
Improved Purely Additive
Fault-Tolerant Spanners∗

Davide Bilò1, Fabrizio Grandoni2, Luciano Gualà3,
Stefano Leucci4, and Guido Proietti4,5

1 Dipartimento di Scienze Umanistiche e Sociali, Università di Sassari, Italy
2 IDSIA, University of Lugano, Switzerland

3 Dipartimento di Ingegneria dell’Impresa, Università di Roma “Tor Vergata", Italy
4 DISIM, Università degli Studi dell’Aquila, Italy

5 Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy
E-mail: davide.bilo@uniss.it; fabrizio@idsia.ch; guala@mat.uniroma2.it;

stefano.leucci@univaq.it; guido.proietti@univaq.it

Abstract. Let G be an unweighted n-node undirected graph. A β-
additive spanner of G is a spanning subgraph H of G such that distances
in H are stretched at most by an additive term β w.r.t. the corresponding
distances in G. A natural research goal related with spanners is that of
designing sparse spanners with low stretch.
In this paper, we focus on fault-tolerant additive spanners, namely additive
spanners which are able to preserve their additive stretch even when one
edge fails. We are able to improve all known such spanners, in terms of
either sparsity or stretch. In particular, we consider the sparsest known
spanners with stretch 6, 28, and 38, and reduce the stretch to 4, 10, and
14, respectively (while keeping the same sparsity).
Our results are based on two different constructions. On one hand, we
show how to augment (by adding a small number of edges) a fault-tolerant
additive sourcewise spanner (that approximately preserves distances only
from a given set of source nodes) into one such spanner that preserves all
pairwise distances. On the other hand, we show how to augment some
known fault-tolerant additive spanners, based on clustering techniques.
This way we decrease the additive stretch without any asymptotic increase
in their size. We also obtain improved fault-tolerant additive spanners
for the case of one vertex failure, and for the case of f edge failures.

1 Introduction

We are given an unweighted, undirected n-node graph G = (V (G), E(G)). Let
dG(s, t) denote the shortest path distance between nodes s and t in G. A spanner
H of G is a spanning subgraph such that dH(s, t) ≤ ϕ(dG(s, t)) for all s, t ∈ V (G),
where ϕ is the so-called stretch or distortion function of the spanner. In particular,
∗ This work was partially supported by the Research Grant PRIN 2010 “ARS Techno-
Media", funded by the Italian Ministry of Education, University, and Research, and
by the ERC Starting Grant “New Approaches to Network Design".

when ϕ(x) = αx+ β, for constants α, β, the spanner is named an (α,β) spanner.
If α = 1, the spanner is called (purely) additive or also β-additive. If β = 0, the
spanner is called α-multiplicative.

Finding sparse (i.e., with a small number of edges) spanners is a key task in
many network applications, since they allow for a small-size infrastructure onto
which an efficient (in terms of paths’ length) point-to-point communication can
be performed. Due to this important feature, spanners were the subject of an
intensive research effort, aiming at designing increasingly sparser spanners with
lower stretch.

However, as any sparse structure, a spanner is very sensitive to possible
failures of components (i.e., edges or nodes), which may drastically affect its
performances, or even disconnect it! Thus, to deal with this drawback, a more
robust concept of fault-tolerant spanner is naturally conceivable, in which the
distortion must be guaranteed even after a subset of components of G fails.

More formally, for a subset F of edges (resp., vertices) of G, let G−F be the
graph obtained by removing from G the edges (resp., vertices and incident edges)
in F . When F = {x}, we will simply write G− x. Then, an f -edge fault-tolerant
(f -EFT) spanner with distortion (α, β), is a subgraph H of G such that, for every
set F ⊆ E(G) of at most f failed edges, we have6

dH−F (s, t) ≤ α · dG−F (s, t) + β ∀s, t ∈ V (G).

We define similarly an f-vertex fault-tolerant (f -VFT) spanner. For f = 1, we
simply call the spanner edge/vertex fault-tolerant (EFT/VFT).

Chechik et al. [10] show how to construct a (2k − 1)-multiplicative f -EFT
spanner of size O(f ·n1+1/k), for any integer k ≥ 1. Their approach also works for
weighted graphs and for vertex-failures, returning a (2k−1)-multiplicative f -VFT
spanner of size Õ(f2 ·kf+1 ·n1+1/k).7 This latter result has been finally improved
through a randomized construction in [14], where the expected size was reduced to
Õ(f2−1/k · n1+1/k). For a comparison, the sparsest known (2k− 1)-multiplicative
standard (non fault-tolerant) spanners have size O(n1+ 1

k) [2], and this is believed
to be asymptotically tight due to the girth conjecture of Erdős [15].

Additive fault-tolerant spanners can be constructed with the following ap-
proach by Braunshvig et al [8]. LetM be an α-multiplicative f -EFT spanner, and
A be a β-additive standard spanner. Then H = M ∪A is a (2f(2β +α− 1) + β)-
additive f -EFT spanner. One can exploit this approach to construct concrete
EFT spanners as follows. We know how to construct 6-additive spanners of size
O(n4/3) [4], randomized spanners that, w.h.p., have size Õ(n7/5) and additive
distortion 4 [9], and 2-additive spanners of size O(n3/2) [1]. By setting f = 1 and
choosing k properly, this leads to EFT spanners of size O(n4/3) with additive
distortion 38, size Õ(n7/5) with additive distortion 28 (w.h.p.), and size O(n3/2)
6 Note that in this definition we allow dG−F (s, t) to become infinite (if the removal
of F disconnects s from t). In that case we assume the inequality to be trivially
satisfied.

7 The Õ notation hides poly-logarithmic factors in n.

2

Table 1. State of the art and new results on additive EFT spanners. Distortions and
sizes marked with “*” hold w.h.p.

State of the art Our results
Size Additive

distortion Size Additive
distortion

Õ(n5/3) 2 [17] O(n5/3) 2

Õ(n3/2) 6 [17] O(n3/2) 4

Õ(n 7
5)* 28* [8, 9] Õ(n 7

5)* 10*

O(n 4
3) 38 [4, 8] O(n 4

3) 14

with additive distortion 14. Finally, using a different approach, Parter [17] recently
presented 2- and 6-additive EFT/VFT spanners of size Õ(n5/3) and Õ(n3/2),
respectively.

1.1 Our Results.

In this paper, we focus on additive EFT spanners, and we improve all the known
such spanners in terms of sparsity or stretch (see Table 1). We also present some
better results for additive VFT and f -EFT spanners.

In more detail, our improved EFT spanners exploit the following two novel
approaches. Our first technique (see Section 2), assumes that we are given an
additive sourcewise fault-tolerant spanner AS , i.e., a fault-tolerant spanner that
guarantees low distortion only for the distances from a given set S of source nodes.
We show that, by carefully choosing S and by augmenting AS with a conveniently
selected small subset of edges, it is possible to construct a fault-tolerant spanner
(approximately preserving all pairwise distances) with a moderate increase of
the stretch. This, combined with the sourcewise EFT spanners in [7,18], leads to
the first two results in the table. In particular, we reduce the additive stretch of
the best-known spanner of size Õ(n3/2) from 6 [17] to 4 (actually, we also save
a polylogarithmic factor in the size here). For the case of stretch 2, we slightly
decrease the size from Õ(n5/3) [17] to O(n5/3). This technique also applies to
VFT spanners. In particular, we achieve a 2-additive VFT spanner of size O(n5/3)
rather than Õ(n5/3) [17], and a 4-additive VFT spanner of size O(n3/2√logn),
improving on the 6-additive VFT spanner of size Õ(n3/2) in [17].

Our second technique (see Section 3) relies on some properties of known
additive spanners. We observe that some known additive spanners are based on
clustering techniques that construct a small-enough number of clusters. Further-
more, the worst-case stretch of these spanners is achieved only in some specific
cases. We exploit these facts to augment the spanner H = M ∪ A based on
the already mentioned construction of [8] with a small number of inter and
intra-cluster edges. This allows us to reduce the additive stretch without any
asymptotic increase in the number of edges.

3

Finally, for the case of multiple edge failures, we are able to prove that the
construction in [8] has in fact an additive stretch of only 2f(β+α−1)+β (rather
than 2f(2β + α− 1) + β).

Theorem 1. Let A be a β-additive spanner of G, and let M be an α-multiplicative
f -EFT spanner of G. The graph H = (V (G), E(A)∪E(M)) is a (2f(β+α−1)+β)-
additive f -EFT spanner of G. In the special case f = 1, the additive stretch is at
most 2β + α− 1.

We see this as an interesting result since, to the best of our knowledge, the
construction of [8] is the only known approach for building additive spanners
withstanding more than a single edge fault. At a high-level, in [8] the shortest
path in G− F between two vertices is decomposed into (roughly 2f) subpaths
called blocks. The authors then show that it is possible to build a bypass (i.e., a
fault-free path) in H between the endpoints of each block such that the additive
error incurred by using this path is at most β + α− 1. Actually, in addition to
those intra-block bypasses, the spanner H contains some inter-block shortcuts,
that are exploited in order to prove a better distortion. Due to space limitations,
the proof of this result will be given in the full version of the paper.

1.2 Related Work

A notion closely relate to fault-tolerant spanners is the one of Distance Sensi-
tivity Oracles (DSO). The goal here is to compute, with a low preprocessing
time, a compact data structure which is able to quickly answer distance queries
following some component failures (possibly in an approximate way). For recent
achievements on DSO, we refer the reader to [5, 6, 11,16].

Another setting which is very close in spirit to fault-tolerant spanners is
the recent work on fault-tolerant approximate shortest-path trees, both for un-
weighted [19] and for weighted [5,7] graphs. In [3] it was introduced the resembling
concept of resilient spanners, i.e., spanners that approximately preserve the rela-
tive increase of distances due to an edge failure.

There was also some research (see for example [12, 13]) on spanners approxi-
mately preserving the distance from a given set of nodes (sourcewise spanners),
among a given set of nodes (subsetwise spanners), or between given pairs of nodes
(pairwise spanners). In this framework a spanner is called a preserver if distances
are preserved (in other words, the stretch function is the identity function). In
particular, in one of our constructions we exploit a fault-tolerant version of a
sourcewise preserver.

1.3 Notation

Given an unweighted, undirected graph G, let us denote by πG(u, v) a shortest
path) between u and v in G. When the graph G is clear from the context we
might omit the subscript. Given a simple path π in G and two vertices s, t ∈ V (π),
we define π[s, t] to be the subpath of π connecting s and t. Moreover, we denote

4

Algorithm 1: Algorithm for computing a fault-tolerant additive spanner
of G from a β-additive f -EFT/VFT sourcewise spanner. The parameter p
affects the size of the returned spanner and it will be suitably chosen.

1 color(v)← white ∀v ∈ V ; counter(v)← f + 1 ∀v ∈ V
2 S ← ∅; E′ ← ∅
3 while ∃s ∈ V \ S : δwhite(s) ≥ p do
4 S ← S ∪ {s} /* Add a new source s */
5 color(s)← red
6 foreach u ∈ Nwhite(s) do
7 counter(u)← counter(u)− 1
8 E′ ← E′ ∪ {(s, u)}
9 if counter(u) = 0 then

10 color(u)← black

11 E′ ← E′ ∪ {(u, v) ∈ E : color(u) = white}
12 AS ← β-additive f-EFT/VFT sourcewise spanner w.r.t. sources in S
13 return H ← (V (G), E′ ∪ E(AS))

by |π| the length of π, i.e., the number of its edges. When dealing with one or
multiple failed edges, we say that a path π is fault-free if it does not contain any
of such edges. Finally, if two paths π and π′ are such that the last vertex of π
coincides with the first vertex of π′, we will denote by π ◦ π′ the path obtained
by concatenating π with π′.

2 Augmenting Sourcewise Fault-Tolerant Spanners

We next describe a general procedure (see Algorithm 1) to derive purely additive
fault-tolerant spanners from sourcewise spanners of the same type.

The main idea of the algorithm is to select a small subset S of source vertices of
G, which we call red. These vertices are used to build a fault-tolerant sourcewise
spanner of the graph. The remaining vertices are either black or white. The
former ones are always adjacent to a source, even in the event of f edge/vertex
failures. Finally, edges incident to white vertices are added to the sought spanner,
as their overall number is provably small.

During the execution of the algorithm, we let color(u) ∈ {white, black, red}
denote the current color of vertex u. We define Nwhite(u) to be the set of neighbors
of u which are colored white, and we let δwhite(u) = |Nwhite(u)|. We will also
assign a non-negative counter counter(u) to each vertex. Initially all these
counters will be positive, and then they will only be decremented. A vertex u
is colored black only when counter(u) reaches 0, and once a white vertex is
colored either black or red it will never be recolored white again. Therefore, we
have that color(u) = black implies counter(u) = 0.

We first bound the size of the spanner H.

5

s tu

v

πG−F (s, t)

︷ ︸︸ ︷
f + 1

Fig. 1. A case of the proof of Theorem 2. Bold edges are in H − F . The black vertex u
is adjacent to at least f + 1 vertices in S.

Lemma 1. Algorithm 1 computes a spanner of size O
(
np+ nf + γ

(
n,
⌊

(f+1)n
p

⌋))
,

where γ(n, `) is the size of the spanner AS for |S| = `.

Proof. The edges added to E′ by line 8 are at most (f + 1)n, since each time an
edge (s, u) is added to H the counter counter(u) is decremented, and at most
(f + 1)n counter decrements can occur.

To bound the edges added to E′ by line 11, observe that all the edges in
{(u, v) ∈ E : color(u) = white} which are incident to a red vertex, have already
been added to H by line 8, hence we only consider vertices v which are either
white or black. Let v be such a vertex and notice that, before line 11 is executed,
we must have δwhite(v) < p, as otherwise v would have been selected as a source
and colored red. This immediately implies that line 11 causes the addition of at
most np edges to H.

It remains to bound the size of AS . It is sufficient to show that |S| ≤
⌊

(f+1)n
p

⌋
at the end of the algorithm. Each time a source s is selected, s has at least p
white neighbors in G, hence the quantity

∑
u∈V (G) counter(u) decreases by at

least p. The claim follows by noticing that
∑

u∈V (G) counter(u) = n(f + 1) at
the beginning of the algorithm and, when the algorithm terminates, it must be
non-negative. ut

We next bound the distortion of H.
Theorem 2. Algorithm 1 computes a (β + 2)-additive f -EFT/VFT spanner.

Proof. Consider two vertices s, t ∈ V (G) and a set F of at most f failed
edges/vertices of G, we will show that dH−F (s, t) ≤ dG−F (s, t) + β + 2. We
assume, w.l.o.g., that s and t are connected in G − F , as otherwise the claim
trivially holds.

If all the vertices in π = πG−F (s, t) are white, then all their incident edges
have been added to H (see line 11 of Algorithm 1), hence dH−F (s, t) = dG−F (s, t).

Otherwise, let u ∈ V (π) be the closest vertex to s such that color(u) 6= white.
Notice that, by the choice of u, H − F contains all the edges of π[s, u]. If
color(u) = red then:

dH−F (s, t) ≤ dH−F (s, u) + dH−F (u, t) ≤ dG−F (s, u) + dAS−F (u, t)
≤ dG−F (s, u) + dG−F (u, t) + β = dG−F (s, t) + β

6

where we used the fact that u ∈ πG−F (s, t).
Finally, if color(u) = black then counter(u) = 0, hence u has at least f + 1

red neighbors in H (see Figure 1). As a consequence, there is at least one red
vertex v such that (u, v) ∈ H − F (and hence (u, v) ∈ G− F), therefore:

dH−F (s, t) ≤ dH−F (s, u) + dH−F (u, v) + dH−F (v, t)
≤ dG−F (s, u) + 1 + dAS−F (v, t) ≤ dG−F (s, u) + 1 + dG−F (v, t) + β

≤ dG−F (s, u) + 1 + dG−F (v, u) + dG−F (u, t) + β

= dG−F (s, t) + β + 2.

ut

Let S′ ⊂ V (G) be a set of sources. In [18] it is shown that a sourcewise
EFT/VFT preserver (i.e, a (1, 0) EFT/VFT sourcewise spanner) of G having
size γ(n, |S′|) = O(n

√
n|S′|) can be built in polynomial time. Combining this

preserver and Algorithm 1 with p = n
2
3 , we obtain the following:

Corollary 1. There exists a polynomial time algorithm to compute a 2-additive
EFT/VFT spanner of size O(n 5

3).

Furthermore, we can exploit the following result in [7].8

Lemma 2 ([7]). Given an (α, β)-spanner A and a subset S′ of vertices, it is
possible to compute in polynomial time a subset of O(|S′| · n) edges E′, so that
A ∪ E′ is an (α, β) EFT sourcewise spanner w.r.t. S′. The same result holds for
VFT spanners, with E′ of size O(|S′| · n logn).

Combining the above result with the 2-additive spanner of size O(n3/2) in [1],
we obtain 2-additive EFT and VFT sourcewise spanners of size γ(n, |S′|) =
O(n
√
n+ |S′| · n) and γ(n, |S′|) = O(n

√
n+ |S′| · n logn), respectively. By using

these spanners in Algorithm 1, with p =
√
n and p =

√
n logn respectively, we

obtain the following result.

Corollary 2. There exists a polynomial time algorithm to compute a 4-additive
EFT spanner of size O(n3/2), and a 4-additive VFT spanner of size O(n3/2√logn).

3 Augmenting Clustering-Based Additive Spanners

Most additive spanners in the literature are based on a clustering technique. A
subset of the vertices of the graph G is partitioned into clusters, each containing
a special center vertex along with some of its neighbors. The distances between
these clusters is then reduced by adding a suitable set of edges to the spanner.
This technique is used, for example, in [4,9]. We now describe a general technique
which can be used to augment such spanners in order to obtain a fault-tolerant
additive spanner.
8 Actually, the result in [7] is claimed for the single source case only, but it immediately
extends to multiple sources.

7

Algorithm 2: Algorithm for computing a fault-tolerant additive spanner
from multiplicative and clustering-based additive spanners. Here {C, cnt(·)}
denotes the clustering of G while δ(C,C ′) is the set of the edges in E(G)
with one endpoint in C and the other in C ′.
1 E′ ← ∅; M ← (α, 0) EFT spanner; A← (1, β) clustering-based spanner
2 foreach C ∈ C do
3 foreach v ∈ C do
4 if ∃(v, x) ∈ E(G) : x ∈ C \ {cnt(v)} then
5 E′ ← E′ ∪ {(v, x)}.

6 foreach C,C′ ∈ C : C 6= C′ do
7 if ∃e, e′ ∈ δ(C,C′) : e and e′ are vertex-disjoint then
8 E′ ← E′ ∪ {e, e′}.
9 else if ∃e, e′ ∈ δ(C,C′) : e 6= e′ then

10 E′ ← E′ ∪ {e, e′}.
11 else
12 E′ ← E′ ∪ δ(C,C′) /* δ(C,C′) contains at most one edge */

13 return H ← (V (G), E′ ∪ E(M) ∪ E(A))

More formally, a clustering of G is a partition C of a subset of V (G). We call
each element C ∈ C a cluster. We say that a vertex v is clustered if it belongs
to a cluster, and unclustered otherwise. Each cluster C ∈ C is associated with a
vertex u ∈ C which is the center of C. For each clustered vertex v, we denote by
cnt(v) the center of the cluster containing v.

We say that a β-additive spanner A is clustering-based if there exists a
clustering C of G such that: (i) A contains all the edges incident to unclustered
vertices, (ii) A contains all the edges between every clustered vertex v and cnt(v),
and (iii) the following property holds:

Property 1. For every u, v ∈ V (G) such that v is a clustered vertex, there exists
a path π̃(u, v) in A such that one of the following conditions holds:

(P1) |π̃(u, v)| ≤ dG(u, v) + β − 2;
(P2) |π̃(u, v)| = dG(u, v) + β − 1 and either (i) v = cnt(v), or (ii) the last edge of

π̃(u, v) is (cnt(v), v).
(P3) |π̃(u, v)| = dG(u, v) + β, v 6= cnt(v), and the last edge of π̃(u, v) is (cnt(v), v).

Our algorithm works as follows (see Algorithm 2). We add to our spanner H
a β-additive clustering-based spanner A, and a α-multiplicative EFT spanner M .
Note that so far our construction is the same as in [8], with the extra constraint
that A is clustering-based. We then augment H by adding a carefully chosen
subset E′ of inter and intra-cluster edges.

Let {C, cnt(·)} be the clustering of A. It is easy to see that E′ contains at
most O(n+ |C|2) edges and hence |E(H)| = O(|E(A)|+ |E(M)|+ |C|2). We now
prove an useful lemma which is then used to upper-bound the distortion of the
spanner H.

8

s tz z′πG−e(s, t)

ex y

Fig. 2. Decomposition of πG−e(s, t) so that all shortest paths from s to z (resp. from
z′ to t) in A are fault-free. Bold lines denote shortest paths in A.

Lemma 3. Let A be a spanning subgraph of G, let e ∈ E(G) be a failed edge and
s, t ∈ V (G) be two vertices satisfying dA(s, t) < dA−e(s, t) 6=∞. There exist two
consecutive vertices z, z′ in V (πG−e(s, t)), with dG−e(s, z) < dG−e(s, z′), such
that every shortest path in A between s and z (resp. t and z′) is fault-free.

Proof. First of all, notice that e = (x, y) belongs to every shortest path between
s and t in A, therefore let πA(s, t) = 〈s, . . . , x, y, . . . , t〉. Consider the vertices of
πG−e(s, t) from s to t, let z ∈ V (π) be the last vertex such that there exists a
shortest path π between z and t in A that contains e (z can possibly coincide
with s), and call z′ the vertex following z in π (see Figure 2). By the choice of z,
we have that no shortest path between z′ and t in A can contain e. Moreover,
π must traverse e in the same direction as πA(s, t), i.e., π = 〈z, . . . , x, y, . . . , t〉.
This is true since otherwise we would have π = 〈z, . . . , y, x, . . . , t〉 and hence
πA(s, t)[s, x] ◦ π[x, t] would be a fault-free shortest path between s and t in A, a
contradiction.

It remains to show that no shortest path between s and z in A can contain e.
Suppose this is not the case, then:

dA(s, z) = dA(s, y) + dA(y, z) = dA(s, x) + 1 + 1 + dA(z, x) = dA(s, z) + 2

which is again a contradiction. ut

We are now ready to prove the main theorem of this section.

Theorem 3. Algorithm 2 computes a (2β+max{2, α−3})-additive EFT-spanner.

Proof. Choose any two vertices s, t ∈ V (G) and a failed edge e ∈ E(G). Suppose
that s, t are connected in G− e, and that every shortest path between s and t in
A contains e (as otherwise the claim trivially holds). We partition πG−e(s, t) by
finding z, z′ ∈ V (πG−e(s, t)) as shown by Lemma 3.

The edge (z, z′) is in πG−e(s, t) and hence cannot coincide with e. Moreover,
we suppose (z, z′) 6∈ E(H), as otherwise we would immediately have:

dH−e(s, t) ≤ dA(s, z) + dH−e(z, z′) + dA(z′, t)
≤ dG−e(s, z) + β + 1 + dG−e(z′, t) + β + (dG−e(z, z′)− 1)
= dG−e(s, t) + 2β − 1.

9

πA(t, z
′)

z

x

z′
C

ts

π̃(s, z)

(a)

C C ′

z
z′

v v′

u′u

s

π̃(s, z)

πA(t, z
′)
t

(b)

π̃A(t, z
′)

Fig. 3. Cases considered in the proof of Theorem 3 to build a fault-free path between
s and t with small additive distortion. Bold lines represent shortest paths/edges in A.
Solid lines represent paths/edges in H while the dashed edge (z, z′) does not belong to
E(H) and cannot coincide with e.

This means that both z and z′ must be clustered. Let C (resp. C ′) be the (unique)
cluster that contains z (resp. z′).9

Let γ := dA(s, z) − dG−e(s, z) and γ′ := dA(t, z′) − dG−e(z′, t). Clearly
0 ≤ γ, γ′ ≤ β. If γ + γ′ ≤ 2β − 2 then we are done as:

dH−e(s, t) ≤ dA(s, z) + dB−e(z, z′) + dA(z′, t)
≤ dG−e(s, z) + dG−e(z′, t) + 2β − 2 + αdG−e(z, z′) + (dG−e(z, z′)− 1)
≤ dG−e(s, t) + 2β + α− 3.

Next we assume that γ + γ′ ≥ 2β − 1. This means that either (i) γ and γ′
are both equal to β, or (ii) exactly one of them is β while the other equals β − 1.
Assume w.l.o.g. that γ = β. This implies that dA(s, z) = |π̃(s, z)|, hence π̃(s, z)
is a shortest path between s and z in A, and by Lemma 3, it is fault-free.

In the rest of the proof we separately consider the cases C = C ′ and C 6= C ′.
In the former case, since (z, z′) 6∈ E(H), we know that, during the execution of
the loop in line 2 of Algorithm 2, an edge (z′, x) such that x ∈ C \ {z, cnt(z)} has
been added to E (see Figure 3 (a)). Since the paths 〈cnt(z), z′〉 and 〈cnt(z), x, z′〉
are edge-disjoint, at least one of them is fault free, hence: dH−e(cnt(z), z′) ≤ 2 =
dG−e(z, z′) + 1. Thus, by (P3) of Property 1:

dH−e(s, t) ≤ dA(s, cnt(z)) + dH−e(cnt(z), z′) + dA(z′, t)
≤ dG−e(s, z) + β − 1 + dG−e(z, z′) + 1 + dG−e(z′, t) + β

≤ dG−e(s, t) + 2β.

We now consider the remaining case, namely C 6= C ′. We have that (z, z′) 6∈
E(H), therefore during the execution of the loop in line 6 of Algoritm 2, two
distinct edges (u, u′), (v, v′) so that u, v ∈ C and u′, v′ ∈ C ′ must have been
added to E (see Figure 3 (b)).

Notice that u′ and v′ might coincide, but this would imply that u 6= v and
hence u′ = v′ = z′. This, in turn, implies the existence of two edge-disjoint paths
9 Notice that C and C′ may coincide.

10

of length 2 between cnt(z) and z′ in H, namely 〈cnt(z), u, z′〉 and 〈cnt(z), v, z′〉.
As at least one of them must be fault-free. Therefore:

dH−e(s, t) ≤ dA(s, cnt(z)) + dH−e(cnt(z), z′) + dA(z′, t)
≤ dG−e(s, z) + β − 1 + dG−e(z, z′) + 1 + dG−e(z′, t) + β

= dG−e(s, t) + 2β.

On the other hand, if u′ 6= v′, we consider the two paths π′ = 〈cnt(z), u, u′, cnt(z′)〉
and π′′ = 〈cnt(z), v, v′, cnt(z′)〉.10 Notice that π′ and π′′ can share at most a
single edge, namely (cnt(z), z) (when u = v = z), and that this edge cannot
coincide with e as it belongs to π̃(s, z) which is a fault-free shortest path be-
tween s and z in A. This implies that at least one of π′ and π′′ is fault-free and
hence dH−e(cnt(z), cnt(z′)) ≤ 3 = dG−e(z, z′) + 2. If e = (cnt(z′), z′) then, since
|π̃(t, z′)| ≥ dA(z′, t) ≥ dG−e(z′, t) + β− 1, either (P2) or (P3) of Property 1 must
hold, so we know that π̃(t, z′)[t, cnt(z′)] is fault-free and has a length of at most
dG−e(z′, t) + β − 1. We have:

dH−e(s, t) ≤ dA(s, cnt(z)) + dH−e(cnt(z), cnt(z′)) + dA(cnt(z′), t)
≤ dG−e(s, z) + β − 1 + dG−e(z, z′) + 2 + dG−e(z′, t) + β − 1
≤ dG−e(s, t) + 2β.

Finally, when e 6= (cnt(z′), z′), we have:

dH−e(s, t) ≤ dA(s, cnt(z)) + dH−e(cnt(z), cnt(z′)) + dH−e(cnt(z′), z′) + dA(z′, t)
≤ dG−e(s, z) + β − 1 + dG−e(z, z′) + 2 + 1 + dG−e(z′, t) + β

≤ dG(s, t) + 2β + 2.

This concludes the proof. ut

This result can immediately be applied to the 6-additive spanner of size
O(n 4

3) in [4], which is clustering-based and uses O(n 2
3) clusters. Using the 5-

multiplicative EFT spanner M of size O(n4/3) from [10], we obtain:

Corollary 3. There exists a polynomial time algorithm to compute a 14-additive
EFT spanner of size O(n 4

3).

We can similarly exploit the clustering-based spanner of [9] which provides,
w.h.p., an additive stretch of 4 and a size of Õ(n 7

5) by using O(n 3
5) clusters.

Corollary 4. There exists a polynomial time randomized algorithm that com-
putes w.h.p. a 10-additive EFT spanner of G of size Õ(n 7

5).

10 Some consecutive vertices of π′ (resp. π′′) might actually coincide. In this case, we
ignore all but the first of such vertices and define π′ (resp. π′′) accordingly.

11

References

1. Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast
estimation of diameter and shortest paths (without matrix multiplication). SIAM
J. Comput., 28(4):1167–1181, 1999.

2. Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On
sparse spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100,
1993.

3. Giorgio Ausiello, Paolo Giulio Franciosa, Giuseppe Francesco Italiano, and Andrea
Ribichini. On resilient graph spanners. In ESA, pages 85–96, 2013.

4. Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive
spanners and (alpha, beta)-spanners. ACM Transactions on Algorithms, 7(1):5,
2010.

5. Surender Baswana and Neelesh Khanna. Approximate shortest paths avoiding
a failed vertex: Near optimal data structures for undirected unweighted graphs.
Algorithmica, 66(1):18–50, 2013.

6. Aaron Bernstein and David R. Karger. A nearly optimal oracle for avoiding failed
vertices and edges. In STOC, pages 101–110, 2009.

7. Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Fault-tolerant
approximate shortest-path trees. In ESA, pages 137–148, 2014.

8. Gilad Braunschvig, Shiri Chechik, and David Peleg. Fault tolerant additive spanners.
In WG, pages 206–214, 2012.

9. Shiri Chechik. New additive spanners. In SODA, pages 498–512, 2013.
10. Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault-tolerant

spanners for general graphs. In STOC, pages 435–444, 2009.
11. Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f -sensitivity

distance oracles and routing schemes. In ESA, pages 84–96, 2010.
12. Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance

preservers. SIAM J. Discrete Math., 20(2):463–501, 2006.
13. Marek Cygan, Fabrizio Grandoni, and Telikepalli Kavitha. On pairwise spanners.

In STACS, pages 209–220, 2013.
14. Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and

simpler. In PODC, pages 169–178, 2011.
15. Paul Erdős. Extremal problems in graph theory. In Theory of Graphs and its

Applications, pages 29–36, 1964.
16. Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity

oracles via fast single-source replacement paths. In FOCS, pages 748–757, 2012.
17. Merav Parter. Vertex fault tolerant additive spanners. In DISC, pages 167–181,

2014.
18. Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In ESA, pages

779–790, 2013.
19. Merav Parter and David Peleg. Fault tolerant approximate bfs structures. In SODA,

pages 1073–1092, 2014.

12

