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Abstract
In a classical covering problem, we are given a set of requests that we need to satisfy (fully or
partially), by buying a subset of items at minimum cost. For example, in the k-MST problem
we want to find the cheapest tree spanning at least k nodes of an edge-weighted graph. Here,
nodes represent requests whereas edges correspond to items.

In this paper, we initiate the study of a new family of multi-layer covering problems. Each
such problem consists of a collection of h distinct instances of a standard covering problem
(layers), with the constraint that all layers share the same set of requests. We identify two main
subfamilies of these problems:
• in an union multi-layer problem, a request is satisfied if it is satisfied in at least one layer;
• in an intersection multi-layer problem, a request is satisfied if it is satisfied in all layers.
To see some natural applications, consider both generalizations of k-MST. Union k-MST can
model a problem where we are asked to connect a set of users to at least one of two communication
networks, e.g., a wireless and a wired network. On the other hand, Intersection k-MST can
formalize the problem of providing both electricity and water to at least k users.

Keywords and phrases Approximation algorithms. Partial covering problems.

1 Introduction

In the fundamental Minimum Spanning Tree problem (MST), the goal is to compute the
cheapest tree which spans all the n nodes of a given edge-weighted graph G = (V,E). To
handle the subtleties of real-life applications, several natural generalisations and variants of
the problem have been considered. For example, in the Steiner Tree problem we need to
connect only a given subset W of k terminal nodes. In the k-MST problem instead, the goal
is to connect at least k (arbitrary) nodes. One common feature of these generalizations is that
we need to design a single network. However, this is often not the case in the applications.
For example, suppose we want to provide at least k out of n users with both electricity and
water. In this case, we cannot design the water and electricity infrastructures independently:
our decisions on which users to reach have to be synchronized.

Consider now another classic problem, the Travelling Salesman problem (TSP): here
we are given a complete weighted graph, and the goal is to compute the minimum-length
tour traversing all the nodes. Again, several natural generalizations and variants of the
problem have been considered in the literature. Still, all of them deal only with the case
where there is a single network. However, there are natural applications which do not fit in
this framework. For example, suppose you want to visit a set of places (bank, post office,
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etc.), and you can use your bike and your car. Of course, you cannot just reach a place by
bike, and then suddenly switch to your car (that you left at home). Your trip must consist
of a tour by bike and another tour by car, which together touch all the places that you need
to visit.

The above examples show the need for a new framework, which is able to capture
coordinated decision-making over multiple optimization problems. In this paper we initiate
the study of such multi-layer covering problems. These problems are characterized by a set of
h instances of a standard covering problem (layers), sharing a common set of n requests. The
goal is to satisfy, possibly partially, the requests by buying items in each layer at minimum
total cost. We identify two main families of such problems:
• Intersection problems. Here, as in the water-electricity example, a request is satisfied

if it is satisfied in all the layers.
• Union problems. Here, as in the car-bike example, a request is satisfied if it is satisfied

in at least one layer.

1.1 Our results.
We provide hardness and approximation results for the union and intersection versions of
several classical covering problems: MST, Steiner Tree, (Nonmetric and Metric)
Facility Location, TSP, and Set Cover. (Formal definitions are given at the end of this
section). We focus on the partial covering variant of these problems, i.e. k-MST, k-Steiner
Tree, etc.: here wet need to satisfy a target number k of the n requests. This allows us to
handle a wider spectrum of interesting problems. In fact, for intersection problems, if k = n

it is sufficient to compute an independent solution for each layer. On the other hand, some
of the union problems above are interesting also for the case k = n. However, the results
that we achieve for that case are qualitatively the same as for k < n.

For Intersection versions of k-MST, k-Steiner Tree, k-TSP, k-Set Cover, k-
Metric Facility Location, and k-Nonmetric Facility Location, we show that:
• Even for two layers, a polylogarithmic approximation for these problems would imply

a polylogarithmic approximation for k-Densest Subgraph. We recall that the best
approximation for the latter problem is O(n 1

4 +ε) [6] and finding a polylogarithmic approx-
imation is a major open problem. Indeed, many researchers believe that a polylogarithmic
approximation does not exist, and exploit this assumption in their hardness reductions
(see, e.g., [2, 3]).

• On the positive side, we give Õ(k1−1/h)-approximation algorithms1 for these problems.

Note that, in the single-layer case, the above problems can be approximated within
a constant or logarithmic factor. Hence, our results show that the complexity of natural
intersection problems changes drastically from one to two layers.

For Union versions of k-MST, k-Steiner Tree, k-TSP and k-Metric Facility
Location we show that:
• The problems are Ω(log k)-hard to approximate for an unbounded number h of layers.

Furthermore, there is a greedy O(log k)-approximation algorithm. For the first three
problems this only holds for the rooted version — the unrooted case is inapproximable
(i.e., any bounded approximation factor implies P = NP ).

• There is an LP-based algorithmic framework which provides O(h)-approximate solutions.
Furthermore, the natural LPs involved have Ω(h) integrality gap.

1 The Õ notation suppresses polylogarithmic factors.
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We remark that Union k-Set Cover and Union k-Nonmetric Facility Location can
be solved by collapsing all layers into one, and hence they are less interesting with respect to
the goals of this paper.

1.2 Related Work.

To the best of our knowledge, and somewhat surprisingly, approximation algorithms for
union and intersection problems seem to not have been studied much in the literature. The
notable exception is Matroid Intersection, which however is solvable in polynomial time
differently from our problems [7]. Some team formation games in social networks can be seen
as special cases of our intersection problems [1, 21]. Riaz et al. [25] observe that traditionally
wired and wireless infrastructures have been planned separately, but there is a need for
complementary use of wired and wireless technologies in future networks. However, the
authors do not consider the optimization aspects of such planning, which is captured by our
Union k-MST.

The idea of introducing multiple cost functions into one optimization problem is the main
theme of multi-objective optimization. Standard and multi-criteria approximation algorithms
have been developed for the multi-objective version of several classical problems, such as
Shortest Path, Spanning Tree, Matching, etc. (see, e.g., [4, 14, 16, 22, 23]). One could
view these problems as having several layers with different costs. However, differently from
our setting, solutions in different layers have to be exactly the same.

Partial covering problems (also known as problems with outliers), are well-studied in
the literature: e.g., k-MST [12], k-TSP [12], k-Metric Facility Location [19], and
k-Set Cover [26]. Their generalization on multiple layers is significantly harder, as our
results show. Note that our Union k-Steiner Tree problem generalizes all of the following
problems: k-Steiner Tree (and hence k-MST), Prize-Collecting Steiner Tree (see
the proof of Theorem 7), and k-Set Cover (see the proof of Theorem 8).

Rent-or-buy and buy-at-bulk problems [8, 9, 13, 15] can be seen as multi-layer union
problems where edge weights in different layers differ by a multiplicative factor. In contrast,
weights of different layers are unrelated in our framework.

Recently Krishnaswamy et al. [20] considered a matroid median problem, where the set
of open centers must form an independent set in a matroid. We can interpret this as a
generalization of a union problem, where we add side constraints between bought items.
However, the authors assume that all layers share the same metric space.

1.3 Preliminaries.

In covering problems we are given a set U of n requests, and a set S of items, with costs
w : S → R≥0. The goal is to satisfy all requests by selecting a subset of items at minimum
cost. We already defined MST, Steiner Tree, and TSP. Here, nodes and edges represent
requests and items (with costs w : E → R≥0), respectively. In the Set Cover problem,
requests are the elements of a universe U , and items S are subsets S1, . . . , Sm of U . Any Si
satisfies all the v ∈ Si. Nonmetric Facility Location is a generalization of Set Cover,
where we are given a set F of facilities, with opening costs o : F → R≥0, and a set C of
clients, with connection costs w : C × F → R≥0. The goal is to compute a subset A of open
facilities such that

∑
f∈A o(f) +

∑
c∈C w(c,A) is minimized. Here w(c,A) := minf∈A w(c, f).

We also say that c is connected to (or served by) A (c) := arg minf∈A w(c, f). If connection
costs satisfy triangle inequality, the problem is called Metric Facility Location. We can
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naturally define partial covering versions for the above problems: k-MST, k-Steiner Tree,
k-TSP, k-Nonmetric Facility Location, and k-Metric Facility Location2.

It is straightforward to define union and intersection versions of the above problems
(more details in the corresponding sections). In the rest of this paper, the number of layers is
denoted by h, and variables associated to layer i have an apex i (e.g., wi, oi, etc.), whereas
OPT denotes the optimum solution, and opt its cost. By N we denote the total number of
requests and items (in all layers).

By standard reductions, a ρ-approximate algorithm for the k-MST problem implies a
2ρ-approximate algorithm for k-Steiner Tree and k-TSP. Moreover, a ρ-approximation
for k-TSP gives a 2ρ-approximation for k-MST. Essentially, the same reductions extend to
the union and intersection versions of these problems. For this reason, in the rest of this
paper we will consider the union and intersection version of k-MST only.

Proofs and details which are omitted due to lack of space will be given in the full version
of the paper.

2 Intersection Problems

In this section we present our main results on the intersection problems. In Intersection
k-Set Cover we are given h collections S1,S2, . . . ,Sh of subsets of a given universe U ,
where wi : Si → R≥0 is the cost of subsets in the ith collection. The goal is to cover at
least k elements in all layers simultaneously, at minimum total cost. In Intersection
k-MST we are given a complete graph G = (V,E) on n nodes, and h metric edge-weight
functions w1, . . . , wh. The goal is to compute a tree T i for each layer such that

∑
i w

i(T i)
is minimized and |

⋂
i V (T i)| ≥ k. In Intersection k-Nonmetric Facility Location

we are given a set F of facilities, with opening costs oi : F → R≥0 on layer i, and a
set C of clients, with connection costs wi : C × F → R≥0 on layer i. The goal is to
compute a subset Ai of open facilities on each layer i and a subset C′ of k clients such
that
∑
i(
∑
f∈Ai o

i(f) +
∑
c∈C′ w

i(c,Ai)) is minimized. Here wi(c,Ai) := minf∈Ai{wi(c, f)}.
Intersection k-Metric Facility Location is the special case of Intersection k-
Nonmetric Facility Location where connection costs satisfy triangle inequality.

2.1 Hardness
In order to show the hardness of our problems, we use reductions from the k-Densest
Subgraph problem: find the induced subgraph on k nodes with the largest possible number
of edges. The fact that partial coverage problems can be as hard as k-Densest Subgraph
is already known. Hajiaghayi and Jain [18] use k-Densest Subgraph to show that a partial
coverage version of the Steiner Forest problem has no polylogarithmic approximation. In
particular they introduce the Minimum `-Edge Coverage problem where one is to find
the minimum number of vertices in a graph, whose induced subgraph has at least ` edges.
Moreover Hajiaghayi and Jain show a relation between approximation ratios for k-Densest
Subgraph and Minimum `-Edge Coverage.

In order to simplify our reductions we extend the result on Minimum `-Edge Coverage
to bipartite graphs. In particular, we are able to show that a f(n)-approximation for

2 In the literature k-Nonmetric Facility Location often means that we are allowed to open at most
k facilities, while here we mean that we need to connect at least k clients. Similarly for k-Metric
Facility Location. Sometimes k-Set Cover indicates a Set Cover instance where the largest
cardinality of a set is k, while our problem is sometimes called Partial Set Cover.
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Figure 1 Approximation algorithm for 2-layer Intersection k-Set Cover. For a ∈ {1, 2},
a is the other value in {1, 2}
1: procedure SCI(k,U ,S1,S2, w1, w2)
2: K ← ∅, A1 ← ∅, A2 ← ∅
3: repeat
4: for a=1 to 2 do
5: for all X ∈ Sa do
6: for b := 1 to min(k − |K|, |X \K|) do
7: Solve one-layer Intersection k-Set Cover problem on layer a
8: with universe X \K and target b.
9: Let (a′, b′, X ′) be the loop iterators which provide a solution (K′,A′)

10: minimizing the ratio of cost C′ to number b′ of covered elements.
11: K ← K ∪K′, Aa

′
← Aa

′
∪ {X ′}, Aa

′
← Aa

′
∪ A′

12: until |K| = k
13: return (K,A1,A2)

Minimum `-Edge Coverage on bipartite graphs implies a 16(f(2n))2-approximation for
k-Densest Subgraph on arbitrary graphs. One can naturally reduce a Minimum `-Edge
Coverage instance (G, `) on a bipartite graph G = (V1 ∪ V2, e) to Intersection k-Set
Cover (with k = `), by mapping edges into elements and each node v into the corresponding
subset of incident edges δ(v) ⊆ E. A similar reduction works for Intersection k-Metric
Facility Location, where facility opening costs are set to 1 and distances corresponding
to edges and anti-edges are set to 0 and +∞, respectively. For Intersection k-MST we
construct one layer by connecting a dummy root node r with all nodes in V1 at cost 1, and
each v ∈ V1 with δ(v) at cost 0. The other layer is constructed symmetrically. This way, we
obtain the following two theorems, which suggest that the existence of a polylogarithmic
approximation for the considered problems is rather unlikely (or at least hard to achieve).

I Theorem 1. If there exists an f(n)-approximation algorithm for unweighted Intersection
k-Set Cover on two layers or for Intersection k-Metric Facility Location on two
layers, then there exists a 16(f(2m))2-approximation algorithm for k-Densest Subgraph.

I Theorem 2. If there exists an f(n)-approximation algorithm for Intersection k-MST on
two layers, then there exists a 16(f(2n+ 2m+ 2))2-approximation algorithm for k-Densest
Subgraph.

2.2 Intersection k-Set Cover
The basic idea behind our Intersection k-Set Cover algorithm is as follows. We consider
any set X in any layer, and any number j ≤ k of elements in X. We solve recursively, on
the remaining layers, the intersection problem induced by X with target j. The base of the
induction is obtained by solving a one-layer Intersection k-Set Cover problem, using the
greedy algorithm which provides a (1 + ln k)-approximation [26]. We choose the set X and
the cardinality j for which we obtain the best ratio of cost to number of covered elements.
Next, we include covered elements in the solution under construction, and the problem is
reduced consequently.

In order to highlight the main ideas of our approach, we focus on the special case h = 2,
and we neglect polylogarithmic factors in the analysis.

I Theorem 3. There is a Õ(
√
k)-approximation algorithm for Intersection k-Set Cover

on two layers.
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Proof. Consider the algorithm in Figure 1. Its running time is polynomial, since SCI
procedure calls the one-layer greedy algorithm O(Nk2) times.

Let (O1,O2) ⊆ S1 × S2 be the optimal solution, and let KO ⊆ (∪S∈O1S) ∩ (∪S∈O2S)
be any set of k elements in the intersection. For each element x ∈ KO and layer i = 1, 2,
let us fix a set Oi (x) ∈ Oi that covers x. We prove that at each iteration of the main loop
C ′/b′ = Õ(opt/

√
k − |K|). This implies that the total cost of the constructed solution is

bounded by
∑k−1
i=0 Õ(opt/

√
k − i) = opt · Õ(

√
k).

Let κ :=
√
k − |K|. We consider two cases, depending on whether there exists a set X in

the optimal solution that covers at least κ elements of KO \K.
Case 1. Assume that there exists 1 ≤ a ≤ 2 and X ∈ Oa, such that for at least κ

elements x of KO \K we have Oa (x) = X. Let us focus on the moment when our algorithm
considers taking the set X. Obviously we have κ ≤ k−|K|, therefore our algorithm considers
covering b := κ elements of X. As the optimal solution does it, it may be done with cost opt,
so the call to the one layer algorithm returns a solution with cost Õ(opt). Hence we have
C ′/b′ = Õ(opt/

√
k − |K|).

Case 2. For each 1 ≤ a ≤ 2 and every X ∈ Oa, at most κ− 1 elements of KO \K satisfy
Oa (x) = X. For each x ∈ KO \K, let w(x) := w1(O1 (x)) + w2(O2 (x)) be the sum of the
costs of sets covering x in the optimal solution. We have

∑
x∈KO\K

w(x) =
2∑
a=1

∑
X∈Oa

∑
x∈KO\K: Oa(x)=X

wa(Oa (x)) ≤
2∑
a=1

∑
X∈Oa

wa(X)κ ≤ κ · opt.

Thus there exists x0 ∈ KO \K such that w(x0) ≤ κ · opt/|KO \K|. If we take any a and
consider the iteration with X = Oa (x0) and b = 1, the algorithm computes a set of minimum
cost C0 ≤ w(x0) covering x0. We can conclude that

C ′

b′
≤ C0 ≤

κ · opt
|KO \K|

= Õ(opt/
√
k − |K|).

J J

It is easy, just more technical, to extend the same approach to h > 2 and to refine
(slightly) the approximation factor. With some more work, our approach generalizes to
Intersection k-Nonmetric Facility Location.

I Theorem 4. There exists a (4k1−1/h log1/h(k))-approximation algorithm for Intersection
k-Nonmetric Facility Location (hence for Intersection k-Set Cover) running in
NO(h) time.

2.3 Intersection k-MST
Our Intersection k-MST algorithm works as follows. We consider a new metric w defined
as w(e) :=

∑
i w

i(e) for each e ∈ E, and compute a 2-approximate solution of the resulting
(one-layer) k-MST problem using the algorithm in [12].

I Lemma 5. Let K ⊆ V , and wi(K) denote the cost of a minimum spanning tree of K
on layer i. Then there exist two nodes u, v ∈ K such that wi(u, v) ≤ 4wi(K)/|K|1/h for
i = 1, . . . , h.

Proof. Let us prove the following claim by induction on i: for any i ∈ {0, . . . , h− 1}, there
exist a nodeset Ki ⊆ K and paths P 1

i , P
2
i . . . , P

i
i on Ki such that: (a) |Ki| ≥ |K|1−i/h and

(b) wj(P ji ) ≤ 2wj(K)/|K|1/h for j = 1, . . . , i. Trivially K0 = K satisfies the claim, hence
assume i > 0. Let T i be the minimum spanning tree of K on layer i. Duplicate its edges,
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compute an Euler tour, and shortcut duplicated nodes. Let Ci be the resulting cycle on K of
length at most 2wi(K). Remove up to |K|1/h edges from Ci so as to obtain |K|1/h segments
of length at most 2wi(K)/|K|1/h each. Let P be the segment maximizing the cardinality
of Ki := V (P ) ∩Ki−1. Set Ki satisfies (a) since |Ki| ≥ |Ki−1|/|K|1/h ≥ |K|1−(i−1)/h−1/h.
The paths P ii and P ji , j < i, satisfying (b) are obtained from P and P ji−1, respectively, by
shortcutting the nodes not in Ki.

Similarly as above, we can split Ch into |K|1/h/2 segments which span K and have length
at most 4wh(K)/|K|1/h each. At least one of these segments contains 2|Kh−1|/|K|1/h ≥ 2
nodes of Kh−1. Thus there are two nodes u and v such that wi(u, v) ≤ 4wi(K)/|K|1/h for
i = 1, . . . , h. J J

I Theorem 6. The Intersection k-MST algorithm above is 16k1−1/h-approximate.

Proof. Consider the following process: starting with the optimal set KO of k covered nodes,
we iteratively take the edge {x, y} guaranteed by Lemma 5 and contract it in all layers, until
KO collapses into a single node. The contracted edges form a tree T ′ (same for all layers)
spanning k nodes, of cost

w(T ′) ≤ 4
h∑
i=1

wi(KO)
k−1∑
i=1

(k − i+ 1)− 1
h ≤ 8k1− 1

h

h∑
i=1

wi(KO) = 8k1− 1
h opt.

The algorithm returns a solution of cost at most 2w(T ′). The claim follows. J J

Via a non-trivial construction we can show that the approximation factor of our algorithm
is Ω( 1

hk
1−1/h).

3 Union Problems

In this section we present our results for Union k-MST and Union k-Metric Facility
Location. In (unrooted) Union k-MST we have the same input and output as in Inter-
section k-MST, but here the trees T i must satisfy |

⋃
i V (T i)| ≥ k. In the rooted version

of the problem, we are also given a root ri for each layer i with the constraint ri ∈ T i. The
Union MST problem is the special case of Union k-MST with k = n (rooted and unrooted
versions are equivalent). In Union k-Metric Facility Location we have the same input
and output as in Intersection k-Metric Facility Location, but the objective function
to be minimized is

∑
i

∑
f∈Ai o

i(f) +
∑
c∈C′ mini{wi(c,Ai)}.

3.1 Rooted Union k-MST
I Theorem 7. Rooted Union k-MST and Union k-Metric Facility Location are
APX-hard for any h ≥ 1. Union MST is APX-hard for any h ≥ 2.

Proof. The first claim trivially follows from the APX-hardness [12, 17] of the considered
problems for h = 1, by adding dummy layers with infinite edge weights.

For the second claim, we consider a reduction from the APX-hard [5] Prize-Collecting
Steiner Tree problem: given an undirected graph G = (V,E), edge weights w : E → R≥0,
a root node r ∈ V , and node prizes p : V → R≥0, find a tree T 3 r which minimizes∑
e∈T w(e) +

∑
v/∈T p(v). We create a first layer, with edge weights w1 = w. Then we

construct a second layer, where we set w2({r, v}) = p(v) for any v ∈ V . All the other layers,
if any, are dummy layers defined as above. This reduction is approximation preserving. J J
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I Theorem 8. For an arbitrary number of layers, rooted Union k-MST and Union k-
Metric Facility Location are not approximable better than Ω(log k) unless P = NP ,
even when k = n.

Proof. We prove the claim for rooted Union k-MST, by giving a reduction from cardinality
Set Cover: given a universe U of n′ elements, and a collection S = {S1, . . . , Sm′} of m′
subsets of U , find a minimum cardinality subset A ⊆ S which spans U . This problem is
Ω(logn′)-hard to approximate [24]. We create one node per element of U , plus two extra
nodes r and s. We create one layer i for each set Si (i.e., h = m′). In layer i we let
wi({r, s}) = 1 and wi({s, v}) = 0 for each v ∈ Si. We also let ri := r for each i, and assume
k = n = n′ + 2. Note that any solution to the rooted Union k-MST instance of cost α can
be turned into a solution to the Set Cover instance of the same cost, and vice versa.

To prove the claim for Union k-Metric Facility Location, we use the same reduction
as above, where the edge {r, s} is replaced by a single node r, which is a facility of opening
cost 1. J J

A simple greedy algorithm guarantees a O(log k)-approximation which matches the above
lower bound. The basic idea is as follows. Suppose that the considered covering problem
satisfies a natural composition property, namely two solutions satisfying k′ and k′′ distinct
requests, can be merged (without increasing the total cost) to obtain a solution satisfying
k′ + k′′ requests. (Merging might involve some polynomial-time operations). Suppose also
that there exists a ρ-approximation for one layer. The idea is then to compute, for each layer
separately and for each k′ ≤ k, a ρ-approximate solution to the partial covering instance
induced by that layer with target k′. The solution providing the best ratio of cost to number
k′ of satisfied requests is merged with the solution under construction. Then satisfied requests
are removed from the set of requests, k is scaled by k′, and the process is iterated until k ≤ 0.
Via standard techniques this algorithms provides a O(ρ · log k)-approximation.

Removing requests transforms a given k-MST instance in each layer into a k-Steiner
Tree instance: for the latter problem there is a 4-approximation algorithm [12]. Note also
that all the partial solutions in each layer contain the corresponding root ri: hence the
merging step is trivial. For k-Metric Facility Location, there is a 2-approximation
algorithm in [19]. In this case removing a request simply means removing one client, and the
merging step is trivial. Altogether:

I Theorem 9. There exist O(log k)-approximation algorithms for Union k-MST and Union
k-Metric Facility Location.

We next describe an LP-based O(h)-approximation algorithm for rooted Union k-MST.
This is an improvement over the Θ(log k)-approximation given by the greedy algorithm for
the relevant case of bounded h.

For notational convenience, we assume that the roots R := ∪i{ri} are not counted into
the target number k of connected nodes. In other terms, we replace k by k − |R|. We make
the same assumption also in the case of one layer. Consider the following LP relaxation for
k-Steiner Tree (W 3 r is the set of terminals) denoted by LPkST (w,W, V, r, k):

min
∑
e∈E w(e)xe

s.t.
∑
e∈δ(S) xe ≥ zv, ∀(v, S) : S ⊆ V − {r}, v ∈ S ∩W ;∑
v∈W zv ≥ k;

xe ≥ 0, 1 ≥ zv ≥ 0, ∀v ∈W, ∀e ∈ E.
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Here, variable xe indicates whether edge e is included in the solution, whereas variable zv
indicates whether terminal v is connected. Moreover δ(S) denotes the set of edges with
exactly one endpoint in S. Observe that LPkMST (w, V, r, k) := LPkST (w, V, V, r, k) is an LP
relaxation for k-MST. We need the following lemmas.

I Lemma 10. [11] Let (w, V, r, k) be an instance of k-MST, wmax := maxv∈V {w(r, v)},
and opt′ be the optimal solution to LPkMST (w, V, r, k). There is a polynomial-time algorithm
apx-kmst which computes a solution to the instance of cost at most 2opt′ + wmax.

I Lemma 11. [10] Let G = (V ∪{v}, E) be a directed graph, with edge capacities α : E → R≥0
such that

∑
e∈δ+(u) α(e) =

∑
e∈δ−(u) α(e) for all u ∈ V ∪ {v}. Then there is a pair of edges

(u, v) and (v, z), such that the following capacity reservation β supports the same flow as α
between any pair of nodes in V : for ∆α := min{α(u, v), α(v, z)}, set β(u, v) = α(u, v)−∆α,
β(v, z) = α(v, z)−∆α, β(u, z) = α(u, z) + ∆α, and β(e) = α(e) for the remaining edges e.

I Corollary 12. Given a feasible solution (x, z) to LPkST (w,W, V, r, k), there is a feasible
solution (x′, z′) to LPkMST (w,W, r, k) such that

∑
e w(e)x′e ≤ 2 ·

∑
e w(e)xe.

Proof. Variables xe can be interpreted as a capacity reservation which supports a fractional
flow of value zv from each v ∈W to the root. Let us replace each edge with two oppositely
directed edges, and assign to each such edge the same weight and capacity as the original
edge. This way, we obtain a capacity reservation α which costs twice the original capacity
reservation, and satisfies the condition of Lemma 11. We consider any non-terminal node
v 6= r with some incident edge of positive capacity, and apply Lemma 11 to it. Due to triangle
inequality, the cost of the capacity reservation does not increase. We iterate the process
on the resulting capacity reservation. Within a polynomial number of steps, we obtain a
capacity reservation β which: (1) supports the same flow from each terminal to the root r as
α, (2) has value 0 on edges incident to non-terminal nodes (besides r), and (3) does not cost
more than α. At this point, we remove the nodes V − (W ∪ {r}), and merge the capacity of
oppositely directed edges to get an undirected capacity reservation x′. By construction, the
pair (x′, z) is a feasible solution to LPkMST (w,W, r, k) of cost at most 2 ·

∑
e w(e)xe. J J

We are now ready to describe our algorithm for rooted Union k-MST. In a preliminary
step we guess the largest distance L in the optimal solution between any connected node
and the corresponding root, and discard nodes at distance larger than L from their root.
This introduces a factor O(nh) in the running time. Note that L ≤ opt. We let V i be the
remaining nodes in layer i.

Then we compute the optimal fractional solution OPT ∗ = (xi, zi, z)i, of cost opt∗, to
the following LP relaxation LPukMST for the problem, where variables xie and ziv indicate
whether edge e is included in the solution of layer i and node v is connected in layer i,
respectively. Variable zv indicates whether node v is connected in at least one layer.

min
∑
i=1,...,h

∑
e∈E w

i(e)xie
s.t.

∑
e∈δ(S) x

i
e ≥ ziv, ∀i ∈ {1, . . . , h},∀(v, S) : S ⊆ V i − {ri}, v ∈ S;∑

i=1,...,h z
i
v ≥ zv, ∀v ∈ V −R;∑

v∈V−R zv ≥ k;
ziv, x

i
e ≥ 0, 1 ≥ zv ≥ 0, ∀i ∈ {1, . . . , h},∀v ∈ V −R,∀e ∈ E.

Given OPT ∗, we compute for each layer i a subset of nodes W i, where v belongs to
W i iff ziv = maxj=1,...,h{zjv} (breaking ties arbitrarily). We also define ki := b

∑
v∈W i zvc.
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For each layer i, we consider the k-MST instance on nodes W i ∪ {ri} with target ki. This
instance is solved using the 2-approximation algorithm apx-kmst of Lemma 10: the resulting
tree T i is added to the solution for layer i. Let k′ be the number of connected nodes. If
k′ < k, the algorithm connects k − k′ extra nodes, chosen greedily, to the corresponding root
in order to reach the global target k.

I Theorem 13. There is a O(h)-approximation algorithm for rooted Union k-MST. The
running time of the algorithm is O((nh)O(1)).

Proof. Consider the above algorithm. The claim on the running time is trivial. By construc-
tion, the solution computed is feasible (i.e., it connects k nodes). It remains to consider the
approximation factor.

For each v ∈W i, we let z̃iv = zv, and set z̃iv = 0 for the remaining nodes. Furthermore,
we let x̃ie = h ·xie. Observe that (x̃i, z̃i, z)i is a feasible fractional solution to LPukMST of cost
h · opt∗. Observe also that (x̃i, z̃i) is a feasible solution to LPkST (wi,W i, V i, ri, ki): let ˜apxi
be the associated cost. By Lemma 11, there is a fractional solution to LPkMST (wi,W i, ri, ki)
of cost at most 2 ˜apxi. It follows from Lemma 10 that the solution computed by apx-kmst
on layer i costs at most 4 ˜apxi + L.

Since the W i’s are disjoint, the algorithm initially connects at least
∑
i k
i ≥ k − h nodes.

Hence the cost of the final augmentation phase is at most h · L ≤ h · opt. Putting everything
together, the cost of the solution returned by the algorithm is at most:∑

i

(4 · ˜apxi + L) + h · L ≤ 4h · opt∗ + 2h · L ≤ 6h · opt .
J J

The constant multiplying h in the approximation factor can be reduced with a more
technical analysis, at the cost of a higher running time. We also observe that the integrality
gap of LPukMST is Ω(h). In fact, consider the (cardinality) Set Cover instance in [27]:
given a hyper-graph on m′ nodes, with hyper-edges given by all subsets of m′/2 nodes,
create an element for each hyper-edge, and a set for each node containing all the hyper-edges
incident to that node. It is easy to see that the best fractional solution for the standard
set cover LP (assigning value 2/m′ to all sets) has cost 2, while the best integral solution
contains m′/2 + 1 sets. The same reduction as in Theorem 8 implies the claim.

Essentially the same approach works also for Union k-Metric Facility Location.
Also in this case, we can show that the corresponding natural LP has integrality gap Ω(h).

I Theorem 14. There is a O(h)-approximation algorithm for Union k-Metric Facility
Location. The running time of the algorithm is O((nh)O(1)).

3.2 Unrooted Union k-MST
I Theorem 15. Unrooted Union k-MST is not approximable in polynomial time for an
arbitrary number h of layers unless P = NP .

Proof. We give a reduction from SAT: given a CNF boolean formula on m′ clauses and
n′ variables, determine whether it is satisfiable or not. For each variable i, we create
two nodes ti and fi. Intuitively, these nodes represent the fact that i is true or false,
respectively. Furthermore, we have a node for each clause. Hence the overall number of
nodes is n = 2n′ +m′. We create a separate layer for each variable i (i.e., h = n′). In layer
i, we connect with an edge of cost zero ti (resp., fi) to all the clauses which are satisfied



Cygan et al. 11

by setting i to true (resp., to false)3. The target value is k = n′ +m′. Note that, there is a
satisfying assignment to the SAT instance iff there is a solution of cost zero to the Union
k-MST instance. J J

For h = O(1), the rooted and the unrooted versions of the problem are equivalent
approximation-wise. In fact, one obtains an approximation-preserving reduction from the
unrooted to the rooted case by guessing one node ri in the optimal solution per layer: this
introduces a polynomial factor O(nh) in the running time. We remark that an exponential
dependence on h of the running time is unavoidable in the unrooted case, due to Theorem
15. An opposite reduction is obtained by appending n dummy nodes to each root (distinct
nodes for distinct layers), with edges of cost zero, and setting the target to k + hn. The
following result follows.

I Corollary 16. Unrooted Union k-MST is APX-hard for any h ≥ 1. There is a O(h)-
approximation algorithm for the problem of running time O((hn)O(1)nh).

4 Conclusions and Open Problems

In this paper, we introduced multi-layer covering problems, a new framework that can be
used to describe a wide spectrum of yet unstudied problems. We addressed two natural
ways of combining the layers: intersection and union. We gave multi-layer approximation
algorithms, as well as hardness results, for a few classic covering problems (and their partial
covering versions). There are several research questions that merit further study.
• There are other natural ways one can combine the layers. Consider, for example, the

car/bike problem in the case where you can put your bike in the car trunk. Now you
can make more than one tour by bike, the only requirement being that the bike tours all
touch the (unique) car tour.

• What about min-max multi-layer problems, where the goal is to minimize the maximum
cost over the layers?

• We considered covering problems: what about packing problems?
• Our algorithms for union problems give tight bounds only with respect to the corresponding

natural LPs. This leaves room for improvement.
• There is a considerable gap between upper and lower bounds for intersection problems.

In particular, our hardness results do not depend on h, while the approximation ratios
deteriorate rather rapidly for increasing h.
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