
A Path-Decomposition Theorem with
Applications to Pricing and Covering on Trees?

Marek Cygan1, Fabrizio Grandoni1, Stefano Leonardi2,
Marcin Pilipczuk3, Piotr Sankowski3

1 IDSIA, University of Lugano, Switzerland, {marek,fabrizio}@idsia.ch
2 Department of Computer and System Science, Sapienza University of Rome, Italy,

leon@dis.uniroma1.it
3 Institute of Informatics, University of Warsaw, Poland,

{malcin,sank}@mimuw.edu.pl

Abstract. In this paper we focus on problems characterized by an in-
put n-node tree and a collection of subpaths. Motivated by the fact that
some of these problems admit a very good approximation (or even a
poly-time exact algorithm) when the input tree is a path, we develop
a decomposition theorem of trees into paths. Our decomposition allows
us to partition the input problem into a collection of O(log logn) sub-
problems, where in each subproblem either the input tree is a path or
there exists a hitting set F of edges such that each path has a non-empty,
small intersection with F . When both kinds of subproblems admit con-
stant approximations, our method implies an O(log log n) approximation
for the original problem.
We illustrate the above technique by considering two natural problems of
the mentioned kind, namely Uniform Tree Tollbooth and Unique
Tree Coverage. In Uniform Tree Tollbooth each subpath has a
budget, where budgets are within a constant factor from each other,
and we have to choose non-negative edge prices so that we maximize
the total price of subpaths whose budget is not exceeded. In Unique
Tree Coverage each subpath has a weight, and the goal is to select
a subset X of edges so that we maximize the total weight of subpaths
containing exactly one edge of X. We obtain O(log logn) approxima-
tion algorithms for both problems. The previous best approximations
are O(logn/ log log n) by Gamzu and Segev [ICALP’10] and O(logn)
by Demaine et al. [SICOMP’08] for the first and second problem, re-
spectively, however both previous results were obtained for much more
general problems with arbitrary budgets (weights).

1 Introduction

Several natural graph problems are characterized by an input n-node tree T =
(V,E), and a (multi-)set P = {P1, . . . , Pm} of subpaths of T (the requests).

? The first two authors are partially supported by the ERC Starting Grant NEWNET
279352, whereas the third and fifth author are partially supported by the ERC
Starting Grant PAAl 259515.

Typically one has to make decisions on the edges or nodes of T , and based on
these decisions one obtains some profit from each request. Some of the mentioned
problems admit a very good approximation (or are even poly-time solvable) when
T itself is a path, but get substantially harder in the tree case. In this paper we
present a tool to reduce the complexity gap between the path and tree case to
O(log log n) for problems which have some extra natural properties. We illustrate
the application of this method by providing an O(log log n) approximation for
one pricing problem and for one covering problem, improving on previous best
logarithmic approximations.

1.1 Our Results

The main technical contribution of this paper is a simple decomposition theorem
of trees into paths.

Theorem 1. Given an n-node rooted tree T , and a collection of paths P =
{P1, . . . , Pm}, there is a polynomial time algorithm which partitions P into ` =
O(log log n) subsets P1, . . . ,P` such that one of the following two properties holds
for each Pi:

(a) The algorithm provides a partition L of T into edge disjoint paths, such that
each request of Pi is fully contained in some path of L.

(b) The algorithm provides a collection of edges Fi, such that each P ∈ Pi con-
tains at least one and at most 6 edges from Fi.

Intuitively, each subset Pi naturally induces a subproblem, and at least one of
the subproblems carries a fraction 1/O(log log n) of the original profit. For sub-
problems of type (a), each Li induces an independent instance of the problem on
a path graph: here the problem becomes typically easier to solve. For subprob-
lems of type (b), a good approximation can be obtained if the objective function
and constraints allow us to retrieve a big fraction of the optimal profit from each
path P by making a decision among a few options on a small, arbitrary subset
of edges of P . In particular, it is sufficient to make decisions (even randomly and
obliviously!) on Fi.

We illustrate the above approach by applying it to two natural problems on
trees and subpaths. The first one is a pricing problem. In the well-studied Tree
Tollbooth problem (TT), we are given a tree T = (V,E) with n vertices, and
a set of paths P = {P1, . . . , Pm}, where Pi has budget bi > 0. The goal is to
find a pricing function p : E → R+ maximizing

∑
1≤i≤m,p(Pi)≤bi p(Pi), where

p(Pi) :=
∑

e∈Pi
p(e). Here we consider the Uniform Tree Tollbooth problem

(UTT), which is the special case where the ratio of the largest to smallest budget
is bounded by a constant. Interestingly enough, the best-known approximation
for UTT is the same as for TT, i.e. O(log n/ log log n) [7]. In this paper we obtain
the following improved result.

Theorem 2. There is an O(log log n)-approximation for the Uniform Tree
Tollbooth problem.

The second application is to a covering problem. In the Unique Coverage
on Trees problem (UCT) we are given a tree T and subpaths P = {P1, . . . , Pm}
as in TT, plus a profit function p : P → R+. The goal is to compute a subset of
edges X ⊆ E so that we maximize the total profit of paths P ∈ P which share
exactly one edge with X.

Theorem 3. There is an O(log log n)-approximation for the Unique Cover-
age on Trees problem.

1.2 Related Work

The tollbooth problem belongs to a wider family of pricing problems, which
attracted a lot of attention in the last few years. In the single-minded version
of these problems, we are given a collection of m clients and n item types.
Each client wishes to buy a bundle of items provided that the total price of
the bundle does not exceed her budget. Our goal is to choose item prices so
that the total profit is maximized. In the unlimited supply model, there is an
unbounded amount of copies of each item. For this problem an O(log n+ logm)
approximation is given in [9]. This bound was refined in [3] to O(logL+ logB),
where L denotes the maximum number of items in a bundle and B the maximum
number of bundles containing a given item. A O(L) approximation is given in
[1]. On the negative side, Demaine et al. [4] show that this problem is hard to
approximate within logd n, for some d > 0, assuming that NP 6⊆ BPTIME(2n

ε

)
for some ε > 0.

An interesting special case is when each bundle contains k = O(1) items. The
case k = 2 is also know as the Vertex Pricing problem. Vertex Pricing
is APX-hard even on bipartite graphs [5], and it is hard to approximate better
than a factor 2 under the Unique Game Conjecture [12]. On the positive side,
there exists a 4-approximation for Vertex Pricing, which generalizes to an
O(k)-approximation for bundles of size k [1].

A O(log n) approximation for the Tree Tollbooth problem was developed
in [5]. This was recently improved to O(log n/ log log n) by Gamzu and Segev [7].
Tree Tollbooth is APX-hard [9]. One might consider a generalization of the
problems on arbitrary graphs (rather than just trees). In that case the problem
is APX-hard even when the graph has bounded degree, the paths have constant
length and each edge belongs to a constant number of paths [3].

The Highway problem is the special case of Tree Tollbooth where the
input graph is a path. It was shown to be weakly NP -hard by Briest and Krysta
[3], and stronglyNP -hard by Elbassioni, Raman, Ray, and Sitters [5]. Balcan and
Blum [1] give an O(log n) approximation for the problem. The result in [7] im-
plies as a special case an O(log n/ log logn) for the problem. Elbassioni, Sitters,
and Zhang [6] developed a QPTAS, exploiting the profiling technique introduced
by Bansal et al. [2]. Finally, a PTAS was given by Grandoni and Rothvoß [8].
FPTASs are known for some special case: for example when the graph has con-
stant length [11], the budgets are upper bounded by a constant [9], the paths
have constant length [9] or they induce a laminar family [1, 3]. We will (crucially)

use the PTAS in [8] as a black box to derive an O(log log n) approximation for
Uniform Tree Tollbooth.

One can also consider variants of the above problems. For example, in the
coupon version, prices can be negative and the profit of a bundle is zero if its
total price is above the budget or below zero. The coupon version is typically
harder than the classical one. For example, Coupon Highway is APX-hard
[5]. Recently Wu and Popat [13] showed that Coupon Highway and Coupon
Vertex Pricing are not approximable within any constant factor given the
Unique Game Conjecture.

Versions of the above problems with a limited supply are much less studied.
Here, part of the problem is to assign the available copies to the clients who can
afford to pay them. In the latter case, one can consider the envy-free version of
the problem, where prices must satisfy the condition that all the clients who can
afford the price of their bundle actually get it [9].

Unique Coverage on Trees is a special case of the Unique Coverage
problem: given a universe U a collection F ⊆ 2U of subsets of U , the goal is
to find a subset of the universe X ⊆ U , such that the number of sets in F
containing exactly one element of X is maximized. Demaine et al. [4] show that
this problem is hard to approximate within logd n, for some d > 0, assuming that
NP 6⊆ BPTIME(2n

ε

) for some ε > 0. However, if there is a solution covering
all the sets in F , then an e-approximation is known [10].

2 A Decomposition Theorem

In this section we prove Theorem 1. In order to introduce ideas in a smooth way,
in Section 2.1 we start by proving a simplified version of the theorem in the case
that the input graph has small (namely, logarithmic) diameter. In Section 2.2
we generalize the approach to arbitrary diameters.

For a positive integer a, by POWER2(a) we denote the smallest integer i such
that 2i does not divide a; in other words, POWER2(a) is the index of the lowest
non-zero bit in the binary representation of a.

2.1 Small Diameter

Theorem 4. Given an n-node tree T = (V,E), and a collection of paths P =
{P1, . . . , Pm}, there is a polynomial time algorithm which partitions P into ` =
O(logD) subsets P1, . . . ,P`, where D is the diameter of T , and provides a col-
lection of edges Fi for each Pi, such that each P ∈ Pi contains at least one and
at most two edges of Fi.

Proof. Let ` = dlog(D + 1)e. Fix any vertex r ∈ V as a root of the tree T . Let
Hj ⊆ E (1 ≤ j ≤ D) be the set of edges which are at distance exactly j from r
(the edges incident to r are in H1). For each 1 ≤ i ≤ ` we take

Fi =
⋃

j:1≤j≤D,POWER2(j)=i

Hj .

Note that as 1 ≤ j ≤ D we have 1 ≤ POWER2(j) ≤ dlog(D + 1)e = `, and
{F1, . . . , F`} indeed is a partition of the set of edges (see Figure 1 for an illus-
tration). Now we partition the set of requests P into subsets P1, . . . ,P`. We put
a request P ∈ P to the set Pi if P intersects Fi but does not intersect Fj for
any j > i.

H1 ⊆ F1

H2 ⊆ F2

H3 ⊆ F1

H4 ⊆ F3

H5 ⊆ F1

H6 ⊆ F2

r

Fig. 1. Regular edges belong to F1, dashed edges belong to F2, whereas zigzagged edges
belong to F3.

As each request P ∈ P is a nonempty path, each request belongs to some set
Pi. By the definition, each request P ∈ Pi intersects the set Fi. It remains to
prove that each P ∈ Pi contains at most two edges from the set Fi. For a request
P ∈ Pi let j be an index, such that P contains an edge of Hj and POWER2(j) = i
(note that such index j exists, since P ∈ Pi). If P contains an edge from a set
Hj′ where 1 ≤ j′ ≤ D, POWER2(j′) = i, j′ 6= j, then P also contains an edge from
some Hj′′ , where j′′ is between j′ and j and POWER2(j′′) > POWER2(j) = i. But
this is a contradiction with the assumption that P is in the set Pi.

Finally, any path can contain at most two edges from any fixed Hj , since
Hj is the set of edges equidistant from the root. Therefore each request P ∈ Pi

contains at least one and at most two edges of Fi. ut

2.2 Large Diameter

Now we want to adapt ideas from the previous section to handle the case of
large diameters, hence proving Theorem 1. To that aim, we exploit the following
two technical lemmas. A subpath is upward if one endpoint is an ancestor of the
other endpoint.

Lemma 5. Given an n-node rooted tree T , there is a polynomial-time algorithm
which partitions the edge set of T into upward paths, and groups such paths into
s = O(log n) collections (called levels) L1, . . . , Ls so that, for any path P of T
the following two properties hold:

1. (separation) If P shares an edge with P ′ ∈ Li and P
′′ ∈ Lj, i < j, P must

share an edge with some P ′′′ ∈ Lk for any i < k < j.
2. (intersection) P shares an edge with at most two paths in each level Li,

and if it shares an edge with two such paths P ′ and P ′′, then it must contain
the topmost edges of the latter two paths.

Proof. For each vertex v that is not a root nor a leaf, consider all edges of T that
connect v with a child of v, and denote as ev the edge that leads to a subtree
with the largest number of vertices (breaking ties arbitrarily). Now, for each leaf
w of T , consider a path Pw constructed as follows: start from w, traverse the
tree towards the root r and stop when a vertex v is reached via an edge different
than ev. Let vw be the topmost (i.e., the last, closest to the root r) vertex on
the path Pw .

Since for each non-leaf and non-root vertex v, exactly one edge connecting
v with its child is denoted ev, each edge of T belongs to exactly one path Pw.
For each vertex u of T , by depth(u) we denote the number of different paths
Pw that share an edge with the unique path connecting u with the root r. If
a path Pw ends at a vertex vw 6= r and v′vw is the last edge of Pw, then, by
the definition of the edge ev, the subtree of T rooted at vw has at least twice as
many vertices than the subtree rooted at v′. We infer that for each vertex u we
have 0 ≤ depth(u) ≤ dlog ne; depth(u) = 0 iff u = r.

For each path Pw we denote depth(Pw) = depth(vw) + 1; note that 1 ≤
depth(Pw) ≤ dlog ne+ 1. Let s = dlog ne+ 1 and let Lj = {Pw : depth(Pw) = j}
for 1 ≤ j ≤ s. Clearly the family {Lj : 1 ≤ j ≤ s} can be constructed in
polynomial (even linear) time and partitions the edges into levels, each level
consisting of a set of upward paths (see Figure 2 for an illustration). Moreover,
if paths Pw1

and Pw2
share a vertex, then |depth(Pw1

)−depth(Pw2
)| ≤ 1, which

proves the separation property in the claim. It remains to prove the intersection
property.

Consider any upward path P in the tree T . Clearly, the values depth(v) for
vertices v on the path P are ordered monotonously, with the lowest value in the
topmost (closest to the root r) vertex of P . Therefore, for each layer Lj , the path
P may contain edges of at most one path of Lj . Moreover, as all paths Pw are
upward paths, if P contains an edge of Pw, then either P contains the topmost
edge of Pw, or the topmost vertex of P lies on Pw, but is different from vw. Since
any path in T can be split into two upward paths, intersection property and the
whole theorem follow. ut

The following lemma provides a way to partition requests.

Lemma 6. Given a given rooted tree T and a set of requests P, in polyno-
mial time we can construct a collection of ` = O(log log n) families of paths

r 0

1 1 1

1 2 1
2

1

1 2 2

1 2 3 2

2 2 1

3 2 2 1 2

Fig. 2. In the left tree edges ev are dashed. In the right tree nodes are labeled with
their depth, regular edges belong to paths of level L1, dashed edges belong to paths of
level L2, whereas zigzagged edges belong to paths of level L3.

G1, G2, . . . , G` in T (called groups) and a partition K1,K2, . . . ,K` of P, such
that:

1. Each request P ∈ Ki shares an edge with at at least one and at most two
paths from the group Gi.

2. Each request P ∈ Ki contains at most 4 edges incident to paths of Gi.
3. If a request P ∈ Ki shares an edge with two paths Q1, Q2 ∈ Gi, then it

contains the topmost edges of the latter two paths.

Proof. First, invoke Lemma 5 on the tree T and obtain a partition into levels
L1, . . . , Ls with s = O(log n). Let ` = dlog(s + 1)e = O(log log n) and, for
1 ≤ i ≤ `, define Gi as follows:

Gi =
⋃

j:1≤j≤s,POWER2(j)=i

Lj .

Now partition the set of requests P into ` subsets Ki, for 1 ≤ i ≤ `, in such a
way that a request P ∈ P is assigned to the subset Ki iff P contains an edge of
some path of Gi and does not contain any edge of any path of Gj for j > i. The
paths of the groups Gi cover all edges from the tree T , so each request P ∈ P is
included in some layer.

Observe, that due to the separation property ensured by Lemma 5, if a
path P ∈ P belongs to Ki and P shares an edge with some path from Lj ,
POWER2(j) = i, then it does not share an edge with any path of level Lj′ , j

′ 6= j,
POWER2(j′) = i. Indeed, otherwise P shares an edge of some path from Lj′′ ,

POWER2(j′′) > i and j′′ is between j′ and j. Thus, due to the intersection property
of Lemma 5 the path P shares an edge with at most two paths ofGi. Analogously,
if we split P into two upward paths P1 and P2, then each of them contains at
most two edges incident to some path of Gi, and therefore P contains at most 4
edges incident to paths of Gi.

Finally, if a request P ∈ Ki shares an edge with two paths Q1, Q2 ∈ Gi, then
those two paths belong to the same level Lj and consequently by the intersection
property of Lemma 5 the request P contains the topmost edges of both Q1 and
Q2. ut

We now have all the ingredients to prove Theorem 1.

Proof (of Theorem 1). First, invoke Lemma 6 to obtain groups G1, G2, . . . , G`

and a partition K1,K2, . . . ,K` of the set P.
Next, consider each subset Ki independently. For a fixed subset of requests

Ki we split the requests of Ki into two sets P2i−1,P2i:

– We put P ∈ Ki into P2i−1 if it is entirely contained in some path Q of Gi;
– Otherwise we put P into P2i.

Note that for P2i−1 the levels give the desired partition L =
⋃

1≤i≤`Gi of the
tree T such that each request in P2i−1 is entirely contained in some path of L.
Therefore, it remains to construct a set Fi such that each path of P2i contains
at least one and at most 6 edges of Fi.

As the set Fi we take all the topmost edges of paths in Gi as well as all
edges in T incident to some path of Gi. Observe that, by Lemma 6, if a request
P ∈ P2i shares an edge with two paths Q1 and Q2 of Gi, then P contains the
topmost edges of the latter two paths. Since no P ∈ P2i is entirely contained in
Gi, if P shares an edge with only one path of Gi, then it contains at least one
incident edge to some path of Gi. Consequently, each path P ∈ P2i contains at
least one edge of Fi.

Finally, since each P ∈ P2i contains at most 4 edges incident to paths of Gi

and at most two topmost edges of paths of Gi, it contains at most 6 edges of
Fi. ut

3 Applications of the decomposition theorem

In this section we present two applications of our decomposition Theorem 1.

3.1 Uniform Tollbooth on Trees

Since we assume that the ratio between the smallest and greatest budget in an
instance of Uniform Tollbooth on Trees is bounded by a constant and
our goal is to obtain an O(log log n)-approximation, we can assume that all the
budgets are equal to 1 and therefore we are going to work with the following
definition.

Uniform Tollbooth on Trees (UTT)
Input: A tree T = (V,E) with n vertices, and a set of paths P =
{P1, . . . , Pm}.
Task: Find a pricing function p : E → R+ maximizing∑

1≤i≤m,p(Pi)≤1

p(Pi) .

For an instance I = ((V,E),P) of UTT by opt(I) we denote the revenue
obtained by an optimum solution. When the underlying tree does not change
and we consider subsets Pi ⊆ P, then by opt(Pi) we denote opt(((V,E),Pi)).

Theorem 7. There is a polynomial time O(log log n)-approximation algorithm
for Uniform Tollbooth on Trees.

Proof. We use Theorem 1 and independently consider each of the subsets Pi.
We will obtain a constant factor approximation for each of the sets Pi, which
altogether gives an O(log log n)-approximation for UTT.

If a set Pi is of type (a), that is we are given a decomposition of the tree T into
edge disjoint paths and each request of Pi is fully contained in one of the paths
of the decomposition, then we can use a PTAS of Grandoni and Rothvoß [8] to
obtain revenue at least opt(Pi)/(1 + ε).

If a set Pi is of type (b), then we are additionally given a set of edges Fi,
such that each each path of Pi contains at least one and at most 6 edges of Fi.
Consequently, the pricing function defined as:

p(e) =

{
1/6 if e ∈ Fi

0 otherwise

gives at least |Pi|/6 ≥ opt(Pi)/6 revenue. ut

3.2 Unique coverage on trees

Unique Coverage on Trees (UCT)
Input: A tree T = (V,E) with n vertices, a set of paths P =
{P1, . . . , Pm} and a profit function p : P → R+.
Task: Find a set of edges X ⊆ E, which maximizes the sum of profits
of paths containing exactly one edge of X.

We start by presenting an exact polynomial-time algorithm for the UCT
problem for the case when T is a path.

Lemma 8. With an additional assumption that T is a path, UCT can be solved
optimally in polynomial time.

Proof. Let I = (T = (V,E),P, p) be a UCT instance where T is a path and
let e1, . . . , en−1 be the consecutive edges of T . Since each P ∈ P is a path, we
can represent it as an interval [a, b] ∈ P , where 1 ≤ a ≤ b ≤ n − 1, ea is the

leftmost edge and eb is the rightmost edge of P . We use a dynamic programming
approach where we consider edges one by one and in a state we store the last
two edges selected to the set X. Formally, for 1 ≤ i < j < n we define t[i, j] as
a maximum profit of paths covered exactly once by a subset X ⊆ E, satisfying
X ∩ {ei, . . . , en−1} = {ei, ej}:

t[i, j] = max
X⊆E,X∩{ei,...,en−1}={ei,ej}

p({P ∈ P : |P ∩X| = 1}) .

Observe, that with this definition of entries of the 2-dimensional table t, the
optimum profit is the maximum value of t[i, j] over 1 ≤ i < j < n. It remains
to show how to compute all the values t[i, j] in polynomial time. We use the
following recursive formula, where we either decide that X = {ei, ej}, or we
iterate over the first edge in X to the left of ei:

t[i, j] = max(p({P ∈ P : |P ∩ {ei, ej}| = 1}),
max
1≤k<i

(t[k, i] + p(A)− p(Bk))) .

where A ⊆ P is the set of paths [a, b] ∈ P with i < a ≤ j ≤ b and Bk ⊆ P is the
set of paths [a, b] ∈ P with k < a ≤ i < j ≤ b. Note that when adding ej to the
set corresponding to t[k, i] the paths in A start being covered uniquely, and the
paths in B are being covered for the second time.

By the standard method of extending the table t with backlinks one can in
polynomial time retrieve the set X corresponding to each of the values t[i, j]. ut

Theorem 9. There is a polynomial time O(log log n)-approximation algorithm
for the UCT problem.

Proof. By using Theorem 1 for the tree T and the set of paths P it is enough to
obtain a constant factor approximation for each set Pi. Since for Pi with paths
contained entirely in some path of the decomposition L we can use Lemma 8, it
remains to handle type (b) of the set Pi given by Theorem 1.

Therefore we assume that each path of Pi contains at least one and at most
6 edges of the given set Fi. To the set X we independently take each edge of
Fi with probability 1/6. Note, that with constant probability each path in Pi

contains exactly one edge of X and therefore the expected profit given by X is
a constant fraction of p(P), which is a trivial upper bound on opt(Pi). By the
standard method of conditional expectation we can derandomize this procedure,
obtaining a deterministic constant factor approximation for the second type of
the set Pi, which proves the theorem. ut

4 Conclusions

We have presented O(log log n)-approximation algorithms for Uniform Toll-
booth on Trees. A natural question is whether a constant factor approxima-
tion is possible.

Moreover, obtaining a constant-, or even poly(log log n)-approximation for
Tollbooth on Trees with general budgets remains open. As a corollary of
our techniques one can prove, that with a loss of a factor of O(log log n) in the
approximation ratio, one can assume that each request starts and ends in a leaf
of the tree. We believe, that it is worthwhile to investigate the Tollbooth on
Trees problem with general budgets, but with the additional assumption that
the tree is a full binary tree and all the requests have their endpoints in the
leaves of the tree.

Acknowledgements

We thank Guy Kortsarz for mentioning the tree case of the Unique Coverage
problem as an interesting special case for which nothing better than the general
O(log n) approximation was known.

Moreover we are thankful to anonymous referees for their helpful comments
and remarks.

References

1. Maria-Florina Balcan and Avrim Blum. Approximation algorithms and online
mechanisms for item pricing. In ACM Conference on Electronic Commerce, pages
29–35, 2006.

2. Nikhil Bansal, Amit Chakrabarti, Amir Epstein, and Baruch Schieber. A quasi-
PTAS for unsplittable flow on line graphs. In ACM Symposium on Theory of
Computing (STOC), pages 721–729, 2006.

3. Patrick Briest and Piotr Krysta. Single-minded unlimited supply pricing on sparse
instances. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1093–
1102, 2006.

4. Erik D. Demaine, Uriel Feige, MohammadTaghi Hajiaghayi, and Mohammad R.
Salavatipour. Combination can be hard: Approximability of the unique coverage
problem. SIAM Journal on Computing, 38(4):1464–1483, 2008.

5. Khaled M. Elbassioni, Rajiv Raman, Saurabh Ray, and René Sitters. On profit-
maximizing pricing for the highway and tollbooth problems. In Symposium on
Algorithmic Game Theory (SAGT), pages 275–286, 2009.

6. Khaled M. Elbassioni, René Sitters, and Yan Zhang. A quasi-ptas for profit-
maximizing pricing on line graphs. In European Symposium on Algorithms (ESA),
pages 451–462, 2007.

7. Iftah Gamzu and Danny Segev. A sublogarithmic approximation for highway and
tollbooth pricing. In ICALP (1), pages 582–593, 2010.

8. Fabrizio Grandoni and Thomas Rothvoß. Pricing on paths: A ptas for the highway
problem. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 675–
684, 2011.

9. Venkatesan Guruswami, Jason D. Hartline, Anna R. Karlin, David Kempe, Claire
Kenyon, and Frank McSherry. On profit-maximizing envy-free pricing. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1164–1173, 2005.

10. Venkatesan Guruswami and Luca Trevisan. The complexity of making unique
choices: Approximating 1-in- k sat. In Workshop on Approximation Algorithms
for Combinatorial Optimization Problems and Workshop on Randomization and
Computation (APPROX-RANDOM), pages 99–110, 2005.

11. Jason D. Hartline and Vladlen Koltun. Near-optimal pricing in near-linear time.
In Workshop on Algorithms and Data Structures (WADS), pages 422–431, 2005.

12. Rohit Khandekar, Tracy Kimbrel, Konstantin Makarychev, and Maxim Sviridenko.
On hardness of pricing items for single-minded bidders. In Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems and Workshop on
Randomization and Computation (APPROX-RANDOM), pages 202–216, 2009.

13. Preyas Popat and Yi Wu. On the hardness of pricing loss-leaders. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 735–749, 2012.

