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Abstract. Some of today’s applications run on computer platforms with
large and inexpensive memories, which are also error-prone. Unfortu-
nately, the appearance of even very few memory faults may jeopardize
the correctness of the computational results. An algorithm is resilient to
memory faults if, despite the corruption of some memory values before
or during its execution, it is nevertheless able to get a correct output at
least on the set of uncorrupted values. In this paper we will survey some
recent work on reliable computation in the presence of memory faults.

1 Introduction

The inexpensive memories used in today’s computer platforms are not fully
secure, and sometimes the content of a memory unit may be temporarily or per-
manently lost or damaged. This may depend on manufacturing defects, power
failures, or environmental conditions such as cosmic radiation and alpha parti-
cles [15,23, 30, 32]. Unfortunately, even very few memory faults may jeopardize
the correctness of the underlying algorithms, and thus the quest for reliable
computation in unreliable memories arises in an increasing number of different
settings.

Many large-scale applications require the processing of huge data sets that
can easily reach the order of Terabytes: for instance, NASA’s Earth Observing
System generates Petabytes of data per year, while Google currently reports to
be indexing and searching over 8 billion Web pages. In all such applications pro-
cessing massive data sets, there is an increasing demand for large, fast, and inex-
pensive memories, at any level of the memory hierarchy: this trend is witnessed,
e.g., by the large popularity achieved in recent years by commercial Redundant
Arrays of Inexpensive Disks (RAID) systems [7,18], which offer enhanced I/0
bandwidths, large capacities, and low cost. As the memory size becomes larger,
however, the mean time between failures decreases considerably: assuming stan-
dard soft error rates for the internal memories currently on the market [30],
a system with Terabytes of memory (e.g., a cluster of computers with a few

* Work supported by the Italian MIUR Project ALGO-NEXT “Algorithms for the
Next Generation Internet and Web: Methodologies, Design and Experiments”.



Gigabytes per node) would experience one bit error every few minutes. Error
checking and correction circuitry added at the board level could contrast this
phenomenon, but would also impose non-negligible costs in performance and
money: hence, it is not a feasible solution when speed and cost are both at
prime concern.

A different application domain for reliable computation is fault-based crypt-
analysis. Some recent optical and electromagnetic perturbation attacks [4,29]
work by manipulating the non-volatile memories of cryptographic devices, so
as to induce very timing-precise controlled faults on given individual bits: this
forces the devices to output wrong ciphertexts that may allow the attacker to de-
termine the secret keys used during the encryption. Differently from the almost
random errors affecting the behavior of large size memories, in this context the
errors are introduced by a malicious adversary that can assume some knowledge
of the algorithm’s behavior.

In order to protect the computation against destructive memory faults, data
replication would be a natural approach. However, it can be very inefficient
in highly dynamic contexts or when the objects to be managed are large and
complex: copying such objects can indeed be very costly, and in some cases we
might not even know how to do this (for instance, when the data is accessed
through pointers, which are moved around in memory instead of the data itself,
and the algorithm relies on user-defined access functions). In these cases, we
can assume neither the existence of ad hoc functions for data replication nor
the definition of suitable encoding mechanisms to maintain a reasonable storage
cost. Instead, it makes sense to assume that it is the algorithms themselves in
charge of dealing with memory faults.

Informally, we have a memory fault when the correct value that should be
stored in a memory location gets altered because of a failure. We say that an
algorithm is resilient to memory faults if, despite the corruption of some memory
values before or during its execution, the algorithm is nevertheless able to get a
correct output (at least) on the set of uncorrupted values. In this paper we survey
some recent work on the design and analysis of resilient algorithms by focusing on
the two basic problems of sorting and searching, which are fundamental in many
large scale applications. For instance, the huge data sets processed by Web search
engines are typically stored in low cost memories by means of inverted indices
which have to be maintained sorted for fast document access: for such large data
structures, even a small failure probability can result in few bit flips in the index,
that may become responsible of erroneous answers to keyword searches [16].
In Section 2 we will discuss different models and approaches proposed in the
literature to cope with unreliable information. In Section 3 we will highlight a
faulty memory model and overview known results and techniques.

2 Models and Related Work

The problem of computing with unreliable information or in the presence of
faulty components dates back to the 50’s [33]. Due to the heterogeneous nature



of faults (e.g., permanent or transient) and to the large variety of components
that may be faulty in computer platforms (e.g., processors, memories, network
nodes or links), many different models have been proposed in the literature. In
this section we will briefly survey only those models that appear to be most
relevant to the problem of computing with unreliable memories.

The liar model. Two-person games in the presence of unreliable information
have been the subject of extensive research since Rényi [28] and Ulam [31] posed
the following “twenty questions problem”:

Two players, Paul and Carole, are playing the game. Carole thinks of a
number between one and one million, which Paul has to guess by asking
up to twenty questions with binary answers. How many questions does
Paul need to get the right answer if Carole is allowed to lie once or twice?

Many subsequent works have addressed the problem of searching by asking ques-
tions answered by a possibly lying adversary [1,6,11,12,19, 24-26]. These works
consider questions of different formats (e.g., comparison questions or general yes-
no questions such as “Does the number belong to a given subset of the search
space?”) and different degrees of interactivity between the players (in the adap-
tive framework, Carole must answer each question before Paul asks the next one,
while in the non-adaptive framework all questions must be issued in one batch).
We remark that the problem of finding optimal searching strategies has strong
relationships with the theory of error correcting codes. Furthermore, different
kinds of limitations can be posed on the way Carole is allowed to lie: e.g., fixed
number of errors, probabilistic error model, or linearly bounded model in which
the number of lies can grow proportionally with the number of questions. Even
in the very difficult linearly bounded model, searching is now well understood
and can be solved to optimality: Borgstrom and Kosaraju [6], improving over [1,
11, 25], designed an O(logn) searching algorithm. We refer to the excellent sur-
vey [26] for an extensive bibliography on this topic.

Problems such as sorting and selection have instead drastically different
bounds. Lakshmanan et al. [20] proved that £2(nlogn + k - n) comparisons are
necessary for sorting when at most k lies are allowed. The best known O(nlogn)
algorithm tolerates only O(logn/loglogn) lies, as shown by Ravikumar in [27].
In the linearly bounded model, an exponential number of questions is necessary
even to test whether a list is sorted [6]. Feige et al. [12] studied a probabilis-
tic model and presented a sorting algorithm correct with probability at least
(1 — ¢) that requires ©(nlog(n/q)) comparisons. Lies are well suited at model-
ing transient ALU failures, such as comparator failures. Since memory data get
never corrupted in the liar model, fault-tolerant algorithms may exploit query
replication strategies. We remark that this is not the case in faulty memories.

Fault-tolerant sorting networks. Destructive faults have been first investi-
gated in the context of fault-tolerant sorting networks [2,21,22,34], in which
comparators can be faulty and can possibly destroy one of the input values. As-
saf and Upfal [2] present an O(nlog?® n)-size sorting network tolerant (with high
probability) to random destructive faults. Later, Leighton and Ma [21] proved



that this bound is tight. The Assaf-Upfal network makes ©@(logn) copies of each
item, using data replicators that are assumed to be fault-free.

Parallel computing with memory faults. Multiprocessor platforms are even
more prone to hardware failures than uniprocessor computers. A lot of research
has been thus devoted to deliver general simulation mechanisms of fully opera-
tional parallel machines on their faulty counterparts. The simulations designed
in [8-10,17] are either randomized or deterministic, and operate with constant or
logarithmic slowdown, depending on the model (PRAM or Distributed Memory
Machine), on the nature of faults (static or dynamic, deterministic or random),
and on the number of available processors. Some of these works also assume the
existence of a special fault-detection register that makes it possible to recognize
memory errors upon access to a memory location.

Implementing data structures in unreliable memory. In many applica-
tions such as file system design, it is very important that the implementation
of a data structure is resilient to memory faults and provides mechanisms to
recover quickly from erroneous states. Unfortunately, many pointer-based data
structures are highly non-resilient: losing a single pointer makes the entire data
structure unreachable. This problem has been addressed in [3], providing fault-
tolerant versions of stacks, linked lists, and binary search trees: these data struc-
tures have a small time and space overhead with respect to their non-fault-
tolerant counterparts, and guarantee that only a limited amount of data may be
lost upon the occurrence of memory faults.

Blum et al. [5] considered the following problem: given a data structure re-
siding in a large unreliable memory controlled by an adversary and a sequence of
operations that the user has to perform on the data structure, design a checker
that is able to detect any error in the behavior of the data structure while
performing the user’s operations. The checker can use only a small amount of
reliable memory and can report a buggy behavior either immediately after an
errant operation (on-line checker) or at the end of the sequence (off-line checker).
Memory checkers for random access memories, stacks and queues have been pre-
sented in [5], where lower bounds of £2(logn) on the amount of reliable memory
needed in order to check a data structure of size n are also given.

3 Designing Resilient Algorithms

Memory faults alter in an unpredictable way the correct values that should be
stored in memory locations. Due to such faults, we cannot assume that the value
read from a memory location is the same value that has been previously written
in that location. If the algorithm is not prepared to cope with memory faults, it
may take wrong steps upon reading of corrupted values and errors may propagate
over and over. Consider for instance mergesort: during the merge step, errors may
propagate due to corrupted keys having value larger than the correct one. Even
in the presence of very few faults, in the worst case as many as ©@(n) keys may
be out of order in the output sequence, where n is the number of keys to be



merged. There are even more subtle problems with recursive implementations:
if some parameter or local variable in the recursion stack (e.g., an array index)
gets corrupted, the mergesort algorithm may recurse on wrong subarrays and
entire subsequences may remain unordered.

3.1 The Faulty Memory Model

Memory faults may happen at any time during the execution of an algorithm, at
any memory location, and even simultaneously. The last assumption is motivated
by the fact that an entire memory bank may dismiss to work properly, and thus
all the data contained in it may get lost or corrupted at the same time. In order
to model this scenario, in [14] we introduced a faulty-memory random access
machine, i.e., a random access machine whose memory locations may experience
memory faults which corrupt their content. In this model corrupted values are
indistinguishable from correct ones. We also assumed that the algorithms can
exploit only O(1) reliable memory words, whose content gets never corrupted:
this is not restrictive, since at least registers can be considered fault-free.

Let 6 denote an upper bound on the total number of memory faults that can
happen during the execution of an algorithm (note that 6 may be a function of
the instance size). We can think of the faulty-memory random access machine as
controlled by a malicious adaptive adversary: at any point during the execution
of an algorithm, the adversary can introduce an arbitrary number of faults in
arbitrary memory locations. The only adversary’s constraint is not to exceed
the upper bound ¢ on the number of faults. If the algorithm is randomized, we
assume that the adversary has no information about the sequence of random
values.

In the faulty-memory model described above, if each value were replicated
k times, by majority techniques we could easily tolerate up to (k — 1)/2 faults;
however, the algorithm would present a multiplicative overhead of ©(k) in terms
of both space and running time. This implies, for instance, that in order to be
resilient to O(y/n) faults, a sorting algorithm would require O(n?/?logn) time
and O(n3/ 2) space. The space may be improved using error-correcting codes,
but at the price of a higher running time.

3.2 Resilient Sorting and Searching

It seems natural to ask whether it is possible to design algorithms that do not
exploit data replication in order to achieve resilience to memory faults: i.e., algo-
rithms that do not wish to recover corrupted data, but simply to be correct on
uncorrupted data, without incurring any time or space overhead. More formally,
in [14] we considered the following resilient sorting and searching problems.

— Resilient sorting: we are given a set of n keys that need to be sorted. The
values of some keys may be arbitrarily corrupted during the sorting process.
The problem is to order correctly the set of uncorrupted keys.



— Resilient searching: we are given a sequence of n keys on which we wish to
perform membership queries. The keys are stored in increasing order, but
some keys may be corrupted and thus may occupy wrong positions in the
sequence. Let x be the key to be searched for. The problem is either to find
a key equal to x, or to determine that there is no correct key equal to z.

In both cases, this is the best that we can achieve in the presence of memory
faults. For sorting, we cannot indeed prevent keys corrupted at the very end of
the algorithm execution from occupying wrong positions in the output sequence.
For searching, memory faults can make the searched key x appear or disappear
in the sequence at any time.

We remark that one of the main difficulties in designing efficient resilient
sorting and searching algorithms derives from the fact that positional informa-
tion is no longer reliable in the presence of memory faults: for instance, when we
search an array whose correct keys are in increasing order, it may be still possi-
ble that a faulty key in position 4 is smaller than some correct key in position 7,
J <1, thus guiding the search towards a wrong direction.

Known results and techniques. In [14] we proved both upper and lower
bounds on resilient sorting and searching. These results are shown for deter-
ministic algorithms that do not make use of data replication and use only O(1)
words of reliable memory. We remark that a constant-size reliable memory may
be even not sufficient for a recursive algorithm to work properly: parameters, lo-
cal variables, return addresses in the recursion stack may indeed get corrupted.
This is however not a problem if the recursion can be simulated by an iterative
implementation using only a constant number of variables.

With respect to sorting, we proved that any resilient O(nlogn) comparison-
based deterministic algorithm can tolerate the corruption of at most O(y/nlogn )
keys. This lower bound implies that, if we have to sort in the presence of
w(v/nlogn) memory faults, then we should be prepared to spend more than
O(nlogn) time. We also designed a resilient O(nlogn) comparison-based sort-
ing algorithm that tolerates O((nlogn)'/?) memory faults. The algorithm is
based on a bottom-up iterative implementation of mergesort and hinges upon
the combination of two merging subroutines with quite different characteristics.
The first subroutine requires optimal linear time, but it may be unable to sort
correctly all the uncorrupted keys (i.e., some correct elements may be in a wrong
position in the output sequence). Such errors are recovered by using the second
subroutine: this procedure may require more than linear time in general, but
is especially efficient when applied to unbalanced sequences. The crux of the
approach is therefore to make the disorder in the sequence returned by the first
subroutine proportional to the number of memory faults that happened during
its execution: this guarantees that the shorter sequence received as input by the
second subroutine will have a length proportional to the actual number of cor-
rupted keys, thus limiting the total running time. The gap between the upper
and lower bounds for resilient sorting has been recently closed in [13], by design-
ing an optimal resilient comparison-based sorting algorithm that can tolerate
up to O(v/nlogn) faults in O(nlogn) time. In [13] we also prove that, in the



special case of integer sorting, there is a randomized algorithm that can tolerate
up to O(y/n) faults in expected linear time. No lower bound is known up to this
time for resilient integer sorting.

With respect to searching, in [14] we designed an O(logn) time searching al-
gorithm that can tolerate up to O(y/log n ) memory faults and we proved that any
O(logn) time deterministic searching algorithm can tolerate at most O(logn)
memory faults. The lower bound has been extended to randomized algorithms
in [13], where we also exhibit an optimal randomized searching algorithm and
an almost optimal deterministic searching algorithm that can tolerate up to
O((logn)'~¢) memory faults in O(logn) worst-case time, for any small positive
constant e.
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