
On Conflict-Free Multi-Coloring?
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Abstract A conflict-free coloring of a hypergraph H = (V, E), E ⊆ 2V ,
is a coloring of the vertices V such that every hyperedge E ∈ E contains
a vertex of “unique” color. Our goal is to minimize the total number of
distinct colors. In its full generality, this problem is known as the conflict-
free (hypergraph) coloring problem. It is known that Θ(

√
m) colors might

be needed in general.
In this paper we study the relaxation of the problem where one is allowed
to assign multiple colors to the same node. The goal here is to substan-
tially reduce the total number of colors, while keeping the number of
colors per node as small as possible. By a simple adaptation of a result
by Pach and Tardos [2009] on the single-color version of the problem,
one obtains that only O(log2m) colors in total are sufficient (on every
instance) if each node is allowed to use up to O(logm) colors.
By improving on the result of Pach and Tardos (under the assump-
tion n � m), we show that the same result can be achieved with
O(logm·logn) colors in total, and eitherO(logm) orO(logn·log logm) ⊆
O(log2 n) colors per node. The latter coloring can be computed by a
polynomial-time Las Vegas algorithm.

1 Introduction

Consider the following scenario motivated by wireless applications. We are given
a collection of n transmitters, where each transmitter can transmit at a chosen
frequency. Furthermore, we are given a collection of m receivers, where each
receiver receives the signal of some subset of the transmitters. Each receiver
can tune to a proper frequency, and it receives any message transmitted at
that frequency if precisely one transmitter in its range is transmitting at that
frequency (if two or more such transmitters do this, then interferences destroy
the message). We have to choose frequencies such that each receiver can receive
messages, and our goal is to minimize the total number of frequencies used
altogether.
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In its full generality, this problem can be naturally modelled as the following
conflict-free (hypergraph) coloring problem. We are given a hypergraph H =
(V, E), E ⊆ 2V , with n nodes and m hyperedges. A coloring of H with k colors
is an assignment c : V → {1, . . . , k} of an integer value (color) to each node.
A coloring is conflict-free if for each hyperedge E there exists at least one node
v ∈ E such that c(v) 6= c(u) for any other node u 6= v with u ∈ E. Our goal is
to find a conflict-free coloring with the minimum number of colors. The latter
quantity χcf(H) is the conflict-free chromatic number of H. Obviously, in the
above scenario, nodes, hyperedges, and colors model transmitters, receivers, and
frequencies, respectively.

Trivially, min{n,m + 1} frequencies are sufficient to achieve (in general) a
conflict-free coloring. This result can be improved to Θ(

√
m) [17]3. The latter

result is already tight: simply consider a complete graph on n nodes; a conflict-
free coloring requires n = Θ(

√
m) colors.

Our results and techniques. Motivated by the large (polynomial) number of
colors needed to solve conflict-free coloring in general, in this paper we study a
relaxation of the problem where we are allowed to use multiple colors at each
node. This models a situation in which transmitters can transmit on multiple
frequencies.

More formally, we study the following conflict-free (hypergraph) multi-coloring
problem. Given a hypergraph H = (V, E), E ⊆ 2V , with n nodes and m hyper-
edges, a multi-coloring of H with k colors is an assignment C : V → 2{1,...,k} of a
subset of integer values (colors) to each node. A hyperedge E ∈ E is conflict-free
if there exists at least one node v ∈ E and one color c(v) ∈ C(v) such that, for
any other node v 6= u ∈ E and any c(u) ∈ C(u), one has c(v) 6= c(u) (intuitively,
some color appears exactly once in E). A multi-coloring is conflict-free if all
hyperedges are conflict-free. Our goal is now two-fold: on one side, as before, we
wish to minimize the total number of colors. At the same time, we would like to
minimize the maximum number of colors assigned to each node. At high-level,
we address the following main question: Is a small number of colors per node
sufficient to drastically reduce the total number of colors?

We answer affirmatively to the above question. Indeed, one simple way to
achieve a result of the above kind is via an adaptation of a result by Pach and
Tardos [17] on the standard (single-color) version of the problem. Suppose that
all hyperedges have size at least 2t − 1 (for any integer t ≥ 1). They show how
to compute a conflict-free coloring with O(tm1/t logm) colors in total using a
simple (expected) polynomial-time Las-Vegas algorithm. The idea is to make
Θ(logm) copies of each node, and then apply the algorithm in [17]. The set of
colors assigned to a given node is simply the union of the colors assigned to its
copies. This way each node is assigned at most O(logm) colors, and the total
number of colors is O(log2m). Pach and Tardos improve their result when the

3 Note that this is an absolute upper bound on the conflict-free chromatic number,
while of course some hypergraphs might need fewer colors. All upper bounds in this
paper are of this type.



dependencies among hyperedges are limited, by means of a constructive version
[16] of Lovász’s Local Lemma (LLL) [10,19,22]. More formally, let Γ ≤ m − 1
denote the maximum number of different hyperedges that any hyperedge E
intersects (the maximum hyperedge degree of H). In this case the result in [17] is
refined to O(tΓ 1/t logΓ ), and consequently one can obtain a conflict-free multi-
coloring with O(log2 Γ ) colors in total, and O(logΓ ) colors per node.

Our main result (which might be of independent interest) is an improvement
on the O(tΓ 1/t logΓ ) upper bound, under each of the following assumptions:
(i) n is sufficiently smaller than Γ (see Section 2), (ii) hyperedges have size at
most O(logΓ ) (see Section 3):

Theorem 1. There exists a polynomial-time Las Vegas algorithm for conflict-
free coloring using O(tΓ 1/t log n) ⊆ O(tm1/t log n) colors, where 2t−1 is a lower
bound on the size of any hyperedge and Γ is the maximum hyperedge degree. If
the maximum hyperedge size is O(logΓ ), the number of colors can be reduced to
O(tΓ 1/t).

We remark that there are ranges of values of Γ , m and n such that we reduce
the upper-bound on the conflict-free chromatic number by a factor Ω(

√
n). For

example, consider a hypergraph on n nodes for which we choose uniformly at
random m = n

√
n/ lnn hyperedges of size

√
n. Then the probability that two

hyperedges E,E′ intersect is at least 1/
√
n (the probability that a fixed node

is contained in E′). Hence in expectation a given hyperedge intersects at least
(m − 1)/

√
n other hyperedges. Therefore we can assume Γ ∈ Ω(m/

√
n). Since

also Γ ≤ m − 1, we have
√
n ∈ Θ(logm) = Θ(logΓ ). In this case the result of

Pach-Tardos gives the (up to constant factors) trivial bound of O(log2 Γ ) = O(n)
colors, while our construction uses only O(logΓ ) = O(

√
n) colors.

Furthermore we can improve on Theorem 1 by a refined analysis in case of
hypergraphs with hyperedge sizes bounded from below by 2t−1 and from above
by O(t). For such almost-uniform hypergraphs we achieve a conflict-free coloring
with O(tm1/(t+1)) colors. This generalizes a result on uniform hypergraphs [14].

We next discuss the main ideas behind Theorem 1. The conflict-free coloring
algorithm in [17] works as follows. There is a sequence of rounds. At round i we
use a new color i and color each still uncolored node independently at random
with some (fairly small) probability p. Observe that the color assigned to each
node follows a geometric distribution.

Our main idea is to replace colors in the above approach with disjoint color
classes, each one containing h colors. Then each node is independently assigned
a color chosen uniformly at random in its color class. For our goal it is convenient
to use a constant probability p and a large enough value of h. The rough idea
is that, with large-enough probability, for each hyperdge E there is some round
i where for the yet unassigned nodes E′ ⊆ E we have that (h/|E′|)|E′| is lower
bounded by a polynomial in the maximum hyperedge degree Γ . Therefore with
sufficiently large probability (with respect to 1/Γ ) some color in the i-th color
class will appear only once in E′ and hence in E, since color classes are disjoint.

By using node duplication as discussed before, one immediately obtains the
following corollary for conflict-free multi-coloring.



Corollary 1. There exists a polynomial-time Las Vegas algorithm for conflict-
free multi-coloring using O(logΓ · log n) colors in total, and O(logΓ ) colors per
node, where Γ is the maximum hyperedge degree.

Note that m (hence Γ ) can be exponential in n. Therefore the upper bound
O(logΓ ) on the number of colors per node can be linear in n: this might be too
much due to technological constraints. We were able to reduce the mentioned
upper bound (for large enough Γ ) by means of a more sophisticated algorithm,
without increasing the total number of colors (see Section 3).

Theorem 2. There exists a polynomial-time Las Vegas algorithm for conflict-
free multi-coloring using O(logΓ · log n) colors in total, and O(log n · log logΓ ) ⊆
O(log2 n) colors per node, where Γ is the maximum hyperedge degree.

The above refinement is obtained as follows: Observe that, using our result from
Theorem 1, hyperedges of size Ω(logΓ ) can be conflict-free colored with a single
color per node and O(logΓ · log n) colors in total. We partition the remaining
hyperedges in O(log logΓ ) buckets of approximately uniform size. Hyperedges in
each bucket are colored independently, using a novel set of colors each time. In
each bucket we perform a node duplication which is strictly sufficient to achieve
hyperedges of size Θ(logΓ ), and then apply a modified conflict-free coloring
algorithm. As mentioned, due to the (approximate) uniformity of the hyperedge
sizes, O(tΓ 1/t) = O(logΓ ) colors are sufficient in each bucket (adding overall
O(logΓ · log logΓ ) ⊆ O(logΓ · log n) many colors to the total). For increasing
value of the bucket size, on one hand the (potential) number of hyperedges
increases, while on the other hand the number of node duplicates needed to reach
the size Ω(logΓ ) decreases. The two phenomena compensate well. In particular,
it is always sufficient to create O(log n) copies of each node (hence the total
number of colors per node is O(log n log logΓ ) ⊆ O(log2 n)).

Our work also implies improved bounds for conflict hypergraphs induced by
certain shapes in the plane. In particular, we can easily extend some known re-
sults for axis-parallel rectangles and disks to any shape with constant description
complexity. Details are omitted from this extended abstract.

The following lower bounds show that our results are not very far from best
possible, at least in some relevant cases.

Theorem 3. Consider a complete r-uniform hypergraph on n nodes, with r <
n/2. Then any conflict-free multi-coloring needs to use Ω(log n) colors in total.
Furthermore, any such coloring using polylog(n) colors has to use Ω( logn

log logn )
colors on some node.

For intuition we give a proof for r = 2; the complete proof will be given in the
full version of the paper. We can represent the multi-coloring of each node as a
0-1 vector, where the 1’s indicate the colors assigned to that node. If two nodes
u and v are labelled with the same vector, then the edge uv is not conflict-free.
Suppose we use htot colors in total, and at most hmax colors per node. Then
the number of 0-1 vectors is O(min{hhmaxtot , 2htot}). As a consequence, we need
htot = Ω(log n) to have n distinct vectors. Similarly, if htot = polylog(n), we



Constraint Previous Results Our Results

∀E ∈ E : 2t− 1 ≤ |E| O(tΓ 1/t logΓ ) [17] O(tΓ 1/t logn)

∀E ∈ E : 2t− 1 ≤ |E| ∈ O(logΓ ) O(tΓ 1/t)

∀E ∈ E : |E| = r Ω( rm2/(r+2)

logm
), O(rm

2
r+2 ) [14]

∀E ∈ E : 2t− 1 ≤ |E| ∈ O(t) O(tm1/(t+1))

Table 1. Bounds on the conflict-free chromatic number of hypergraphs on n vertices,
m edges and maximum hyperedge degree Γ .

need hmax = Ω(log n/ log log n) to have n distinct vectors.
For comparison, consider a hypergraph on m =

(
n
r

)
hyperedges of uniform size

r ≤ n/e. Observe that
(
n
r

)r ≤ m ≤
(
n·e
r

)r
, hence r ≤ r(lnn − ln r) ≤ lnm.

The algorithm from Theorem 2 uses only one bucket and by this refined analysis
assigns O(logm) = O(r log n) colors in total and O(log n) colors per node. Hence
for small r our algorithm is not far from best possible.

Related work. An anonymous reviewer pointed us to the independent work
of Bar-Yehuda, Goldreich and Itai [5] on the radio broadcast problem, which
considers assigning time-slots to transmitters (rather than frequencies) in a pe-
riodic schedule. One can reinterpret time slots of their framework as colors in a
multi-coloring, hence obtaining for our setting a randomized multi-coloring algo-
rithm using O(logm · log∆) colors in total, where ∆ is the maximum hyperedge
size. One can infer that – using Lovász’s local lemma – this can be improved to
O(logΓ · log∆) colors in total and O(logΓ ) colors per node. Considering Theo-
rem 2, the two results differ (i) for the total number of colors if logΓ � ∆� n
and (ii) for the number of colors per transmitter if Γ � n.

Other multi-coloring models for frequency assignment problems have been
considered for standard graphs (for a survey, see e.g. [1]). We already mentioned
a few results about the (single-color) conflict-free hypergraph coloring problem.
Pach and Tardos [17] raised the question whether it is possible to get a coloring
with Õ(tm1/t) colors even when hyperedges have size at least t (rather than
2t − 1). Kostochka et al. [14] have answered this in the negative, proving that
there exists a r-uniform hypergraph H with m hyperedges (and even r ≤ lnm)
such that χcf(H) ∈ Ω(rm2/(r+2)/ logm). They have also shown that for all r-
uniform hypergraphs H, χcf(H) ∈ O(rm2/(r+2)). The known bounds on the
conflict-free chromatic number are summarized in Table 1.

For obvious reasons related to the mentioned applications, it makes sense to
consider the conflict-free coloring problem under geometric restrictions on the
structure of the hypergraph. In particular, one can consider transmitters and
receivers as points in an Euclidean space. Here each transmitter v reaches all the
receivers E in a given geometric region around v (e.g., a circle or sphere centered
at v). Indeed, the problem was first defined having such a geometric model in
mind by Even et al. [11], and has further been studied by Smorodinsky [2,12,20],
Pach [18] and Cheilaris [4,8] for various geometric hypergraphs, such as those
induced by disks, rectangles or intervals. The problem has been studied in terms



of approximation [13] and online algorithms [3,9]. For a comprehensive survey
on this problem, see also [21].

Another recently studied conflict-free coloring problem is a chromatic variant
of the art gallery problem, in which the hypergraph is induced by visibility
regions of transmitters in a given polygon [6,7]. In this problem, the structure
of the hypergraph depends on the placement of the transmitters, which is not
prescribed, but rather can be chosen together with the coloring.

2 An improved conflict-free coloring algorithm

In this section we describe the conflict free-coloring algorithm from Theorem
1. Recall that n denotes the number of nodes, m the number of hyperedges,
and Γ ≤ m − 1 the maximum number of hyperedges that intersect any given
hyperedge E. Furthermore, the minimum hyperedge size is 2t− 1.

Our proof proceeds as follows. We start by describing a simple randomized
algorithm that assigns colors independently to each node. We remark that our
algorithm framework contains the algorithm by Pach and Tardos [17] as a special
case, however our choice of parameters is substantially different. Let BE denote
the (bad) event that a given hyperedge E is not conflict-free. We will show that
Pr[BE ] ≤ 1

eΓ . Since the event BE depends on at most Γ other bad events BF
(namely those corresponding to hyperedges F intersecting E), we conclude from
Lovasz Local Lemma (LLL) that our algorithm succeeds with positive proba-
bility4. We can therefore use the polynomial-time Las Vegas algorithm MT by
Moser and Tardos [16] to construct the desired conflict-free coloring in expected
polynomial time.

A geometric color classes algorithm. Consider the following Geometric
Color Classes algorithm GCC. GCC has two parameters, a probability p and a
positive integer h (to be fixed later). Let C1, C2, . . . , Cdlnne be pairwise disjoint
subsets of h colors each (color classes). Our algorithm works in two steps:

Step 1 We independently assign a color class Ci to each node as follows.
At each round i = 1, . . . , dlnne − 1 we consider every node v that has not been
assigned any color class yet, and we independently assign color class Ci to v with
probability p. At the end of the process we assign the final color class Cdlnne to
the remaining unassigned nodes.

Step 2 For each node v we choose independently and uniformly at random
one of the h colors from its assigned color class.

We next set the parameters p and h, and discuss some consequences of our
choices that will turn out to be useful in the analysis of the algorithm. We
choose p = 1− 1

e and h = 48t(2eΓ )1/t.

Remark 1. The assignment of nodes to color classes follows a truncated geomet-
ric distribution. In more detail, the probability that a node v is assigned to the

4 Here we consider the refined version of LLL given by Shearer [19], however this is
not crucial for us modulo updating a few constants.



color class Ci is p(1 − p)i−1 for i < lnn, and (1 − p)dlnne−1 for i = dlnne.
In particular, the number X of nodes assigned to Cdlnne in expectation is

E [X] = n · (1/e)dlnne−1 ≤ e.

Remark 2. Consider h as a function h(t) of t. Note that we can restrict the
domain of h(t) to t ≤ lnΓ : Since tΓ 1/t achieves its minimum for t = lnΓ , and
since any hyperedge with more than 2 lnΓ − 1 nodes has size at least 2 lnΓ − 1,
it is enough to show the claimed bound of O(tΓ 1/t log n) colors for t ≤ lnΓ .
Over this domain h(t) is monotonically decreasing because for t ≤ lnΓ we have
h′(t) = 48(2eΓ )1/t · (t− lnΓ − ln 2− 1)/t < 0. We will make use of the fact that
t ≤ t′ ≤ lnΓ implies h(t) ≥ h(t′).

Existence of a good coloring. In this section we will show that GCC, using
O(tΓ 1/t log n) colors, finds a conflict-free coloring with positive probability. To
this end, we prove that LLL is applicable to the randomized coloring given by
GCC. Recall that in LLL one considers a set of (bad) events, each one happening
with probability at most p, where each event is independent of all the others
except for at most d of them. Then, if epd ≤ 1, there is a nonzero probability
that none of the events occur [19]. In our case the bad events are {BE}E∈E ,
where BE denotes the event that the hyperedge E is not conflict-free. Since E
intersects at most Γ other hyperedges and colors are assigned independently,
BE is independent from all but Γ other events BF (i.e., d = Γ ). By LLL it is
sufficient to show that Pr[BE ] ≤ 1

eΓ .
Consider any given hyperedge E of size s. Recall that by assumption s ≥

2t − 1. We distinguish between the case that E is small, i.e., s ≤ 24 lnΓ , and
the case that E is large, i.e., s > 24 lnΓ .

Case of small hyperedges. Let E be a (small) hyperedge with s = |E| ≤ 24 lnΓ
nodes. We can upper bound Pr[BE ] by means of the following coupling argument.
Suppose that a node v is assigned the j-th color of the i-th color class Ci. Then we
reassign to v the j-th color of C1. Clearly this reassignment can only decrease the
probability that each given hyperedge E is conflict-free. Therefore it is sufficient
to upper bound Pr[BE ] under the assumption that all nodes in E are assigned
to the same color class. Lemma 1 follows Kostochka et al. [14]:

Lemma 1. Let E be a hyperedge of size s and let its nodes be colored uniformly
at random with h colors. Then the probability that there is no unique color in E

is Pr [BE ] ≤
(
2s
h

)ds/2e
.

Lemma 2. For any small hyperedge E, Pr [BE ] ≤ 1
2eΓ .

Proof. By definition one has s = |E| with 2t − 1 ≤ s ≤ 24 lnΓ . First note that
by Lemma 1 (and the mentioned coupling argument) we have

Pr [BE ] ≤
(
2s
h

)ds/2e
=
(

2s
48t(2eΓ )1/t

)ds/2e
. (1)



Now we distinguish between two cases, depending on whether the size s of E is
relatively close to t or not, i.e. whether s ≤ 24t or t < s

24 .
Case 1: s ≤ 24t. One has 2s ≤ 48t and ds/2e ≥ t. Hence the right-hand side of
(1) is bounded by(

2s
48t(2eΓ )1/t

)ds/2e
≤
(

1
(2eΓ )1/t

)ds/2e
≤
(

1
(2eΓ )1/t

)t
= 1

2eΓ .

Case 2: t < s
24 . Recall that by assumption we have s ≤ 24 lnΓ ⇔ s = 24d lnΓ

for some d ≤ 1. Thus we can write t < d lnΓ ≤ lnΓ . By Remark 2, h(t) is
monotonically decreasing for t ≤ lnΓ and thus h = h(t) > h(d lnΓ ). Further-
more, ds/2e ≥ 12d lnΓ . Putting everything together, the right-hand side of (1)
is bounded by(

2s
48t(2eΓ )1/t

)ds/2e
≤
(

48d lnΓ
48d lnΓ ·(2eΓ )1/(d lnΓ )

)12d lnΓ
= 1

(2eΓ )12 ≤
1

2eΓ . ut

Case of large hyperedges. Let E be a (large) hyperedge with s = |E| > 24 lnΓ
nodes. To upper bound Pr[BE ], we show that with large enough probability E
contains a subset of nodes E′ ( E of size 2t − 1 ≤ |E′| ≤ 24 lnΓ , whose nodes
are assigned colors not appearing in E \E′. This allows us to reuse the analysis
for the case of small hyperedges (a coloring that is conflict-free on E′ will also
be conflict-free on E).

In more detail, consider the color classes assigned to the nodes of E by GCC,
and denote them by C ′1, C

′
2, . . . , C

′
k (in the order given by the algorithm.) Recall

that these color classes are pairwise disjoint. Denote by Ej the subset of nodes
with color class C ′j . We show that there is either a single subset Ej of small

size or that there is a union E>k−l :=
⋃l−1
j=0Ek−j of the last l subsets, for some

l, that has a small size. Depending on which case applies, we will use either
E′ = Ej or E′ = E>k−l. Let us formally define these two events, for which we
use mnemonic identifiers S (single color class) and U (union of color classes):

– S = “There is an index j, 1 ≤ j ≤ l, such that 2t− 1 ≤ |Ej | ≤ 24 lnΓ .”
– U = “There is an index l, 0 ≤ l < k, such that 2t− 1 ≤ |E>k−l| ≤ 24 lnΓ .”

Lemma 3. For the events S and U as defined, we have Pr [¬S ∧ ¬U ] ≤ 1
2e

1
Γ .

Proof. Assume neither S nor U occurs. Recall that E>k−l =
⋃l−1
j=0Ek−j . Since

by assumption U does not occur, there exists a unique l with 0 ≤ l < k such
that E′ := E>k−l has a comparatively very small size |E′| < 2t − 1, while
E′′ = E>k−l−1 = E′ ∪ Ek−l already has a large size |E′′| := a lnΓ for some
a > 24.

Since S does not occur, we must have |Ek−l| > 24 lnΓ . Recall that by Re-
mark 2 we can restrict ourselves to the case t ≤ lnΓ and hence |E′| < 2t− 1 <
2 lnΓ . Thus |Ek−l| = |E′′ \ E′| > (a− 2) lnΓ . We can conclude that

Pr [¬S ∧ ¬U ] ≤ Pr[|Ek−l| ≥ lnΓ ·max{24, a− 2}].



We distinguish two cases, depending on whether C ′k−l is the last color class
Cdlnne ever assigned by the algorithm or not.
First let us implicitly condition on the event C ′k−l = Cdlnne. By Remark 1, the
number of all nodes X with assigned color class Cdlnne is a sum of indepen-
dent Bernoulli random variables with expectation E[X] ≤ e. Thus we can apply
Chernoff bounds (see, e.g., [15]) to get

Pr [|Ek−l| ≥ 24 lnΓ ] ≤ Pr [X ≥ 24 lnΓ ] ≤ 2−24 lnΓ ≤ 1
2eΓ .

In the above inequalities we used the fact that X ≥ |Ek−l| and that Γ is suffi-
ciently large.
Next we implicitly condition on the event C ′k−l 6= Cdlnne. Each of the nodes

in E′′ is chosen into Ek−l independently with probability p = 1 − 1
e . Thus

|Ek−l| is a sum of independent Bernoulli random variables with expectation

E [|Ek−l|] = p · |E′′| = (e−1)a
e lnΓ . Hence we can apply Chernoff bounds to get

Pr [|Ek−l| ≥ (a− 2) lnΓ ] = Pr
[
|Ek−l| ≥

(
1 + a−2e

(e−1)a

)
(e−1)a
e lnΓ

]
≤ e−

(e−1)a
e lnΓ ·( a−2e

(e−1)a )
2· 13 = e− lnΓ

(a−2e)2

3e(e−1)a ≤ e− lnΓ
(24−2e)2

3e(e−1)·24 ≤ 1
2eΓ .

In the above inequalities we used the fact that (a−2e)2
3e(e−1)a is monotonically increas-

ing in a for a ≥ 24 and that Γ is sufficiently large. ut

Lemma 4. For any large hyperedge E, Pr[BE ] ≤ 1
eΓ .

Proof. Using previous notation we getPr[BE ] ≤ Pr [¬S ∧ ¬U ]+Pr[BE |S∨U ]. By
Lemma 3, Pr [¬S ∧ ¬U ] ≤ 1

2eΓ . Given the event S∨U , let E′ be a corresponding
subset of nodes of E. We recall that by definition 2t−1 ≤ |E′| ≤ 24 lnΓ , and no
color used for nodes in E′ is also used for nodes in E \E′. By the same analysis
as in Lemma 2, the event BE′ that there is no unique color among nodes E′ has
probability at most Pr[BE′ ] ≤ 1

2eΓ . Furthermore, when there is a unique color
in E′, then there is a unique color also in E, hence Pr[¬BE′ ] ≤ Pr[¬BE |S ∨U ].
Consequently, Pr[BE |S ∨ U ] ≤ Pr[BE′ ] ≤ 1

2eΓ and Pr[BE ] ≤ 2
2eΓ ≤

1
eΓ . ut

By Lemmas 2 and 4, and applying LLL, we obtain the following result.

Lemma 5. Algorithm GCC computes a coloring using at most O(tΓ 1/t log n)
colors. This coloring is conflict-free with positive probability.

Computing a conflict-free coloring. The probability that GCC computes a
conflict-free coloring might be very small. For this reason, we rather use the Las
Vegas algorithm ML in [16], adapted to our setting. In more detail, we start by
coloring nodes according to GCC. Then, while there is some hyperedge E that
is not conflict-free, we recolor the nodes in E using GCC (by resampling from
the same product probability space as before, restricted to E). By the analysis
in [16], this new algorithm GCC+ computes a conflict-free coloring in expected
time polynomial in n and m, provided that there exists a conflict-free coloring
among the ones that can be returned by GCC. The latter condition holds by
Lemma 5. The main part of Theorem 1 immediately follows.



3 A refined multi-coloring algorithm

In this section we prove Theorem 2. This is achieved in two steps. First we de-
scribe and analyze a refined conflict-free coloring algorithm for the case that hy-
peredges have sizes in a small range. Then we present a non-trivial multi-coloring
algorithm that exploits the new (and also the previous) coloring algorithm as a
subroutine.

Hyperedges with upper bounded size. Suppose that every hyperedge has
size at most k · lnΓ , with k ∈ o(log n). Then we can modify the parameters in
GCC to achieve an improved upper bound of O(tΓ 1/tk) colors. In particular, for
constant k the number of colors needed in the single-color case is O(tΓ 1/t) only.

In more detail, we set p = 1 and h = 2kt(3eΓ )1/t (i.e., we use only one color
class of a size depending linearly on k). We denote this algorithm by 1C. In order
to prove that we have a conflict-free coloring with sufficiently large probability,
it is sufficient to slightly adapt the proof of Lemma 2. In particular, in the case
distinction we distinguish between hypedges of size s ≤ k t and hyperedges of
size k t < s ≤ k lnΓ . The rest of the analysis is the same. We can also similarly
modify the algorithm to make it run in expected polynomial time using the
approach in [16]: let 1C+ denote this variant. Hence we obtain the following
lemma, which shows the second part of Theorem 1.

Lemma 6. There is a polynomial-time Las Vegas algorithm for conflict-free col-
oring using O(tΓ 1/tk) colors, assuming that hyperedges have size at least 2t− 1
and at most k lnΓ .

For Γ ∈ Θ(m), Lemma 6 yields a conflict-free coloring using O(tm1/tk)
colors. Suppose that, additionally, all the hyperedges have size at most k · t, with
k a constant. Then we can improve the upper bound to O(tm1/(t+1)) by using
a deterministic preprocessing of the hypergraph similarly to [14]. Though this is
not needed for our multi-coloring algorithm, we briefly present this result since it
might be of some interest. Indeed, this generalizes the bound in [14] from uniform
hypergraphs to hypergraphs with a constant factor gap between the minimum
and maximum hyperedge size. The proof is omitted from this extended abstract.

Lemma 7. There is a polynomial-time Las Vegas algorithm for conflict-free col-
oring using O(tm1/(t+1)) colors, assuming that hyperedges have size at least 2t−1
and at most O(t).

A bucketing multi-coloring algorithm. We consider the following refined
conflict-free multi-coloring algorithm. Let q = dlog2(lnΓ )e. Note that we have
q ∈ O(log logΓ ). We partition the hyperedges into subsets E0, . . . , Eq, where for
i < q the subset Ei contains all hyperedges of size in

[
2i, 2i+1

)
, while the last

subset Eq contains all the remaining hyperedges (which have size ≥ 2q ≥ lnΓ ).
Then there is a sequence of rounds i = 0, . . . , q. In round i the algorithm considers
the sub-hypergraph induced by Ei (containing only the nodes Vi spanned by Ei).
If i = q, the algorithm colors nodes in Vi using algorithm GCC+ from Theorem 1.



Otherwise, the algorithm splits each node in Vi into dlnΓi/2ie copies, and colors
such copies using algorithm 1C+ from Lemma 6. Here Γi ≤ |Ei| − 1 denotes the
value of Γ in the considered sub-hypergraph. The algorithm uses a novel set of
colors in each round. The final assignment of colors to a node v is simply the
union of the colors assigned to any copy of v in any round. We next analyze this
refined algorithm, proving Theorem 2.

Proof. (of Theorem 2) Consider the above Las Vegas algorithm. Its expected
running is trivially polynomial. In each round i the algorithm obtains a conflict-
free multi-coloring of hyperedges Ei. Since each round uses different colors, the
overall multi-coloring is conflict-free, too.

It remains to bound the total number of colors and the maximum number of
colors per node. By Theorem 1, in round i = q the algorithm uses one color per
node and O(logΓ log n) colors in total. In round i < q, the algorithm considers
an instance with mi = |Ei| hyperedges of size Θ(logΓi) each (after node dupli-
cation). Applying Lemma 6 with t = Θ(logΓi) and k = O(1), the total number

of colors used is O(tΓ
1/t
i k) = O(logΓi) ⊆ O(logΓ ). Furthermore, the number

of extra colors used for each node is at most O(log(Γi)/2
i) = O(log(mi)/2

i) =

O(log(n2
i+1

)/2i) = O(log n). Here we used the fact that hyperedges in Ei have

size at most 2i+1, hence there can be at most O(n2
i+1

) such hyperedges. Al-
together, in rounds i = 0, . . . , q − 1 the algorithm uses O(logΓ log logΓ ) ⊆
O(logΓ log n) colors in total and O(log n log logΓ ) ⊆ O(log2 n) colors per node.
The claim follows. ut

Remark 3. In case hyperedges have size at most O(logΓ ), the above algorithm
(with a slight adaptation of q) uses only O(logΓ · log logΓ ) colors in total.
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