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Abstract. We provide simple, faster algorithms for the detection of cliques and
dominating sets of fixed order. Our algorithms are based on reductions to rect-
angular matrix multiplication. We also describe an improved algorithm for dia-
monds detection.

1 Introduction

Clique and dominating set are classical problems of complexity theory. It is well known
that both problems are NP-complete [10] and hard to approximate [11,14,17].

Parameterized complexity [7] is a discipline which tries to understand from which
aspects of the input (the parameter) the hardness of problems originates. A parameter-
ized problem is fixed parameter tractable if its time complexity is polynomial in the
size i of the input, once that the size p of the parameter is fixed, and if the asymptotic
running time in this case is independent from p. In other words, if the time complexity
can be bounded by a function of the kind f (p)ic, where f (·) is an arbitrary function and
c is a constant (independent of p).

The fixed parameter clique and dominating set problems consist in determining
whether an undirected graph G of n nodes contains a clique and a dominating set of `
nodes, respectively, where ` is the parameter. Currently, these problems are not known
to be fixed parameter tractable. Indeed, this is also believed not to be the case. In a semi-
nal work, Downey and Fellows [6,7] delivered completeness results for these problems.
If one could show that fixed parameter clique and dominating set are fixed parame-
ter tractable, then, by reduction, this would be the case for many other parameterized
problems. More precisely, let FPT be the family of the fixed parameter tractable prob-
lems. Downey and Fellows showed that the fixed parameter clique and dominating set
problems are complete for the complexity classes W [1] and W [2], respectively, where:

FPT ⊆W [1] ⊆W [2].

It is conjectured that FPT 6= W [1], which would imply that both problems considered
are not fixed parameter tractable. Though this conjecture is far from being proved (it



would imply P 6= NP), new evidences which support it have been constantly reported
[5,9].

These results motivated us to study the complexity of these two prototypical prob-
lems and to look for faster algorithms to solve them.

Main results

We provide an improved algorithm for the fixed parameter clique problem. Let O(nω(r,s,t))
denote the running time of the multiplication of a nr × ns matrix by a ns × nt matrix.
Our algorithm runs in time O(nβ(`)) = O(nω(b`/3c,d(`−1)/3e,d`/3e)) on graphs of n nodes.
If ` ≥ 6, our algorithm also runs in time O(eβ(`)/2) on graphs of e edges. This means
an improvement over the fastest known methods [15,16] for dense and sparse graphs in
the case that ` ≡ 1 (mod 3) and 4 ≤ ` ≤ 16 as well as that ` ≡ 2 (mod 3) and ` ≥ 5.
In addition, for sparse graphs we obtain faster running times for ` ≡ 0 (mod 3) when
` ≥ 6. A comparison of the running times of the previous best algorithms and of our
algorithm is depicted in Table 1 for 4 ≤ ` ≤ 7.

Nešetřil and Poljak [16] showed how to reduce the detection of an arbitrary (in-
duced) subgraph of fixed order `, to the detection of a clique of the same order in an
auxiliary graph of `n nodes. For certain subgraphs, one can however do better. A dia-
mond is obtained from a clique with four nodes by removing one edge. Kloks, Kratsch
and Müller [15] showed how to detect an induced diamond in time O(nω + e3/2). We
improve on their result, by presenting a O(e3/2) algorithm for this task.

Finally, we provide an improved algorithm for the fixed parameter dominating set
problem, of running time O(nω(b`/2c,1,d`/2e)). This answers a question posed by Re-
gan [18], who asked whether there exists an algorithm which is faster than the O(n`+1)
trivial one. A comparison of our algorithm and the trivial one is depicted in Table 2 for
2 ≤ ` ≤ 7.

Related work

Itai and Rodeh [13] showed how to detect a triangle (clique of 3 nodes) in O(nω) time,
where ω < 2.376 is the exponent of fast square matrix multiplication [4]. Nešetřil and
Poljak [16] generalized the algorithm of Itai and Rodeh to the detection of cliques of
arbitrary (fixed) order `. Their algorithm has time complexity O(nα(`)), where α(`) =
b`/3cω+ ` (mod 3).

Alon, Yuster and Zwick [1] showed how to detect a triangle in O(e2ω/(ω+1)) time.
Kloks, Kratsch and Müller [15] generalized the result of Alon et al. to cliques of ar-
bitrary order. The running time of their algorithm is O(eα(`)α(`−1)/(α(`)+α(`−1)−1)). If `
(mod 3) 6= 0, their running time is O(eα(`)/2), which is never inferior to the running
time obtained by Nešetřil and Poljak for dense graphs. This does not hold when `
(mod 3) = 0. In that case the O(nα(`)) algorithm is faster if G is dense enough. Kloks
et al. posed the question whether there exists a O(eα(`)/2) algorithm for the detection of
cliques of arbitrary order ` ≥ 3. Our results provide a partially positive answer.



` Previous best [15,16] This paper

4 O(n3.376), O(e1.688) O(n3.334), O(e1.682)

5 O(n4.376), O(e2.188) O(n4.220), O(e2.147)

6 O(n4.751), O(e2.559) O(e2.376)

7 O(n5.751), O(e2.876) O(n5.714), O(e2.857)

Table 1: Running time comparison for clique problem.

` Previous best This paper

2 O(n3) O(n2.376)

3 O(n4) O(n3.334)

4 O(n5) O(n4.220)

5 O(n6) O(n5.220)

6 O(n7) O(n6.063)

7 O(n8) O(n7.063)

Table 2: Running time comparison for dominating set problem.

Notation

In this paper we only deal with undirected graphs G = (V,E), where V denotes the set
of vertices (or nodes) and E denotes the set of edges. The order of G is the number of
its nodes. The neighborhood N(v) of a node v is the subset of nodes of G which are
adjacent to v. The degree d(v) of v is the number of its neighbors. A clique is a graph
such that each pair of distinct nodes is adjacent. The cliques of 3 nodes are also called
triangles. By K` we denote a clique of order `.

A graph G′ = (V ′,E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. A subgraph G′ of
G is an induced subgraph of G if two nodes in V ′ are adjacent in G′ if and only if they
are adjacent in G. If G′ is an induced subgraph of G, we say that V ′ induces G′ on G
and we denote G′ by G[V ′]. Two graphs are isomorphic if they admit an isomorphism,
that is a bijection between their vertex sets which preserves adjacency. If a graph F is
isomorphic to an (induced) subgraph G′ of G, G contains the (induced) subgraph F .

A subset V ′ of the nodes of G dominates a node v ∈ V if v belongs to V ′ or v is
adjacent to at least one node in V ′. The set V ′ is a dominating set of G if all the nodes
of G are dominated by V ′.

To measure our running times, we always assume that a graph is represented via
adjacency lists and that e = Ω(n).

2 Cliques

In this section we present our algorithm for the fixed parameter clique problem. We dis-
tinguish between the detection of cliques in dense graphs (Section 2.1) and the detection
of cliques in sparse graphs (Section 2.2).



2.1 Cliques in Dense Graphs

In this section we present our algorithm for the fixed parameter clique problem in dense
graphs.

We first recall the algorithm of Nešetřil and Poljak [16] for the same problem.
If ` = 3h for some h ∈ N, one creates an auxiliary graph G̃ which has a node for
each Kh in G and an edge between a pair of nodes if and only if the corresponding
nodes in G form a K2h. The graph G contains a K3h if and only if G̃ contains a triangle.
As G̃ has O(nh) nodes, a triangle in it can be detected in O(nωh) time using fast square
matrix multiplication [13]. If ` is not divisible by 3 one applies the following fact. A
node v is contained in a K` if and only if the graph G(v) = G[N(v)] induced on G by
the neighborhood of v contains a K`−1. This implies that one can detect a K` of G by
applying an algorithm to detect a K`−1 in each graph G(v), v ∈V . Thus one can detect
a K` in O(nα(`)) time, where α(`) = b`/3cω+ ` (mod 3).

The idea behind our algorithm is to allow for different orders of the sub-cliques, so
that the case ` (mod 3) 6= 0 is not treated separately. Let `1, `2 and `3 be equal to b`/3c,
d(`−1)/3e and d`/3e respectively (notice that ` = `1 + `2 + `3). The graph G contains
a K` if and only if a triangle is contained in the following 3-partite auxiliary graph G̃.
The nodes of G̃ are partitioned into sets Vi for each i ∈ {1,2,3}, where the nodes in Vi
are the cliques of order `i of G. A node u ∈Vi is adjacent to a node v ∈V j, i 6= j, if and
only if the nodes of u and v induce a K`i+` j in G.

A triangle of G̃ can be detected in the following way. For each pair of nodes {u,v},
u ∈ V1 and v ∈ V3, we compute the number P(u,v) of 2-length paths between u and v
through a node of V2. The graph G̃ contains a triangle if and only if there is a pair of
adjacent nodes {u,v}, u ∈V1 and v ∈V3, such that P(u,v) > 0. The cost of the algorithm
is bounded by the cost to compute the number of 2-length paths, that is the time required
to multiply the O(n`1)×O(n`2) adjacency matrix of the nodes in V1 with the nodes in
V2 by the O(n`2)×O(n`3) adjacency matrix of the nodes in V2 with the nodes in V3.

Theorem 1. There is an algorithm which determines whether a graph G contains a
clique of fixed order ` ≥ 3 in time O(nβ(`)) = O(nω(b`/3c,d(`−1)/3e,d`/3e)).

If the rectangular matrix multiplication is carried out via the straightforward partition
into square blocks and fast square matrix multiplication, one obtains the same time
complexity of Nešetřil and Poljak:

β(`) ≤ (`3 − `1)+(`2 − `1)+ω(`1, `1, `1) = ` (mod 3)+ `1ω = α(`).

An asymptotically better bound can be obtained, when ` (mod 3) 6= 0, by using more
sophisticated fast rectangular matrix multiplication algorithms [3,12].

Consider first the case ` = 3h+1, where h ∈N. If r ≥ 1.171, the bound on ω(1,1,r)
given in [12] (which is not expressed via a closed formula) is superior to the trivial
bound ω(1,1,r) ≤ r−1+ω. This implies that β(3h+1) is strictly less than α(3h+1)
for any positive h ≤ 5:

β(3h+1) = ω(h,h,h+1) = hω
(

1,1,
h+1

h

)
< h

(
h+1

h
−1+ω

)
= α(3h+1).



Consider now the case ` = 3h+2, where h∈N. The best current bound for ω(r,1,1),
0 ≤ r ≤ 1, is [3,12]:

ω(r,1,1) ≤
{

2+o(1) if 0 ≤ r ≤ δ = 0.294,

ω+ (1−r)(2−ω)
1−δ if δ < r ≤ 1.

(1)

This implies that β(3h+2) is strictly less than α(3h+2) for any positive h:

β(3h+2) = (h+1)ω
(

h
h+1

,1,1
)

≤ (h+1)

(
ω+

(1− h
h+1 )(2−ω)

1−δ

)

= α(3h+2)− (ω−2)δ
1−δ

.

Summing up, our algorithm is asymptotically faster than the algorithm of Nešetřil and
Poljak if l (mod 3) = 1 and l ≤ 16, or l (mod 3) = 2.

Nešetřil and Poljak [16] showed how to reduce the detection of an arbitrary (in-
duced) subgraph of fixed order `, to the detection of a clique of the same order in an
auxiliary graph of `n nodes. From this reduction and Theorem 1:
Corollary 1. There is an algorithm which determines whether a graph G contains a
given (induced) subgraph of fixed order ` ≥ 3 in time O(nβ(`)).

2.2 Cliques in Sparse Graphs

In this section we are concerned with the detection of cliques in a sparse graph G. In
particular we want to develop efficient algorithms which depend on the number e of
edges only.

Kloks et al. [15] described an algorithm for the detection of cliques in sparse graphs.
The idea is to partition the vertex set into the set L of the nodes of degree smaller than ∆
(low degree nodes), and the set H of the remaining nodes (high degree nodes), where ∆
has to be fixed carefully. First one looks for a K` which contains at least one low degree
node. Specifically, for every node v ∈ L, one looks for a K`−1 in G(v) = G[N(v)] by
using an algorithm for the detection of cliques in dense graphs. Then one looks for a K`

which contains high degree nodes only.
By applying the algorithm of Section 2.1, a K` containing at least one low degree

node can be detected in O(∑v∈L d(v)β(`−1)) = O(e∆β(`−1)−1) steps. As Σv∈V d(v) = 2e,
the number of high degree nodes is bounded by |H| ≤ 2e/∆. Then a clique formed
by high degree nodes only can be detected in O

(
(e/∆)β(`)

)
time. By setting ∆ =

e(β(`)−1)/(β(`)+β(`−1)−1), the complexity of the procedure is O(eβ(`)β(`−1)/(β(`)+β(`−1)−1)).
This bound already outperforms the previous best bound O(eα(`)α(`−1)/(α(`)+α(`−1)−1)),
which is obtained by using the algorithm of Nešetřil and Poljak.

However, the O(nβ(`)) running time obtained by the dense case algorithm is superior
for some values of ` if the graph is sufficiently dense. This is because, for some values of
`, β(`) < β(`−1)+1 and thus β(`)β(`−1)/(β(`)+β(`−1)−1) > β(`)/2. The natural
question arises, whether there exists an algorithm with a O(eβ(`)/2) running time for any
` ≥ 3. We now give a positive answer to this for the case ` ≥ 6. Erdős [8] proved the
following lemma (see also [2]).



Lemma 1 (Erdős 1962). Let e =
(s

2

)
+ t be the number of edges of a graph G, where

s, t ∈ N and s < t. Then G contains at most
(s
`

)
+
( t
`−1

)
cliques of order ` ≥ 3 and this

upper bound is tight.

Thus there are at most O(e`/2) K` in G. It turns out that all such cliques can be enumer-
ated within the same time bound.

Proposition 1. There exists an algorithm which enumerates all the K` in G in O(e`/2)
steps, for any ` ≥ 2.

Proof. Let L denote the set of nodes with degree smaller than a given ∆, and let H
denote the set of the remaining nodes. We distinguish two kinds of cliques: the cliques
which contain at least one node of L and the cliques formed by nodes in H only.

The cliques of the first kind can be enumerated by enumerating all the K`−1 con-
tained in the neighborhood of each node in L. This can be done in O(∑v∈L d(v)`−1) =
O(e∆`−2) steps. The number of high degree nodes is bounded by |H| ≤ 2e/∆. This im-
plies that the cliques of the second kind can be enumerated in O((e/∆)`) steps. Setting
∆ =

√
e, one obtains the claimed time bound.

Notice that we can label each edge of G with the number of K` to which it belongs
to within the same time bound. Assume that the set of nodes is totally ordered. As one
enumerates the K`, one can generate a list U of ordered `-tuples T = (t1, . . . , t`), which
represent the nodes of each K`. For each T one has to augment the label of edge {ti, t j},
for each 1 ≤ i < j ≤ `, by 1. To do this in linear time, we consider all the possible
choices of i and j, and we generate lists Ui, j which consist of the pairs (ti, t j) for each
T ∈U . Next we lexicographically sort each Ui, j with radix sort in linear time. Then we
scan each list and add 1 to the edge label corresponding to each scanned pair (ti, t j).
Notice that this can be done in linear time in the number of edges and in the size of the
lists. We thus have the following corollary.

Corollary 2. For each ` ≥ 2, one can label each edge of G with the number of K` to
which it belongs in time O(e`/2).

An algorithm to detect a K`, ` ≥ 6, in O(eβ(`)/2) time derives from the previous re-
sults and from the algorithm described in Section 2.1. As in the dense case, we build the
3-partite auxiliary graph G̃ and we look for a triangle in it. Remember that the partition
Vi, i∈{1,2,3}, is formed by the K`i of G, with `1, `2 and `3 being b`/3c, d(`−1)/3e and
d`/3e respectively. From Proposition 1, the set Vi, i ∈ {1,2,3}, has cardinality O(e`i/2),
and it can be created within the same time bound. The cost to detect a triangle in G̃
is bounded by the time required to multiply the O(e`1/2)×O(e`2/2) adjacency matrix
of the nodes in V1 with the nodes in V2 by the O(e`2/2)×O(e`3/2) adjacency matrix of
the nodes in V2 with the nodes in V3. This multiplication costs O(eω(`1/2,`2/2,`3/2)) =
O(eβ(`)/2).

Theorem 2. There is an algorithm which determines whether a graph G contains a
clique of fixed order ` ≥ 6 in time O(eβ(`)/2).

Note that the complexity of our algorithm for the sparse case is never larger than
the complexity of the dense case algorithm of Section 2.1. Moreover, since β(`)/2 ≤



β(`)β(`−1)/(β(`)+β(`−1)−1), this algorithm is faster than the algorithm of Kloks
et al. when ` ≥ 6. By now, this is not the case for 3 ≤ ` ≤ 5. Here, the fastest detection
algorithm for sparse graphs is the one of Kloks et al. Whether there exists a O(eβ(`)/2)
algorithm for 3 ≤ ` ≤ 5 is an interesting open problem.

3 Dominating Sets

The fastest known algorithm for the fixed parameter dominating set problem is the O(n`+1)
trivial algorithm which enumerates all the subsets of ` nodes of G and tests whether one
of these subsets forms a dominating set. We recall that a dominating set is a subset V ′

of nodes such that every node not in V ′ is adjacent to at least one node in V ′. Here we
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Fig. 1. The black nodes form a dominating set, that is the nodes of G are either adjacent to the
black nodes or belong to the black nodes.

give a faster algorithm based on fast matrix multiplication.
Let Vh be the set of subsets of V of cardinality h, h ∈ N. Let moreover Dh be a 0-1

matrix whose rows are indexed by the elements of Vh and whose columns are indexed
by the elements of V . Given w ∈Vh and v ∈V , Dh[w,v] = 0 if and only if w dominates
v. Let `1 and `2 be equal to b`/2c and d`/2e respectively (notice that ` = `1 + `2). It is
not hard to show that the matrix D′ = D`1 ·DT

`2
contains a zero entry if and only if G

admits a dominating set of size `. More precisely, given w ∈V`1 and z ∈V`2 , D′[w,z] is
the number of elements of V which are not dominated by w∪ z. The matrix D′ can be
computed in O(nω(`1,1,`2)) time.

Theorem 3. There is an algorithm which determines whether a graph G contains a
dominating set of fixed cardinality ` ≥ 2 in time O(nω(b`/2c,1,d`/2e)).

The algorithm above improves on the trivial algorithm for every value of ` ≥ 2
even if D′ is computed via the straightforward decomposition and fast square matrix
multiplication:

ω(b`/2c,1,d`/2e) ≤ b`/2c−1+ d`/2e−1+ω = `+ω−2 < `+1.



A better time bound is obtained by using more sophisticated rectangular matrix multi-
plication algorithms [12]. In Table 2, the complexity of our algorithm is compared with
the trivial algorithm complexity in the case 2 ≤ ` ≤ 7. Interestingly, the complexity of
our algorithm is O(n`+o(1)) for any fixed ` ≥ 8. In fact, from Equation (1), we have:

ω(b`/2c,1,d`/2e) ≤ d`/2e−b`/2c+ω(b`/2c,1,b`/2c)
≤ d`/2e−b`/2c+ b`/2c(2+o(1))

= `+o(1).

4 Diamonds

In this section we consider the detection of induced diamonds. A diamond is a graph
with four nodes, which results from a K4 via the deletion of one edge. By Corollary 1,
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Fig. 2. A diamond. Side and central nodes are labelled with s and c respectively.

an induced diamond can be detected in O(nβ(4)) = O(n3.334) time. Interestingly, there is
a faster algorithm for this problem. Kloks et al. [15] showed that a diamond can be de-
tected in O(nω +e3/2) steps. Here we present an algorithm for diamond detection which
runs in O(e3/2) steps. Our algorithm does not make use of fast matrix multiplication.

We again use the technique to decompose the set of nodes into high and low degree
nodes H and L. The value of ∆ will be determined in the sequel. A diamond contains
two nodes of degree three and two of degree two. Let us call the nodes of the first
kind central nodes, and the other two nodes side nodes. First we look for a diamond
which contains a low degree central node. For every low degree node v, we create the
adjacency matrix of G(v) = G[N(v)], we compute the connected components in G(v)
and we check if they are all cliques. If not, v is contained in a diamond and we can
detect it in O(d(v)2) time. The complexity of this step is bounded by the time required
to create the adjacency matrices. We can do that in O(e + ∑v∈L d(v)2) = O(e∆) steps
in the following way. We create an n-elements vector R that we initialize to 0. Then
the algorithm proceeds through n rounds. In the v-th round we fill in all the rows of
the adjacency matrices which correspond to the node v. First we set to 1 all the entries



of R corresponding to the neighbors of v. Now the vector R is equal to the v-th row of
the adjacency matrix of G (which is not available). Then for each neighbor u of v, we
detect the row corresponding to v in the adjacency matrix of G(u), and we fill in that
row in linear time by using the vector R. At the end of each round we reset the non-zero
entries of R. This procedure has a linear cost in the number of edges and in the size of
the adjacency matrices created.

If no diamond is detected in the first step, we look for a diamond which contains
a low degree side node. It follows from Corollary 2 that we can label each edge with
the number of triangles of G in which it is contained in O(e1.5) steps. Consider a low
degree node v. The graph G(v) is a disjoint union of cliques. The node v belongs to a
diamond if and only if there exists an edge in a clique Kh of G(v) which belongs to at
least h triangles. This second step costs O(e1.5 +∑v∈L d(v)2) = O(e1.5 + e∆) time.

The diamonds not yet considered are formed by high degree nodes only. The size of
H is bounded by |H| ≤ 2e/∆. Using the same approach of the first step, we can detect
a diamond of this kind in O(e+ ∑v∈H dH(v)2) = O(e+ e2/∆) steps, where dH(v) is the
number of high degree neighbors of v.

The above described procedure runs in time O(e1.5 + e∆ + e2/∆). This complexity
is minimized by setting ∆ =

√
e.

Theorem 4. There is an algorithm which determines whether a graph G contains an
induced diamond in time O(e1.5).

For the remainder of this section we consider the problem to count the number d of
induced diamonds of G. Kloks et al. [15] described an algorithm to count the number k
of K4 in G. Considering the results of Section 2.1, the running time of their algorithm
is O(eβ(4)β(3)/(β(4)+β(3)−1)). They moreover noticed that:

t = ∑
{u,w}∈E

(
A2[u,w]

2

)
= 6k +d,

where A is the 0-1 adjacency matrix of G (A2[u,w] is equal to the number of 2-length
paths between u and w). Thus the value of d can be determined in

O(nω + eβ(4)β(3)/(β(4)+β(3)−1))

steps, where O(nω) is the time required to compute A2.
A better bound can be obtained by using Corollary 2. We can label in O(e1.5) time

each edge {u,w} ∈ E with the number T (u,w) of triangles in which that edge is con-
tained. As T (u,v) is equal to A2[u,w] for any {u,w} ∈ E, we can compute t within the
same time bound. Then the value of d can be computed in O(eβ(4)β(3)/(β(4)+β(3)−1)) =
O(e1.682) steps.

Proposition 2. There is an algorithm which counts the number of induced diamonds
contained in a graph G in O(eβ(4)β(3)/(β(4)+β(3)−1)) steps.

Concluding remarks

The clique and dominating set problems are two of the best studied problems in com-
plexity theory. Their parameterized versions are conjectured not to be fixed parameter



tractable. For the fixed parameter clique problem there are two non-trivial algorithms:
one for the sparse and one for the dense case. We improve upon both of these algo-
rithms. We provide a faster algorithm for the fixed parameter dominating set problem,
for which the best algorithm known is the trivial one. We moreover present a faster
algorithm for the detection of diamonds which does not make use of fast matrix multi-
plication techniques.
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