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Abstract

A random geometric graph G(n, r) is obtained by spreading n points uni-
formly at random in a unit square, and by associating a vertex to each
point and an edge to each pair of points at Euclidian distance at most r.
Such graphs are extensively used to model wireless ad-hoc networks, and
in particular sensor networks. It is well known that, over a critical value
of r, the graph is connected with high probability.

In this paper we study the robustness of the connectivity of random
geometric graphs in the supercritical phase, under deletion of edges. In
particular, we show that, for a sufficiently large r, any cut which separates
two components of Θ(n) vertices each contains Ω(n2r3) edges with high
probability. We also present a simple algorithm that, again with high
probability, computes one such cut of size O(n2r3). From these two results
we derive a constant expected approximation algorithm for the β-balanced
cut problem on random geometric graphs: find an edge cut of minimum
size whose two sides contain at least β n vertices each.

Keywords: ad-hoc networks, sensor networks, random geometric graphs, bal-
anced cut, approximation algorithms.

1 Introduction

Let us consider a wireless network of sensors on a terrain, where the sensors
communicate by radio frequency, using an omnidirectional antenna. Each sen-
sor broadcasts with the same power to the same distance. Two sensors can
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communicate if and only if they are within the transmission radius of each
other. Sensor networks, and more in general ad-hoc wireless networks, are often
modelled via random geometric graphs [1, 6]. (For alternative models, see e.g.
[15, 16] and references therein). A random geometric graph G(n, r) [10] is a
graph resulting from placing a set V of n vertices uniformly at random on the
unit square [0, 1]2, and connecting two vertices if and only if their Euclidean
distance is at most the given radius r.

Random geometric graphs in general, and in particular their connectivity
properties, have been intensively studied, both from the theoretical and from
the empirical point of view. For the present paper, the most interesting result on
random geometric graphs is the fact that, for r = r(n) =

√

(ln n + c(n))/(πn),
for any c(n) such that c(n) → ∞ when n → ∞, G(n, r) is connected whp1

[17] (see also [12] for sharp connectivity thresholds). Once the connectivity is
achieved, it is natural to wonder how robust it is: how many edges one needs to
remove in order to disconnect the graph? In most applications the disconnection
of one vertex, or of a few vertices, does not affect significantly the behavior of
the network. So we can reformulate the question above in the following more
general way: given β ∈ [0, 1/2], how many edges one needs to remove in order
to isolate two components (not necessarily connected) of β n vertices each?

Our results. We can formalize the question above in the following way. A cut
of a graph is a partition of its vertices into two subsets W and B, the sides of the
cut. The size of cut (W, B) is the number of edges δ(W, B) between W and B.
Given β ∈ [0, 1/2], β n ∈ N, a β-balanced cut is a cut where both sides contain
at least β n vertices. The β-balanced cut problem is to compute a β-balanced
cut of minimum size. Here we prove that, if r = r(n) =

√

R lnn/n for R ≥ R∗,
with R∗ > 1 a sufficiently large constant, with high probability any β-balanced

cut of G(n, r) has size Ω(min{βnR log n,
√

βnR3 log3 n}) (see Section 2).
We also present a simple algorithm that with high probability computes a

cut of size O(min{β n R log n,
√

β n R3 log3 n}), thus matching the lower bound
(see Section 3). The two mentioned results imply a probabilistic constant ap-
proximation algorithm for the β-balanced cut problem. We eventually show
how to extend such result to a constant expected approximation algorithm (see
Section 3.1).

We observe that the minimum in the expressions above is given by the first
term for R > β n/ log n, and by the second term for R < β n/ log n. With the
threshold value R = β n/ logn, the expected number of neighbors of a node is
Θ(β n).

We remark that the above results hold also if R is a function of n, and that
the hidden constants in the O and Ω notations do not depend on n, R and β.

Related Work. One of the first papers to study the β-balanced cut problem
(for general graphs) is [3]. In this paper, the authors show that given a constant

1Throughout this paper, “whp” will abbreviate with high probability, that is with proba-

bility tending to 1 as n goes to ∞.
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ǫ > 0, it is NP-hard to approximate the β-balanced cut problem within an
additive term of n2−ǫ. The β-balanced cut problem admits a PTAS for β ≤ 1/3,
if the graph is dense, i.e. each vertex has degree Θ(n) [2]. For planar graphs
there is a 2-approximation for the β-balanced cut, if β ≤ 1/3 [8].

For β = 1/2, the β-balanced cut problem is the well-known minimum edge
bisection problem. Minimum edge bisection is a difficult problem which has
received a lot of attention due to its numerous applications (see e.g. [11]). It
is known to be NP-Hard for general graphs [9], and in such case there is a
O(log1.5 n) approximation [7]. In the same paper, the authors prove that if the
graph is planar, the approximation can be reduced to O(log n). In the case of
random geometric graphs, it is known how to obtain a constant approximation
to minimum edge bisection whp for the special case R = R(n) → ∞ for n → ∞
[5]. Our approximation algorithm improves on the algorithm in [5] in several
ways: (i) it holds for arbitrary values of β (not only for β = 1/2), including the
non-trivial special case that β = o(1); (ii) it holds for constant values of R as
well; (iii) the value of the approximation ratio is constant in expectation, not
only with high probability. These improvements are achieved by exploiting new
and simpler techniques.

The deterministic counterpart of random geometric graphs are unit disk
graphs [4]. An undirected graph is a unit disk graph if its vertices can be put
in one-to-one correspondence with the centers of circles of equal radius in the
plane in such a way that two vertices are joined by an edge if and only if the
corresponding circles intersect. It is an open problem to prove the hardness of
minimum edge bisection and β-balanced cut for unit disk graphs.

Preliminaries. Given a region Q of the unit square, |Q| denotes the area of Q,
and ‖Q‖ the number of points falling in Q. Note that ‖Q‖ is a Binomial random
variable of parameters n and |Q|, for which the following standard Chernoff’s
Bounds hold [13]. Let µ = E[‖Q‖] = |Q|n. Then:

Pr[‖Q‖ < (1 − δ)µ] ≤ e−δ2µ/2 for δ ∈ [0, 1); (1)

Pr[‖Q‖ > (1 + δ)µ] ≤ e−δ2µ/3 for δ ∈ [0, 1); (2)

Pr[‖Q‖ > (1 + δ)µ] ≤ e−δ2µ/4 for δ ∈ [1, 2e − 1); (3)

Pr[‖Q‖ > (1 + δ)µ] ≤ e−δµ ln 2 for δ ≥ 2e − 1. (4)

From now on r = r(n) =
√

R lnn/n. For the sake of simplicity, we will assume
R = o(n/ log n). For R = Ω(n/ log n), the problems considered here become
trivial. In particular, for R ≥ 2n/ lnn the graph is a clique (deterministically).
Moreover, we omit floors and ceilings when their role is not crucial. Without
loss of generality, we assume that n is lower bounded by a sufficiently large
constant.
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2 A Lower Bound

In this section we show that, for any β ∈ [0, 1/2], β n ∈ N, and for R ≥ 240,

the size of any β-balanced cut for G(n, r) is Ω(min{βnR log n,
√

β nR3 log3 n})
with high probability.

In order to prove the mentioned lower bound, we consider a partition of the
unit square into 5n/(R lnn) non-overlapping square cells of the same size. Each
cell is adjacent to the cells to its right, left, top, and bottom. Observe that,
since the side of each cell has length L =

√

R lnn/(5n), a vertex is adjacent
to all the vertices in the same cell and in all the adjacent cells: In fact, the
maximum distance between two vertices in two adjacent cells (or in the same
cell) is

√
5L ≤

√

R lnn/n = r, where r is the transmission radius. This property
is crucial in the analysis. The number of points ‖C‖ in each cell C satisfies the
following probabilistic bounds.

Lemma 1 For any R ≥ 240, with probability 1 − o(1/n2) all the cells C of the
partition above satisfy R lnn/10 ≤ ‖C‖ ≤ 3 R lnn/10.

Proof. Consider any cell C. Observe that E[‖C‖] = R lnn/5. By Chernoff’s
Bounds (1) and (3),

Pr

(

‖C‖ /∈
[

R lnn

10
,

3 R lnn

10

])

≤ e−(1/2)2R ln n/10+e−(1/2)2R ln n/20 = O(1/n3).

The claim follows by applying the union bound to the 5n/(R lnn) ≤ n/(48 lnn)
cells. 2

Let (W, B) be any given cut, with |W | = β n. Let us call the vertices in W
white, and the vertices in B black. A cell is white if at least one half of its points
are white, otherwise the cell is black. We define a cluster C to be a maximal
connected component of cells of the same color, with respect to the adjacency
between cells defined above. The frontier ∂C of C is the subset of its cells which
either touch the border of the unit square, or are adjacent to a cell of different
color. We call good the cells of ∂C which are adjacent to a cell of different color,
and bad the other cells of ∂C. Observe that a cell is bad if it touches the border
of the unit square and it is surrounded by cells of the same cluster (see Figure
1).

In order to prove the lower bound, we need the following two lemmas.

Lemma 2 Given a cluster of k cells, its frontier contains at least
√

π k/4 cells.

Proof. Suppose that the frontier contains h <
√

π k/4 cells. Thus the perimeter

of the cluster has length at most 4hL, where L =
√

R lnn/(5n) is the length
of the side of one cell. Such perimeter can enclose an area of size at most
(4hL)2/(4π) (case of a disk of radius 4hL/(2π)), and thus at most 4h2/π < k
cells, which is a contradiction. 2
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Figure 1 Example of configuration of black and white cells. There are 3 black
clusters and 1 white cluster.

bad

good

good

Lemma 3 Consider a cluster touching either 0, or 1, or 2 consecutive sides of
the square. Then at least one third of the cells on its frontier are good.

Proof. Consider any cluster C. Without loss of generality, let C be white. If
C does not touch any side of the square, all the cells of ∂C are good. Thus the
claim is trivially true.

Now suppose C touches one or two consecutive sides of the square, say the
left side and possibly the top side. Let ∂Cgood be the good cells of ∂C, and
∂Cbad = ∂C\∂Cgood the bad ones. Moreover, let ∂Cout be the cells of ∂C touching
the border of the square, and ∂Cin = ∂C \ ∂Cout. Note that ∂Cin ⊆ ∂Cgood since
the cells in ∂Cin do not touch any side of the square.

At least one half ∂C′ of the cells of ∂Cout touches one between the left and
the top side of the square, say the left one. Consider any cell C′ ∈ ∂C′. If C′ is
bad, we can univocally associate to C′ a good cell C′′ ∈ ∂Cin in the following
way. Consider the sequence of consecutive white cells at the right of C′ (there
must be at least one such cell, since C′ is bad). We let C′′ be the rightmost
of such cells. As a consequence, the number of good cells is lower bounded by
|∂C′|, and |∂Cgood| ≥ |∂C′| ≥ |∂Cout|/2. Thus

|∂C| = |∂Cin| + |∂Cout| ≤ |∂Cgood| + |∂Cout| ≤ 3|∂Cgood|.
The claim follows. 2

We remark that Lemma 3 is asymptotically tight, as the example in Figure 2
shows.

Theorem 1 With probability 1 − o(1/n2), for any β ∈ [0, 1/2], β n ∈ N, and
for any R ≥ 240, the size of any β-balanced cut of G(n, r) is

Ω(min{β n R log n,

√

β n R3 log3 n}).

Proof. By Lemma 1, with probability 1 − o(1/n2) for each cell C,

‖C‖ ∈
[

R lnn

10
,
3R lnn

10

]

. (5)
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Figure 2 For h = 4, the white cluster C (touching two consecutive sides of
the square) has 3h − 3 cells on its frontier ∂C, of which h are good. Hence
|∂Cgood|/|∂C| = 1/3 + 1/(3h − 3). The same example can be generalized to an
arbitrarily large value of h.

Thus it is sufficient to show that, given (5), the lower bound holds (determinis-
tically) for any β ∈ [0, 1/2] and for any cut (W, B) with |W | = β n.

We need some notation. By W and B we denote the set of white and black
cells respectively. Moreover, Wblack ⊆ W (Bwhite ⊆ B) is the subset of white
(black) vertices in black (white) cells.

Since each vertex is adjacent to all the other vertices in the same cell, each
vertex w ∈ Wblack contained into a (black) cell C contributes with at least
‖C‖/2 ≥ R lnn/20 edges to the edges of the cut. It follows that, if |Wblack| ≥
|W |/2 = β n/2, the size of the cut is at least

|Wblack|
R lnn

20
≥ β n R lnn

40
= Ω(β n R log n).

Analogously, if |Bwhite| ≥ |B|/2 = (1 − β)n/2, then the size of the cut is at
least

|Bwhite|
R lnn

20
≥ (1 − β)n R lnn

40
= Ω(β n R log n).

Thus, let us assume |Wblack| < |W |/2 and |Bwhite| < |B|/2. Observe that,
from this assumption and Equation (5),

|W| ≥ β n/2

3R lnn/10
=

5β n

3R lnn
and |B| ≥ (1 − β)n/2

3R lnn/10
=

5(1 − β)n

3R lnn
(6)

In particular, there are at least one black cell and one white cell.
By (5), since all the vertices in adjacent cells are adjacent, each pair of

adjacent (good) cells (C′, C′′), with C′ ∈ W and C′′ ∈ B contributes with at
least

‖C′‖
2

‖C′′‖
2

≥ R2 ln2 n

400
= Ω(R2 log2 n)

distinct edges to the total number of edges in the cut. Since there must be at
least one such pair (C′, C′′), if β = O(R log n/n), trivially the size of the cut is
Ω(R2 log2 n) = Ω(β n R log n).
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For β = Ω(R log n/n) we need to bound the number of distinct pairs of
type (C′, C′′) in a more sophisticated way. In particular, we will show that the
number of good cells, either white or black, is Ω(

√

β n/(R log n)), from which
it follows that the size of the cut is at least

Ω(R2 log2 n)Ω(
√

β n/(R log n)) = Ω(

√

β n R3 log3 n).

We distinguish three sub-cases, depending on the existence of white clusters
with some properties (see also Figure 3).

(i) There is a white cluster C touching either 3 or 2 opposite sides
of the square (but not 4). Without loss of generality, let the right side of
the square be untouched. Consider all the cells of C which have no cell of the
same cluster to their right. Note that such cells belong to the frontier ∂C of the
cluster. Moreover, they are all good (they have a black cell to their right). The
number of such cells is

√

5n/(R lnn) = Ω(
√

β n/(R log n)).

(ii) Every white cluster touches 0, 1, or 2 consecutive sides of the
square. Recall that the white cells are |W| ≥ 5β n/(3R lnn) by (6). Let
C1, C2, . . . , Cp be the p white clusters. It follows by Lemmas 2 and 3, that the
total number of white good cells is at least

p
∑

i=1

1

3

√

π |Ci|
4

≥ 1

3

√

π |W|
4

≥ 1

3

√

π 5 β n

12R lnn
= Ω(

√

β n/(R log n)).

(iii) There is a white cluster touching the 4 sides of the square. It
follows that each black cluster touches 0, 1, or 2 consecutive sides of the square.
Thus, by basically the same argument as in case (ii), the number of black good
cells is at least

1

3

√

π |B|
4

≥ 1

3

√

π 5 (1 − β)n

12R lnn
= Ω(

√

β n/(R log n)).

This concludes the proof. 2

3 A Simple Cutting Algorithm

In this section we describe a simple algorithm simpleCut which, for a given
input β ∈ [0, 1/2], β n ∈ N, computes a β-balanced cut. We will show that, for

R ≥ 3/π, the size of the cut computed is O(min{βnR log n,
√

βnR3 log3 n}) with
high probability. This, together with Theorem 1, implies that simpleCut is a
probabilistic constant approximation algorithm for the β-balanced cut problem
for R ≥ 240. We later show how to convert such result into a constant expected
approximation algorithm.
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Figure 3 Example of cases (i), (ii) and (iii) in the proof of Theorem 1.

(i) (ii) (iii)

Figure 4 The white disk D contains one side W of the cut, ‖W‖ = β n. The
annulus A of D, of width

√

R lnn/n, is drawn in gray.

Algorithm 1 (simpleCut)Take the β n vertices which are closest to (1/2, 1/2)
(breaking ties arbitrarily). Such vertices form one side W of the cut.

Observe that simpleCut can be easily implemented in polynomial time.
In order to bound the size of the cut produced by simpleCut, we need the

following simple probabilistic bound on the degree of the vertices.

Lemma 4 For R > 3/π, the degree of all vertices of G(n, r) is upper bounded
by (3 πR lnn) with probability 1 − o(1/n2).

Proof. Consider the ball Bv of radius
√

R lnn/n centered at a random vertex
v. Clearly the degree of v is ‖Bv‖ − 1. We will show that Pr(‖Bv‖ − 1 >
3πR lnn) = o(1/n3). Then the lemma follows from the union bound. Observe
that Bv might not be entirely contained in the unit square (if v is sufficiently
close to the border). Let B′ be a ball centered in v such that its intersection with
the unit square has area πR ln n/n. Note that Bv ⊆ B′. Moreover, E[‖B′‖] =
1 + (n − 1)πR ln n

n = πR lnn + 1 − o(1). By a simple coupling argument, and
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Chernoff’s Bound (3),

Pr(‖Bv‖ − 1 > 3πR lnn) ≤ Pr(‖B′‖ − 1 > 3πR lnn)

≤ Pr(‖B′‖ − 1 > 3(E[‖B′‖] − 1))

≤ e−22(E[‖B′‖]−1)/4 = e−πR ln n+o(1) = o(1/n3).

2

Theorem 2 For any β ∈ [0, 1/2], β n ∈ N, and for R > 3/π, the size of the cut

of G(n, r) computed by simpleCut is O(min{β n R log n,
√

β n R3 log3 n }) with
probability 1 − o(1/n2).

Proof. Consider the cut (W, B) computed by the algorithm, with |W | = β n.
Trivially, the total degree of the edges incident to W is an upper bound on the
size of the cut. Hence, by Lemma 4, with probability 1− o(1/n2) the size of the
cut is at most:

βn · 3π R lnn = O(β n R log n).

So, it is sufficient to show that, for β = Ω(R log n/n), the size of the cut is

O(
√

β n R3 log3 n ). In particular, β ≥ 8 π R lnn/n is sufficient for our purposes.
Recall that, for a given region Q of the unit square, |Q| denotes the area of

Q, and ‖Q‖ the number of points inside Q. Let us denote by D the disk centered
in (1/2, 1/2), of minimum possible radius ρ, which contains all the vertices in W
(see Figure 4). In the following we will assume ‖D‖ = β n, i.e. there is exactly
one vertex at distance ρ from (1/2, 1/2): this happens with probability one.

Let A denote the annulus of width
√

R lnn/n surrounding D. The edges
of the cut are a subset of the edges incident to the vertices in A: In fact, any
vertex outside A ∪ D is at distance larger than

√

R lnn/n from any vertex of
D, and hence the corresponding edges cannot be part of the cut. Therefore,
from Lemma 4, it is sufficient to show that the number ‖A‖ of vertices in A is
O(

√
β n R log n) with probability 1 − o(1/n2). From that we can conclude that

the size of the cut is at most:

3π R lnn · O(
√

β n R log n) = O(

√

β n R3 log3 n).

Consider the disk D′ centered in (1/2, 1/2) of radius ρ′ =
√

(3/2)β/π, and let A′

be the annulus of width
√

R lnn/n surrounding D′. Since ρ′ ≤
√

3/(4π) < 1/2,
for n large enough D′ and A′ are entirely contained in the unit square.

Observe that, given ρ ≤ ρ′, the density of points in both A and A′ is the
same, that is (n − β n)/(1 − |D|). Under the same assumption, this density is
maximized when ρ = ρ′ (and hence |D| is the largest possible). Thus, for any
c > 0,

Pr[‖A‖ > c | ρ ≤ ρ′] ≤ Pr[‖A′‖ > c | ρ ≤ ρ′] ≤ Pr[‖A′‖ > c | ρ = ρ′].

9



We remark that the upper bound above holds even if the event ρ = ρ′ happens
with probability zero. For ρ = ρ′, |D| = π(3/2)β/π and hence n−β n

1−|D| = n−β n
1−3β/2 .

We also observe that

|A′| = π

(

√

3β

2π
+

√

R lnn

n

)2

−π

(

√

3β

2π

)2

= π

√

R lnn

n

(

2

√

3β

2π
+

√

R lnn

n

)

.

Therefore, multiplying the density of points in A′ by its area,

µ := E[‖A′‖ | ρ = ρ′] =
n − β n

1 − 3β/2
π

√

R lnn

n

(

2

√

3β

2π
+

√

R lnn

n

)

.

In particular

√
108 lnn ≤

√

(3/2)πβRn lnn ≤ µ ≤ 12
√

(3/2)πβRn lnn.

It follows from Chernoff’s Bound (3) that

Pr[‖A′‖ > 2µ | ρ = ρ′] ≤ e−µ/4 ≤ e−
√

108 ln n/4 = o(1/n2).

Moreover, being E[‖D′‖] = (3/2)β n, from Chernoff’s Bound (1),

Pr[ ρ > ρ′ ] = Pr[‖D′‖ < β n] ≤ e−(1/3)2(3/2)β n/2 ≤ e−β n/12 = o(1/n2).

Altogether

Pr[‖A‖ > 2µ] ≤ Pr[ ρ > ρ′ ] + Pr[‖A‖ > 2µ | ρ ≤ ρ′] Pr[ ρ ≤ ρ′ ]

≤ o(1/n2) + Pr[‖A′‖ > 2µ | ρ = ρ′]

= o(1/n2).

It follows that ‖A‖ ≤ 2µ = O(
√

β n R log n) with probability 1 − o(1/n2). 2

Corollary 1 For any β ∈ [0, 1/2], β n ∈ N, and for any R ≥ 240, with proba-
bility 1− o(1/n2) Algorithm simpleCut computes a constant approximation for
the β-balanced cut problem on G(n, r).

Proof. It follows immediately from Theorems 1 and 2. 2

3.1 From Probabilistic to Expected Approximation

We have shown that Algorithm simpleCut is a probabilistic constant approxi-
mation algorithm for the β-balanced cut problem. We next show how to extend
this result to a constant expected approximation algorithm for the same prob-
lem.

Under the assumption that the optimal cut has size at least one, Algorithm
simpleCut has the desired properties. In fact, in that case, any cut (including
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the one returned by simpleCut), is a O(n2) approximation of the optimum in the
worst case. Hence, the unlikely event that one of the bounds given by Theorems
1 and 2 does not hold contributes only with a term o(1) to the approximation
factor of simpleCut. However, this argument does not work when the optimal
cut has size zero (event which happens with positive probability).

For this reason, we introduce the following algorithm zeroCut to compute
a cut of size zero, if any. Compute the connected components of G(n, r). For
any integer m, βn ≤ m ≤ n/2, check whether there is a subset of components
whose total size is m. If yes, return such subset of components as one side of the
partition. Note that for each of the O(n) possible values of m, we have to solve
an instance of the subset sum problem (where the sizes of the components form
the input list, and the target value is m). The subset sum problem is NP-hard in
general, but it can be solved in polynomial time via dynamic programming when
the input values are polynomially-bounded integers [9]. This is the case here (all
the sizes are integers between 1 and n). Combining zeroCut and simpleCut,
one obtains the desired constant expected approximation algorithm.

Algorithm 2 (refinedCut) If zeroCut returns a solution, return it. Other-
wise, return the solution computed by simpleCut.

Theorem 3 For any β ∈ [0, 1/2], β n ∈ N, and for any R ≥ 240, refinedCut
is a constant expected approximation algorithm for the β-balanced cut problem
on G(n, r).

Proof. Let zH and z∗ denote the size of the solution found by refinedCut and
the size of the optimum cut, respectively. Let moreover A denote the event that

z∗ ≥ c min{β n R log n,
√

β n R3 log n3}

and
zH ≤ C min{β n R log n,

√

β n R3 log n3},
where the constants c and C are as in the proofs of Theorems 1 and 2. Note
that Pr[A] = 1 − o(1/n2). Given A, the approximation ratio of refinedCut is
at most C/c = O(1). Given A, if the size of the optimum cut is zero, zeroCut
computes the optimum solution and the approximation ratio is 1 by definition.
Otherwise, any cut, and hence also the cut computed by simpleCut, is a O(n2)
approximation. Altogether the expected approximation ratio is

E(zH/z∗) = Pr[A] O(1) + Pr[A]O(n2) = O(1).

2

Remark 1 The threshold 240 can be reduced to a value arbitrarily close to
30 by adapting the constants in Lemma 1. However, this would increase the
approximation ratio. If we only desire a probabilistic constant approximation,
such threshold can be made arbitrarily close to 10, with the same drawback as
above.
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