ F , discard v (add it to D);
(c) If there is an available node v which does not dominate any free node, discard

v.

The algorithm branches according to the following rules:

(A) If there is a candidate v which dominates at least three free nodes w1,w2

and w3, or which dominates an available node w such that, after selecting v, w

does not dominate any free node, branch on the two subproblems

• (S1, D1) = (S ∪ {v}, D); • (S2, D2) = (S, D ∪ {v}).

(B) If there is a candidate v which dominates a unique free node w, let

U = {u1, u2, . . . , uk} = N(w) ∩ A \ N [v]

be the set of the available neighbors of w which are not in the closed neighbor-
hood of v. Branch on the three subproblems:

• (S1, D1) = (S, D ∪ {v}); • (S2, D2) = (S ∪ {v, w}, D);

• (S3, D3) = (S ∪ {v}, D ∪ {w} ∪ U).

Observe that w might be discarded or a promise. Moreover one of the ui’s could
be a promise. In those cases one or more subproblems are infeasible, and the al-
gorithm simply halts on such infeasible subproblems. The same kind of situation
may happen also in the following cases.

(C) If there is a candidate v which dominates two free nodes w1 and w2, name
w1 and w2 such that if w2 is available (a promise), so is w1. Let

Ui = {ui,1, ui,2, . . . , ui,ki
} = N(wi) ∩ A \ N [v]

be the available neighbors of wi which are not in the closed neighborhood of v.
There are three different subcases:

(C.1) If w1 and w2 are adjacent, w1 is available and w2 is discarded, branch on
the three subproblems:

• (S1, D1) = (S, D ∪ {v}); • (S2, D2) = (S ∪ {v, w1}, D);

• (S3, D3) = (S ∪ {v}, D ∪ {w1} ∪ U1).

(C.2) If w1 and w2 are adjacent and both available, branch on the four sub-
problems:

• (S1, D1) = (S, D ∪ {v}); • (S2, D2) = (S ∪ {v, w1}, D);

• (S3, D3) = (S ∪ {v, w2}, D ∪ {w1}); • (S4, D4) = (S ∪ {v}, D ∪ {w1, w2} ∪ U1 ∪ U2).

Figure 1 Examples of cases (B) and (C.3). Black nodes are selected.

O′

v w

u2

u1

⇒
O′

v w

u2

u1

O′

v

w1

w2

u1,2

u1,1

u2,1

⇒
O′

v

w1

w2

u1,2

u1,1

u2,1

(C.3) Otherwise (either w1 and w2 are not adjacent, or they are adjacent and
both discarded), branch on the five subproblems

• (S1, D1) = (S, D ∪ {v}); • (S2, D2) = (S ∪ {v, w1}, D);

• (S3, D3) = (S ∪ {v, w2}, D ∪ {w1}); • (S4, D4) = (S ∪ {v}, D ∪ {w1, w2} ∪ U1);

• (S5, D5) = (S ∪ {v}, D ∪ {w1, w2} ∪ U2).

Theorem 1. (correctness) The algorithm above computes a minimum cardi-
nality connected dominating set.

Proof. The correctness of the halting rules is trivial.
A reduction rule is feasible if it does not modify the value of the optimum.

Reduction rule (a) is feasible since removing a candidate v which is a promise
would lead to an infeasible instance. Reduction rule (b) is feasible since if v ∈
OPT , then OPT ′ = OPT ∪ {w} \ {v} is a feasible solution of cardinality at
most |OPT |. Reduction (c) is feasible since all the available neighbors of v are
already connected to S, and thus removing v from any feasible solution keeps
the solution feasible.

Let us consider the branching rules. First observe that, as required, every
set Si induces a connected subgraph of the original graph. A branching rule is
feasible if at least one subproblem preserves the value of the optimum solution.
Branching rule (A) is trivially feasible: every connected dominating set either
contains candidate v or does not. This simple fact is also used in the remaining
branching rules.

Consider now branching rule (B). It is sufficient to show that if we select
v and discard w, then we must also discard U . Assume by contradiction that
OPT = O′∪{v, ui} is an optimum solution of (S ′, D′) = (S∪{v}, D∪{w}), where
ui ∈ U . Since w is discarded, OPT ′ = O′ ∪ {ui} is also connected. Moreover,
since v dominates only w, and w is dominated by ui as well, we have that OPT ′

is a dominating set (see Figure 1). Thus OPT ′ is a connected dominating set of
size |OPT | − 1, which is a contradiction.

The feasibility of (C.3) follows by observing that if we select v and discard
both w1 and w2, then we must also discard either U1 or U2 (or both). This can
be proved by essentially the same argument as in case (B).

Figure 2 Example of cases (C.1) and (C.2). Here we are assuming that w1 is
available.

O′

v

w1

w2

u1,2

u1,1

u2,1

⇒
O′

v

w1

w2

u1,2

u1,1

u2,1

The remaining two cases are slightly more complicated. Consider first case
(C.2). It is sufficient to show that, if we select v and discard both the wi’s, then
we can also discard U1 and U2. By the same argument used in case (C.3), we
already know that in the optimum solution OPT to (S ∪ {v}, D ∪ {w1, w2}) we
must discard either U1 or U2. For sake of contradiction, suppose that OPT =
O′ ∪ {v, u1,i} contains one u1,i ∈ U1 and no node in U2 (a symmetric analysis
holds if OPT contains one u2,j ∈ U2 and no node in U1). Since w1 and w2 are
adjacent, and w1 is available, we have that by replacing v with w1 in OPT , we
obtain another feasible solution of the same cardinality (see Figure 2). Thus we
do not need to consider this case because if OPT is the optimum solution to the
original problem, the algorithm will find a solution of the same cardinality while
solving subproblem (S1, D1) = (S, D ∪ {v}).

Basically the same argument shows that in case (C.1), if we select v and
we discard both w1 and w2, then we can also discard U1. Hence the feasibility
of (C.1). Note that, differently from case (C.2), we cannot use a symmetric
argument to show that also U2 can be discarded. This is because w2 ∈ D, and
thus the optimum solution to (S1, D1) = (S, D ∪ {v}) cannot contain w2. �

3 Analysis

Consider a given instance (S, D) of the problem (where the graph G is fixed).
We will measure the size of the problem as described below. This measure will
be used to bound the progress made by the algorithm at each branching step.

We associate two different weights to each node v of the graph. The first
weight α(v) ≥ 0 is used to take into account the need for domination of v. In
particular, if v is already dominated by S, α(v) = 0. The second weight β(v) ≥ 0
instead reflects the capability of v to dominate free nodes. For this reason, we
assume β(v) = 0 if either v ∈ S or v ∈ D.

Altogether the weight of the problem is

k = k(G, S, D) = k(S, D) =
∑

v∈F

α(v) +
∑

v∈A

β(v). (1)

In order to simplify the analysis, we make the following assumptions:

• for a given available node v, β(v) = β ∈ (0, 1] if v is a promise and β(v) = 1
otherwise.

• α(v) = α|v| is a non-decreasing function of the frequency of v, denoted by
|v|, that is the number of available nodes which dominate v (recall that v

does not dominate itself). More precisely we assume

0 = α0 = α1 < α2 < α3 = αi, ∀i ≥ 4.

The reasons for the simplifying assumptions above will be clearer from the anal-
ysis. Note that the size of the original problem is upper bounded by (1 + α3)n.

For notational convenience, we define

∆αi = αi − αi−1, i ≥ 1.

Intuitively, ∆αi is the reduction of the size of the problem due to the reduction
from i to i − 1 of the frequency of a free node.

Fact 1 Observe that when we discard a candidate node v, we decrease the size of
the problem (i) by β(v), because v is not available any more, and (ii) by ∆α|w|

for each free neighbor w of v, because of the decrease of the frequency of w.
Moreover, the size could further decrease (iii) by (1− β), if some available node
becomes a promise.

On the other hand, when we select a node v, we decrease the size of the
problem (i) by β(v), because v is not available any more, and (ii) by α|w| for
each free neighbor w of v, because w is not free any more.

Fact 1 will be repeatedly applied in the proof of the following theorem.

Theorem 2. (running time) The running time of the CDS algorithm of Sec-
tion 2 is O(1.9407n).

Proof. Let P (k) be the number of subproblems generated to solve an instance
of size k = k(S, D), where k is defined as in (1). For notational convenience we
assume P (k) = 1 for k ≤ 0.

Of course, if the algorithm halts, P (k) = 1. Now observe that when we apply
the reduction rules (a)-(c), the size of the problem decreases by at least β:

P (k) ≤ 1 + P (k − β). (2)

Consider now the case when the algorithm branches. Note that, by (a), the
candidate v selected is not a promise (and thus β(v) = 1). Following the algo-
rithm, we distinguish different subcases:

(A) Suppose v dominates three free nodes w1, w2, and w3 (and possibly more).
By Fact 1,

P (k) ≤ 1 + P (k − 1 − ∆α|w1| − ∆α|w2| − ∆α|w3|)

+ P (k − 1 − α|w1| − α|w2| − α|w3|). (3)

Now suppose v dominates an available node w, such that N(w)∩F \N(v) = ∅.
Then when we select v, w is discarded by (c). Note that w cannot be a promise
(β(w) = 1). By Fact 1 and the observation above,

P (k) ≤ 1 + P (k − 1 − ∆α|w|) + P (k − 1 − α|w| − 1). (4)

From this point on we can assume that every available node w adjacent to
the candidate v dominates at least one free node z not in N(v). In the following
we denote such free nodes by

Z(w) = N(w) ∩ F \ N(v).

(B) Recall that v dominates a unique free node w, and U is the set of available
neighbors of w, excluding N [v]. By Fact 1,

P (k) ≤ 1 + P (k − 1 − ∆α|w|)

+ P (k − 1 − α|w| − β(w) −
∑

z∈Z(w)

δw∈A · α(z))

+ P (k − 1 − α|w| − β(w) −
∑

z∈Z(w)

δw∈A · ∆α(z) −
∑

u∈U

β(u)), (5)

where δP = 1 if predicate P is true, and δP = 0 otherwise.
Since v is not a promise, we have that |U | = |w| − 1 ≥ 1. Moreover, by case

(A), if w is available, it must dominate at least one free node z (|Z(w)| ≥ 1). If
w is not a promise, such a neighbor z must have frequency at least two.

It is worth to mention that there might be subproblems which are infeasible
because we either select nodes which are discarded, or we discard nodes which
are promises. In those cases we can replace the corresponding P (k′) with 1 in
the recurrences above, since the algorithms halts on such subproblems. The same
holds also in next cases.

(C) Recall that v dominates two free nodes w1 and w2, where Ui are the available
neighbors of wi, excluding N [v]. Moreover the wi’s are named such that, if w2 is
available (a promise), so is w1. In particular this implies that, if w1 is discarded,
the same holds for w2.

(C.1) In this case w1 and w2 are adjacent, w1 is available and w2 is discarded.
Observe that, if |w1| = 2, which implies U1 = {u1,1}, and u1,1 is not a promise,
then u1,1 becomes a promise when we remove v. By this observation and Fact
1,

P (k) ≤ 1 + P (k − 1 − ∆α|w1| − ∆α|w2| − δ|w1|=2(β(u1,1) − β))

+ P (k − 1 − α|w1| − α|w2| − β(w1) −
∑

z∈Z(w1)

δw1∈A · α|z|)

+ P (k − 1 − α|w1| − α|w2| − β(w1) −
∑

z∈Z(w1)

δw1∈A · ∆α|z| −
∑

u∈U1

β(u)).

(6)

Note that |U1| = |w1| − 1 ≥ 1.

(C.2) In this case w1 and w2 are adjacent and both available. Observe that,
if |w1| = 2 (|w1| = 2) and w2 (w1) is not a promise, then w2 (w1) becomes a
promise when we remove v. By this observation and Fact 1,

P (k) ≤ 1 + P (k − 1 −
2∑

i=1

∆α|wi| −
2∑

i=1

δ|wi|=2 · (β(wi) − β))

+ P (k − 1 −

2∑

i=1

α|wi| − β(w1) −
∑

z∈Z(w1)

δw1∈A · α(z))

+ P (k − 1 −
2∑

i=1

α|wi| −
2∑

i=1

β(wi) −
∑

z∈Z(w1)

δw1∈A · ∆α(z))

+ P (k − 1 −
2∑

i=1

α|wi| −
2∑

i=1

β(wi) −
∑

z∈Z(w1)

δw1∈A · ∆α(z) −
∑

u∈U1∪U2

β(u)).

(7)

Note that it cannot be |w1| = |w2| = 2 since otherwise v would be a promise.
Moreover |U1 ∪ U2| ≥ max{|U1|, |U2|} ≥ max{|w1| − 2, |w2| − 2}.

(C.3) Recall that if w1 and w2 are adjacent, they are both discarded. In any
case, |U1| = |w1| − 1 ≥ 1 and |U2| = |w2| − 1 ≥ 1. If |w1| = 2, which implies
U1 = {u1,1}, and u1,1 is not a promise, u1,1 becomes a promise when we remove
v. A symmetric argument holds for w2. By this observation and Fact 1,

P (k) ≤ 1 + P (k − 1 −
2∑

i=1

∆α|wi| − δ|w1|=2 or |w2|=2 max
h

{β(uh,1) − β})

+ P (k − 1 −
2∑

i=1

α|wi| − β(w1) −
∑

z∈Z(w1)

δw1∈A · α|z|)

+ P (k − 1 −
2∑

i=1

α|wi| −
2∑

i=1

β(wi) −
∑

z∈Z(w1)

δw1∈A · ∆α|z|)

+ P (k − 1 −

2∑

i=1

α|wi| −

2∑

i=1

β(wi) −
∑

z∈Z(w1)

δw1∈A · ∆α|z| −
∑

u∈U1

β(u))

+ P (k − 1 −
2∑

i=1

α|wi| −
2∑

i=1

β(wi) −
∑

z∈Z(w1)

δw1∈A · ∆α|z| −
∑

u∈U2

β(u)).

(8)

Observe that, if w1 is available (and thus w1 and w2 are not adjacent), by (A)
w1 must dominate at least one free node z: |Z(w1)| ≥ 1.

From recurrences (2)-(8), P (k) ≤ ck ≤ c(1+α3)n, where c = c(β, α2, α3) is a
quasi-convex function of the weights [7]. Thus the estimation of the running time
reduces to choosing the weights minimizing c1+α3 . Note that it is sufficient to

consider only a finite number of recurrences. This is because each recurrence R

where the frequency of some node considered is larger than 5 is dominated by a
recurrence R′ where the same element has frequency 4, that is the upper bound
on c given by R is not larger than the one given by R′. We numerically obtained
β = 0.5004, α2 = 0.0600, and α3 = 0.1215, and thus the claimed running time
O(1.9407n). �

4 An Exponential Lower Bound

Since the known tools to analyze the worst case running time of Branch and
Reduce algorithms (including Measure and Conquer) do not provide tight upper
bounds, it is natural to ask for lower bounds: A lower bound may give an idea of
how far is the established upper bound from the real worst case running time.

Theorem 3. (lower bound) The worst case running time of the CDS algo-
rithm of Section 2 is Ω(4n/5) = Ω(1.3195n).

The proof of Theorem 3 is omitted here for lack of space.

References

1. R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). Journal of Algorithms
54:168–204, 2005.

2. J. Blum, M. Ding, A. Thaeler, and X. Cheng. Connected dominating set in sensor
networks and MANETs. In Handbook of combinatorial optimization. Supplement
Vol. B, pages 329–369. Springer, New York, 2005.

3. T. Brueggemann and W. Kern. An improved deterministic local search algorithm
for 3-SAT. Theoretical Computer Science 329:303–313, 2004.

4. J. M. Byskov. Enumerating maximal independent sets with applications to graph
colouring. Operations Research Letters 32:547–556, 2004.

5. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
P. Raghavan, and U. Schöning. A deterministic (2−2/(k+1))n algorithm for k-SAT
based on local search. Theoretical Computer Science 289:69–83, 2002.

6. D. Eppstein. The traveling salesman problem for cubic graphs. In Workshop on
Algorithms and Data Structures (WADS), pages 307–318, 2003.

7. D. Eppstein. Quasiconvex analysis of backtracking algorithms. Procedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 781–790, 2004.

8. F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and Conquer: Domination - A
Case Study, Proceedings of the 32nd International Colloquium on Automata, Lan-
guages and Programming (ICALP 2005), Springer LNCS vol. 3580, 2005, pp. 191–
203.

9. F. V. Fomin, F. Grandoni, D. Kratsch. Some new techniques in design and analysis
of exact (exponential) algorithms. Bulletin of the EATCS 87:47–77, 2005.

10. F. V. Fomin, F. Grandoni, D. Kratsch. Measure and Conquer: A simple O(20.288 n)
independent set algorithm. Procedings of the 17th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2006, pp. 18–25.

11. F. V. Fomin, D. Kratsch, and I. Todinca. Exact algorithms for treewidth and min-
imum fill-in. Proceedings of the 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP 2004), Springer LNCS vol. 3142, 2004, pp. 568–
580.

12. F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) algorithms for
the dominating set problem. Proceedings of the 30th Workshop on Graph Theoretic
Concepts in Computer Science (WG 2004), Springer LNCS vol. 3353, 2004, pp. 245-
256.

13. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. Freemann, 1979.

14. F. Grandoni. A note on the complexity of minimum dominating set. Journal of
Discrete Algorithms, 4(2):209–214, 2006.

15. S. Guha and S. Khuller. Approximation algorithms for connected dominating sets.
Algorithmica, 20(4):374–387, 1998.

16. A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation
algorithms for network design. Proceedings of the 35th Annual ACM Symposium
on Theory of Computing (STOC 2003), pages 365–372, New York, 2003. ACM.

17. J. H̊astad. Clique is hard to approximate within n1−ε. Acta Math. 182 (1):105–142,
1999.

18. M. Held and R.M. Karp. A dynamic programming approach to sequencing prob-
lems. Journal of SIAM, pages 196–210, 1962.

19. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity. Journal of Computer and System Sciences 63:512–530, 2001.

20. K. Iwama. Worst-case upper bounds for k-SAT. Bulletin of the EATCS 82:61–71,
2004.

21. D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm for the steiner tree
problem. Proceedings of the 23d Symposium on Theoretical Aspects of Computer
Science (STACS 2006), Springer LNCS vol. 3884, 2006, pp. 561-570.

22. B. Randerath and I. Schiermeyer. Exact algorithms for MINIMUM DOMINATING
SET. Technical Report, zaik-469, Zentrum für Angewandte Informatik Köln, April
2004.

23. I. Razgon. Exact computation of maximum induced forest. Proceedings of the 10th
Scandinavian Workshop on Algorithm Theory (SWAT 2006). To appear.

24. J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms
7(3):425–440, 1986.

25. U. Schöning. Algorithmics in exponential time. Proceedings of the 22nd Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2005),
Springer LNCS vol. 3404, 2005, pp. 36–43.

26. C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location
problems. Algorithmica 40(4):245–269, 2004.

27. R. Williams. A new algorithm for optimal constraint satisfaction and its implica-
tions. Proceedings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP 2004), Springer LNCS vol. 3142, 2004, pp. 1227–1237.

28. G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. Combinatorial
Optimization – Eureka, You Shrink, Springer LNCS vol. 2570, 2003, pp. 185–207.

29. G. J. Woeginger. Space and time complexity of exact algorithms: Some open
problems. Proceedings of the 1st International Workshop on Parameterized and
Exact Computation (IWPEC 2004), Springer LNCS vol. 3162, 2004, pp. 281–290.

