
Dynamic Set Cover: Improved Algorithms and Lower Bounds
Amir Abboud

IBM Almaden Research Center
amir.abboud@ibm.com

Raghavendra Addanki
University of Massachusetts Amherst

raddanki@cs.umass.edu

Fabrizio Grandoni
IDSIA, USI-SUPSI
fabrizio@idsia.ch

Debmalya Panigrahi
Duke University

debmalya@cs.duke.edu

Barna Saha
University of Massachusetts Amherst

barna@cs.umass.edu

Abstract
We give new upper and lower bounds for the dynamic set cover
problem. First, we give a (1 + ε)f -approximation for fully dynamic
set cover in O(f 2 logn/ε5) (amortized) update time, for any ϵ > 0,
where f is the maximum number of sets that an element belongs
to. In the decremental setting, the update time can be improved to
O(f 2/ε5), while still obtaining an (1 + ε)f -approximation. These
are the first algorithms that obtain an approximation factor linear in
f for dynamic set cover, thereby almost matching the best bounds
known in the offline setting and improving upon the previous best
approximation of O(f 2) in the dynamic setting.

To complement our upper bounds, we also show that a linear
dependence of the update time on f is necessary unless we can toler-
ate much worse approximation factors. Using the recent distributed
PCP-framework, we show that any dynamic set cover algorithm that
has an amortized update time of O(f 1−ε) must have an approxima-
tion factor that is Ω(nδ) for some constant δ > 0 under the Strong
Exponential Time Hypothesis.

CCS Concepts
• Theory of computation → Online algorithms.

Keywords
online algorithm, dynamic algorithm, randomized algorithm, set
cover, competitive ratio.

ACM Reference Format:
Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Pani-
grahi, and Barna Saha. 2019. Dynamic Set Cover: Improved Algorithms and
Lower Bounds. In Proceedings of the 51st Annual ACM SIGACT Symposium
on the Theory of Computing (STOC ’19), June 23–26, 2019, Phoenix, AZ,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3313276.
3316376

1 Introduction
Suppose, we need to solve a combinatorial optimization problem
where the input to the problem changes over time. In such a dynamic
setting, recomputing the solution from scratch after every update can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
STOC ’19, June 23–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00
https://doi.org/10.1145/3313276.3316376

be prohibitively time consuming, and it is natural to seek dynamic al-
gorithms that provide faster updates. In the last few decades, efficient
dynamic algorithms have been discovered for many combinatorial
optimization problems, particularly in graphs such as shortest paths
[4, 17, 19, 28], connectivity [5, 25, 26, 37], maximal independent set
and coloring [7, 11, 34]. For many of these problems, maintaining
exact solutions is prohibitively expensive under various complexity
conjectures [2, 3, 23, 30], and thus the best approximation bounds
are sought. In their seminal work [33], Onak and Rubinfeld pro-
posed an algorithm for matching and vertex cover that maintains
O(1)-approximate solutions to the maximum matching and mini-
mum vertex cover in the graph. The algorithm runs in t · polylog(n)
time for any sequence of t edge insertions and deletions in an n-
vertex graph, i.e., in O(polylog(n)) time when amortized over all the
updates. This has led to a flurry of activity in dynamic algorithms
for matching and vertex cover [8–10, 13, 14, 22, 32, 36], and more
recently, for the more general set cover problem [10, 12, 21] that we
study in this paper.

In the set cover problem, we are given a universe X of n ele-
ments and a family S of m sets on these elements. The goal is to
find a minimum-cardinality subfamily of sets F ⊆ S such that F
covers all the elements of X . The two traditional lines of inquiry
for this problem are via greedy and primal dual algorithms, and
have respectively led to a lnn- and an f -approximation. Here, f is
the maximum number of sets that an element belongs to in the set
system S. Both these results are known to be tight under appropriate
complexity-theoretic assumptions [18, 29]. In the dynamic setting,
the set system S is fixed, but the set of elements that needs to be
covered in X changes over time. In particular, after the insertion of
a new element, or the deletion of an existing one, the solution has to
be updated to maintain feasibility and the approximation guarantee.
The time taken to perform these updates is called the update time of
the algorithm, and is often stated amortized over any fixed prefix of
updates.

As in the case of the offline problem, dynamic algorithms for
set cover have also followed two lines of inquiry. The first is to
use greedy-like techniques, which were recently shown to yield an
O(logn)-approximation in O(f logn) update time by Gupta, Kumar,
Krishnaswamy, and Panigrahi [21].1 The second is to use a primal-
dual framework, which was employed by Bhattacharya, Henzinger,
and Italiano [12] to give anO(f 2)-approximation inO(f log (m + n))
update time. Gupta et al. [21] and Bhattacharya, Chakrabarty, and
Henzinger [10] also obtained a different but incomparable result
using the primal-dual technique, which improves the update time

1All update times stated in this paper are amortized, unless stated otherwise.

https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1145/3313276.3316376

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud and R. Addanki and F. Grandoni and D. Panigrahi and B. Saha

to O(f 2) thereby removing the dependence on n and m, but at the
cost of a weaker approximation bound of O(f 3). What stands out in
these results is that:

• While dynamic and offline approximation factors match at
O(logn), there is no O(f)-approximation known for the dy-
namic setting. Indeed, the only previous algorithm we are
aware of that achieves this bound is one that recomputes the
offline f -approximation after every update.

• The update times of these algorithms depend on logn and f .
While the dependence on logn is not required, at least if we
settle for an O(f 3) approximation [10, 21], it is not clear if
the polynomial dependence on f is fundamental. For instance,
might it be possible to design a dynamic set cover algorithm
whose update time only has a logarithmic dependence on f ?

1.1 Our Results
Our first result closes the gap between offline and dynamic approxi-
mation for the set cover problem: for any ε > 0, we give a (1 + ε)f -
approximation algorithm for dynamic set cover with an update
time of O(f 2 logn/ε5). Previous algorithms for dynamic set cover
heavily rely on deterministically maintaining a greedy-like or primal-
dual structure on the set cover solution. Instead, our algorithm is
based on the observation that a simple offline algorithm for the set
cover problem achieves a (1+ε)f -approximation inO(f /ε) expected
update time when the elements are deleted in a random order. We
switch this statement around by transferring the randomness to the
algorithm in order to handle an arbitrary sequence of deletions (and
insertions). As a result, our algorithm is randomized, and our update
time bound holds in expectation. (The approximation bound holds
deterministically.)

In the decremental setting where elements can only be deleted
but not inserted, a simplification of the above algorithm yields the
same approximation factor of (1+ ε)f in amortized update time
O(f 2/ε5). This can be compared with the result of Gupta et al.
[21] which achieves a (larger) O(f 3)-approximation with (roughly)
the same update time, but in the fully dynamic case. As far as we
know, the approximation bounds of [10, 21] do not change when
considering the decremental setting, which has been extensively
studied in the past for other problems [15, 24, 28].2

Finally, we turn to the problem of determining the dependence of
the update time on f . Using the recently introduced framework of dis-
tributed PCP [1] from fine-grained complexity theory, we show that
under the Strong Exponential Time Hypothesis (SETH), any dy-
namic set cover algorithm that has an (amortized) update time
of O(f 1−ε) for any fixed ε > 0 must have an approximation fac-
tor of (n/log f)Ω(1). Since a polynomial dependence on n in the
approximation factor is rather weak, this result essentially states that
any dynamic set cover algorithm must have a linear dependence on
f in the update time3. This shows the update time bound of [21]
to achieve O(logn) approximation is essentially tight within a logn

2For the incremental setting, where elements can be inserted but not deleted, the offline
set cover algorithm itself gives an f -approximation in O (f) update time.
3In our model, the elements and sets are fixed, as well as their membership relations,
and the updates can change which of the elements are “active” in the instance. Thus,
an element insertion can be specified with O (logn) bits, rather than the Ω(f) bits that
may be required to list all its membership relations. This makes an Ω(f) lower bound
on the update time non-trivial.

factor. Our lower bound holds even if the algorithm is allowed a
preprocessing stage with arbitrary polynomial runtime, and it also
applies to the set-updates model where the elements are fixed but
sets get inserted and deleted. This model is much more popular in the
streaming setting [6, 31], especially when there are only insertions
(see the work by Indyk et al. [27] and the many references therein).
This is a novel application of the growing area of fine-grained com-
plexity theory to show hardness of approximation of an NP-Hard
problem.

1.2 Our Techniques
A natural starting point for our work is to use the deterministic greedy
or primal dual techniques for dynamic set cover from [10, 12, 21]. An
alternative strategy is to generalize previous randomized approaches
for dynamic vertex cover [8, 36]. At a very high level, all these
algorithms derive their results from maintaining, either explicitly or
implicitly, a very structured dual solution that lower bounds the cost
of the algorithm. Indeed, the algorithm of [21] for dynamic set cover
can be thought of as a derandomization of the dynamic vertex cover
algorithm of [36]. In order to improve the approximation factor
to O(f), these dual solutions must only violate the dual packing
constraints by a constant factor (as against an Ω(f) violation in the
previous results), but this requirement is too strict for the analysis
framework of these papers that effectively rely on an f -discretization
of the dual space.

Hence, we need a significantly new approach to improve the
approximation factor to O(f). We start with the following folklore
algorithm for offline set cover. Initially, all elements are uncovered
and the algorithm has an empty solution. Pick an arbitrary uncovered
element and call it a pivot p. Then, include all sets containing p in
the solution and mark all elements in those sets as covered. Repeat
this process until all elements get covered. This algorithm runs in
O(nf) time and achieves an f -approximation, since no two pivots
share a common set and the algorithm picks at most f sets for each
pivot. We call this the deterministic covering algorithm.

Now, consider a decremental setting where elements are deleted
over time, but in a uniform random order. A small modification to the
deterministic covering algorithm gives a (1 +O(ε))f -approximation
in O(f /ε) update time in this setting. Initially, we run deterministic
covering to produce a feasible cover. During the deletion phase,
the approximation bound may no longer hold because pivots are
being deleted. To restore the bound, we re-run the deterministic
covering algorithm whenever an ε-fraction of the pivots have been
deleted. Since the number of undeleted pivots forms a lower bound
on the optimal solution, it follows that this algorithm maintains an
f /(1 − ε) = (1 +O(ε))f -approximation.

Let us now consider the update time. Clearly, deterministic cover-
ing takesO(nf) time in every run. So, the question is: how frequently
do we run it? Because of the random deletion order, we expect to
delete an ε-fraction of all elements before an ε-fraction of pivots
gets deleted. This suggests an informal amortized update bound of
O(nf /(εn)) = O(f /ε). It turns out that this informal idea can be
made formal, but we skip the details here since we are going to use
this only for intuitive purposes.

More interesting for us is to transition from a random deletion
order to an adversarial deletion order. The same update rule gives a

Dynamic Set Cover: Improved Algorithms and Lower Bounds STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

(1 + ε)f -approximation, but now, the bound on update time may no
longer hold. For instance, if all the pivots are deleted before other
elements, the amortized update time is clearly much higher when
the first ε-fraction of pivots gets deleted.

Our main idea, at this juncture, is to transfer the randomization
from the deletion sequence to the algorithm itself. More specifically,
instead of picking a pivot arbitrarily from the uncovered elements
in each step, let us select it uniformly at random. We call this the
random covering algorithm. Our hope is that an (oblivious) adversary
deleting a single element will be able to pick a specific pivot with
probability no higher than 1/n. This would ensure that in expectation,
an ε-fraction of the elements will have to be deleted before an ε-
fraction of pivots is, as in the random deletion scenario.

However, this intuition is not quite correct. While the first pivot
is indeed uniformly distributed over all elements, the subsequent
pivots are not. To see this, consider the following example: suppose
the sets represent edges of a graph containing (n − 2)/f cliques on
f vertices each, and an isolated edge. For a vertex on the isolated
edge to be chosen as the second pivot, it must not be covered by
sets containing the first pivot and should be selected as the second
pivot; the probability for this event is given by: (1−2/n) · (1/(n− f)).
Clearly, this probability exceeds 1/n for f > 2. As a consequence,
the expected number of element deletions after which we need to
run random covering might be smaller than εn. To overcome this
bottleneck, we employ a more fine-grained update procedure: in-
stead of running random covering over the entire undeleted instance,
we run it only for a subset of elements. We maintain sufficient struc-
ture in the solution to still claim a (1 + ε)f -approximation, while
improving the update time to O(f 2/ε5) for the decremental setting,
and O(f 2 logn/ε5) for the fully dynamic setting where elements can
be inserted in addition to deletions.

2 The Decremental Set Cover Algorithm
In this section, we give a dynamic set cover algorithm for the decre-
mental setting. We denote the initial set system by (X ,S), where
S = {S1, S2, . . . , Sm } is a collection of subsets of the ground set X
that contains n elements. The maximum number of subsets that an
element belongs to is denoted f :

f = max
x ∈X

|{i : x ∈ Si }|.

The elements are deleted in a fixed sequence, independent of the ran-
domness of the algorithm, that is represented byX = {x1,x2, . . . ,xn }.

2.1 The Algorithm
The description of the algorithm comprises two phases: the initial
phase where the algorithm selects a feasible solution at the outset,
and the update phases where the algorithm changes its solution in
response to the deletion of elements. The feasible solution that the
algorithm maintains dynamically is denoted by F . Recall that the
goal is to ensure that the cost of F is at most (1 + ε)f times that of
an optimal solution for the set of undeleted elements at all times.

Both the initial and the update phases use a common subrou-
tine that we call the random cover subroutine. We describe this
subroutine first.

The Random Cover Subroutine. The random cover subroutine
takes as input a set system (X ′,S′) and outputs a feasible set cover

solution F ′ for this set system. The algorithm is iterative, where
each iteration starts with a set of uncovered elements Y ⊆ X ′, adds
a collection of sets F + ⊆ S′ to the solution F ′, and removes all the
elements covered by the sets in F + from the set of the uncovered
elements Y for the next iteration. Initially, all elements in X ′ are
uncovered, i.e., Y = X ′, and the solution F ′ is empty, i.e., F ′ = ∅.
It only remains to describe an iteration, or more precisely, the sets
F + added to the solution F ′ in an iteration. The selection of F + has
three steps. First, the algorithm picks the set in S′ that covers the
maximum number of uncovered elements, breaking ties arbitrarily.
Let us call this set Z , i.e., Z = argmaxS ∈S′ |S ∩ Y |. Next, the
algorithm chooses an element in Z ∩ Y , i.e., an uncovered element
in the chosen set, uniformly at random, and calls this element the
pivot for the current iteration. Let us call this pivot p ∈u.a.r. Z ∩ Y .
Finally, all sets in S′ that contain the pivot are added to the solution,
i.e., F + = {S ∈ S′ : p ∈ S}. The random cover subroutine ends
when all elements in X ′ are covered by the solution F ′, i.e., Y = ∅.
This algorithm can be implemented in O(f |X ′ |) deterministic time
(details in Section 4).

The above completes the description of the random cover subrou-
tine. However, it will be convenient to introduce some additional
notation for this process that we will use later. Each iteration is char-
acterized by its pivot p. We map the pivot to the set S(p) := Z ∩ Y
from which it is chosen. If |S(p)| ∈ [2i , 2i+1), we say that p is a
level-i pivot, and denote ℓ(p) = i. Note that by the definition of the
random cover subroutine, the pivots chosen in successive iterations
have monotonically non-increasing levels, i.e., if pivot p is chosen in
an earlier iteration and pivot p′ in a later iteration, then ℓ(p) ≥ ℓ(p′).
Finally, if the sets F + are added to the solution F ′ in an iteration
with pivot p, then we denote F (p) = F +. The set of previously
uncovered elements that are covered by F (p) is denoted X(p).

Initial Phase. In the initial phase, the random cover subroutine is
run on the the entire input set system (X ,S). This produces the initial
solution F .

In the algorithm, we also maintain sets P , D, and U that respec-
tively represent all, deleted, and undeleted pivots. At the end of the
initial phase, all the pivots in F are added to P andU , and D is empty.
When an element e is deleted, if e is in P , then we move e from U to
D, i.e., change its status from undeleted to deleted. Importantly, we
keep this element in P . Changes to P are done only at the end of an
update phase that we describe below.

Update Phase. An update phase is triggered when the number of
deleted pivots exceeds an ε-fraction of the total number of pivots,
i.e., |D | ≥ ε · |P |. In an update phase, the algorithm first fixes a level
ℓ using a process that we describe later called the level fixing process.
Having fixed this level ℓ, the algorithm discards all sets F (p) from F

that were added by pivots p at levels ℓ or lower, i.e., where ℓ(p) ≤ ℓ.
Correspondingly, these pivots p are also removed from P and from
either D or U depending on whether they are deleted or undeleted.
As a result of this change to F , some elements become uncovered
in F ; this set is denoted by X ′. The algorithm now runs the Random
Cover subroutine on the instance (X ′,S′) induced by X ′, where
S′ = {S ∩ X ′ : S ∈ S, S ∩ X ′ , ∅}. The resulting sets F ′ are added
to the overall solution F . Correspondingly, the newly selected pivots
are also added to P and U . We say that levels ℓ and below have been
updated in the current update phase. (Note that the newly selected

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud and R. Addanki and F. Grandoni and D. Panigrahi and B. Saha

pivots will be at level ℓ or below.) Clearly, this restores feasibility
of the solution F . We already argued that the call to the Random
Cover subroutine can be performed in O(f |X ′ |) deterministic time.
The same upper bound holds for the remaining operations related
to the construction of the instance (X ′,S′) and to the update of the
approximate solution (see Section 4 for the details).
The level fixing process. We now describe the level fixing process.
Let {0, 1, . . . ,L = ⌊log2 n⌋} be the set of levels. Let Pj , D j , and Uj
respectively denote the current total set of pivots, deleted pivots,
and undeleted pivots at a given level j. This process finds a level
ℓ with the following property: for every level i ≤ ℓ,

∑ℓ
j=i |D j | ≥

ε ·
∑ℓ
j=i |Pj |. In other words, the fraction of deleted pivots in levels

i, i + 1, . . . , ℓ is at least an ε-fraction of the total number of pivots in
these levels. We say that level ℓ is critical. The next lemma claims
that at least one critical level exists whenever the number of deleted
pivots is an ε-fraction of the total number of pivots.

LEMMA 1. If
∑L
j=0 |D j | ≥ ε ·

∑L
j=0 |Pj |, then there exists at least

one critical level.

PROOF. Suppose
∑L
j=0 |D j | ≥ ε ·

∑L
j=0 |Pj |. Assume by contra-

diction that the claim is not true. Hence for each level ℓ, there exists
a level FAIL(ℓ) ≤ ℓ (in case of ties, take the lowest such level)
such that the condition does not hold, namely

∑ℓ
j=FAIL(ℓ)

|D j | <

ε ·
∑ℓ
j=FAIL(ℓ)

|Pj |. We next define a sequence of levels ℓ1, . . . , ℓq
as follows. Set ℓ1 = L. Given ℓi , halt if FAIL(ℓi) = 0, else set
ℓi+1 = FAIL(ℓi) − 1 and continue with ℓi+1. Observe that the inter-
vals [FAIL(ℓi), ℓi] are disjoint and span [0,L]. We have

L∑
j=0

|D j | =

q∑
i=1

ℓi∑
j=FAIL(ℓi)

|D j | <

q∑
i=1

ε ·

ℓi∑
j=FAIL(ℓi)

|Pj | = ε ·
L∑
j=0

|Pj |.

This contradicts the assumption. □

The next lemma, shown in Section 4, establishes the time com-
plexity of the above algorithm.

LEMMA 2. Suppose we perform an update at critical level ℓ.
Let pi be the total number of pivots at levels i ≤ ℓ right before
this update. Then, the total time taken for this update phase is
O(

∑
i≤ℓ f

2pi2i).

2.2 Analysis of the Competitive Ratio
LEMMA 3. The competitive ratio of the algorithm is at most

f /(1 − ε).

PROOF. Consider the data structure right before the t-th deletion.
Let P t be the total set of pivots and U t the set of undeleted pivots at
that time. We also let OPT t and F t be the optimal and approximate
solution at that time.

Observe that |F t | ≤ f · |P t | by construction. We claim that
|OPT t | ≥ |U t |. This implies the claim since by construction |P t | ≤
|U t |/(1 − ε) at any time.

To see that, let us show by a simple induction that, for any two
distinct p,p′ ∈ U t , there is no set S ∈ F covering both p and p′.
Thus OPT t needs to include a distinct set for each element of U t .
The Random Cover subroutine applied to X ′ never selects a pivot
p′ that is covered by sets selected due to a previous pivot p. This

implies that the property holds after the initialization step, where
X ′ = X .

Assume the property holds up to step t ≥ 1, and suppose that at
step t + 1 an update happens at critical level ℓ, involving elements
X ′. By inductive hypothesis and the properties of Random Cover,
the claim holds for any pair of pivots p,p′ that are both contained in
X ′ or in its complement X \ X ′. Furthermore by construction X ′ is
disjoint from any set S that covers a pivot p ∈ X \X ′, hence S cannot
cover any pivot p′ ∈ X ′. □

2.3 Analysis of the Amortized Update Time
Our goal is to show that, after t deletions, the expected time taken

by the algorithm is O
(
f n +

f 2

ε5 · t
)
. In particular, over a sequence of

n deletions, the expected amortized cost per deletion is O
(
f 2

ε5

)
.

Suppose we perform an update at critical level ℓ. Let Pi be the
total set of pivots at level i ≤ ℓ right before this update, of which Di
denotes the set of deleted pivots. Let also pi = |Pi | and di = |Di |.
Recall that by Lemma 2, the total time taken for this update phase
is O(

∑
i≤ℓ f

2pi2i). We call a level i ≤ ℓ charged if di ≥ ε
2pi

and uncharged otherwise. We denote by L = (ℓq , ℓq−1, . . . , ℓ1) the
decreasingly ordered sequence of charged levels j ≤ ℓ. Observe that,
by the definition of critical level, ℓq = ℓ. Also let D be the set of
deleted pivots in the charged levels. The following lemma creates a
useful mapping between D and P := ∪i≤ℓPi .

LEMMA 4. There exists a b-matching M between D and P such
that:

• Each element of P is matched to exactly one element of D and
each element of D to at most b = 2/ε elements of P;

• If d ∈ D is matched to p ∈ P , then ℓ(d) ≥ ℓ(p).

PROOF. Let us define ℓ0 = 0. For every k = 1, . . . ,q, by defini-
tion

ℓk−1∑
j=ℓk−1+1

dj ≤
ε

2

ℓk−1∑
j=ℓk−1+1

pj . (1)

Let us define Pℓk := ∪
ℓk
j=ℓk−1+1

Pj . Therefore, for every h = 1, . . . ,q,
we have

q∑
k=h

dℓk =
ℓ∑

j=ℓh−1+1
dj −

q∑
k=h

ℓk−1∑
j=ℓk−1+1

dj

ℓ critical
≥

ℓ∑
j=ℓh−1+1

εpj −

q∑
k=h

ℓk−1∑
j=ℓk−1+1

dj

(1)
≥

ℓ∑
j=ℓh−1+1

εpj −
ε

2

q∑
k=h

ℓk−1∑
j=ℓk−1+1

pj

≥
ε

2

ℓ∑
j=ℓh−1+1

pj =
ε

2

q∑
k=h

|Pℓk |. (2)

Let us replace each pivot d ∈ D j , j ∈ L, with 2/ε copies, and
let us call the new set D ′

j . Each copy of a pivot inherits the level of
the original element. Let us sort D ′ := ∪j ∈LD

′
j in non-increasing

order of level (breaking ties arbitrarily), and similarly sort P . Now,
for every element p ∈ P according to this order, we match p with

Dynamic Set Cover: Improved Algorithms and Lower Bounds STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

the first unmatched element d ′ ∈ D ′. The b-matching is obtained by
collapsing the copies in D ′ of the same pivot in D. Observe that this
allows us to match all elements of P since

|D ′ | =
2
ε
|D | =

2
ε

q∑
k=1

dℓk
(2) with h = 1

≥
2
ε
·
ε

2

q∑
k=1

|Pℓk | = |P |.

It remains to show that the condition on the levels is satisfied. Sup-
pose there exists some d ′ ∈ D ′ matched to p ∈ P with ℓh−1 =
ℓ(d ′) < ℓ(p). By construction this implies that

2
ε

q∑
k=h

dℓk =

q∑
k=h

|D ′
ℓk
| <

q∑
k=h

|Pℓk |,

which contradicts (2). □

Consider a sequence of t deletions, and let T be time right before
the (t + 1)-st deletion occurs (or the end of the execution if no such
deletion exists). We wish to bound the expected total update time
till time T as a multiple of t . To that aim, we need a more global
notation. Suppose that level i is updated qi times in total, and let
P
j
i be the total set of pivots in the j-th such update. We use P(i)

to denote the multiset of pivots given by the union of the sets P ji ,
and define p(i) := |P(i)|. The pivots of type P

j
i where level i is

charged on the j-th update are called charged and denoted CH (i),
ch(i) := |CH (i)|. The charged deleted pivots at level i are denoted by
D(i), d(i) := |D(i)|.

We call level i globally-charged iff ch(i) ≥ ε
4p(i), and globally-

uncharged otherwise. We also let GC denote the (random) set of
globally-charged levels. We next show that, in order to bound the
total update time, we can focus on globally-charged levels only.

LEMMA 5. The expected running time of the algorithm isO(f n)+

O
(∑L

i=0 Pr [i ∈ GC] · E
[
f 2
ε 2id(i)

��� i ∈ GC
])
.

PROOF. Excluding the initialization cost ofO(f n) and by Lemma
2, we can focus on bounding O(

∑
i f

2p(i)2i). We use the following
token argument to upper bound the latter cost. We provide f 22i
tokens to each pivot p ∈ P(i), where each token can pay for a large
enough constant amount of work. Then we transfer these tokens to
charged deleted pivots in globally-charged levels so that all tokens
are transferred and each charged deleted pivot at level i is charged

with at most 4f 2
ε 2i tokens.

We next describe the transfer process. LetM denote theb-matchings
in Lemma 4. In particular, each pivot p ∈ P(i) is matched with some
charged deleted pivot M(p) at no lower level, and each charged
deleted pivot is matched with at most 2/ε pivots. We remark that
uncharged pivots p have their M(p) at a strictly higher level by con-
struction. First of all, each pivot p ∈ P(i) transfers its tokens to the
corresponding charged deleted pivot according to M . Note that at

this point each charged deleted pivot at level i owns at most 2f 2
ε 2i

tokens.
Next we proceed in increasing order of level i. For a given level

i, each charged deleted pivot d ∈ D(i) owns the tokens originally
owned by d and possibly tokens transferred from lower levels. If
i ∈ GC we do nothing. Otherwise (i.e., i < GC), we define a b-
matching Mi where each charged deleted pivot d ∈ D(i) is matched
with 2

ε distinct uncharged pivots in P(i) so that no uncharged pivot in

P(i) is matched twice. Note that this is possible since, by definition
of globally-uncharged level, the uncharged pivots in P(i) are at least

p(i) − ch(i) ≥
(
1 −

ε

4

)
p(i) ≥

(
1 −

ε

4

) 4
ε
ch(i) ≥

2
ε
ch(i),

where we assumed ε ≤ 2 w.l.o.g. Now d transfers an ε
2 -fraction

of its tokens to each corresponding pivot in Mi (d). Finally each
matched uncharged pivot p ∈ P(i) transfers the received tokens to
the corresponding deleted pivot M(p) in the global b-matching M .
Observe that M(p) must be at strictly higher level than p, hence the
process is well-defined.

Clearly at the end of the process all the tokens are transferred to
charged deleted pivots in globally-charged levels and no token is left.
We next prove by induction that, at the end of iteration i (where level
i is considered), the number of tokens charged to each d ∈ D(i) is at
most 4

ε f
22i . The claim follows.

The base of the induction i = 0 is trivially true. Indeed, if i < GC
all the tokens of d are transferred to higher levels. Otherwise d can
only be charged with the starting number of tokens, which is at most
2f 2
ε since there are no lower levels that can transfer tokens to level

i. Note that the number of tokens that d is charged with does not
change in the rest of the token transfer process.

Next consider a level i > 0, and assume the claim is true for levels
i − 1 and lower. For any d ∈ D(i), again the claim holds trivially if

i < GC. Otherwise, d initially has up to 2f 2
ε 2i tokens. Furthermore,

d can receive extra tokens from up to 2
ε pivots p of strictly lower

levels. Each such p at level ℓ ≤ i − 1 transfers to d an ε
2 -fraction of

the tokens of some charged deleted pivot of level ℓ. By the inductive
hypothesis, the total number of tokens received by d at the end of
iteration i is at most

2
ε
f 22i +

2
ε
·
ε

2
·
4
ε
f 22i−1 =

4
ε
f 22i .

Again, the number of tokens that d is charged with does not change
in the rest of the token transfer process. □

Based on the above lemma, what remains to show is a bound
for E

[
2id(i)

�� i ∈ GC
]
. We bound this in terms of E [t(i) | i ∈ GC],

where t(i) is the (random) number of deletions that happen at level i.
Instead of considering t(i) directly, we rather focus on the following
quantity. For a pivot p(S) sampled from some set S (considering only
the uncovered elements at that time), let i(S) be the relative position
of p(S) in S w.r.t. the deletion order. We remark that i(S) is uniformly
distributed in {1, . . . , |S |}. Define x(i) :=

∑
S :p(S)∈D(i) i(S). Notice

that deterministically x(i) ≤ t(i) since all the elements that appear
in a set S no later than the respective pivot p(S) in the deletion order
are deleted assuming p(S) is deleted.

Let us also condition on p(i) = p for some fixed value p, and
consider E [x(i) | i ∈ GC,p(i) = p]. We now relate this quantity to
another random process. Suppose is an adversary that defines a
collection of exactly p sets S (possibly with repetition), where each
set S ∈ S has size |S | ∈ [2i , 2i+1), and a deletion sequence over
the elements of the sets. Now we sample a pivot p̃(S) uniformly at
random in each set S ∈ S, and let ĩ(S) be the relative position of the
pivot p̃(S) in S w.r.t. the deletion sequence. The adversary is informed
about the values ĩ(S). The adversary chooses a subcollection S′ ⊆ S

of size at least ε2
8 p, and computes x̃p (i) =

∑
S ∈S′ ĩ(S). The adversary

makes these choices in order to minimize E
[
x̃p (i)

]
.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud and R. Addanki and F. Grandoni and D. Panigrahi and B. Saha

LEMMA 6. E
[
x̃p (i)

]
≤ E [x(i) | i ∈ GC,p(i) = p].

PROOF. We use a coupling argument. Intuitively, the adversary
can mimic the behavior of any execution of our decremental algo-
rithm. In more detail, consider any execution of the decremental
algorithm such that i ∈ GC and p(i) = p. We couple the behav-
ior of the adversary with this execution as follows. The adversary
selects the same deletion order as in the input, and as collection
S precisely the sets that appear at level i right before each update
phase that involves that level (hence |S| = p). By coupling, we
can assume that the sampled pivots in S are precisely the pivots
P(i) of level i in the execution of the algorithm. The collection S′

is given by the sets S ∈ S such that the corresponding pivots are
deleted and charged in the considered execution of the algorithm.
Observe that d(i) ≥ ε

2ch(i) ≥ ε2
8 p(i) =

ε2
8 p, hence the constraint

|S′ | ≥ ε2
8 p is satisfied. One has x̃p (i) = x(i) deterministically in the

above construction, hence E
[
x̃p (i)

]
= E [x(i)]. The claim follows

since the adversary makes the optimal choices in order to minimize
E

[
x̃p (i)

]
. □

LEMMA 7. E
[
x̃p (i)

]
≥ ε4

10242
ip.

PROOF. Consider the collection S of p sets and the deletion
order chosen by the adversary. Once the p pivots P̃(i) are fixed, the
best strategy for the adversary is to choose the sub-collection S′ of
precisely ε2

8 p sets S with smallest ĩ(S) (breaking ties arbitrarily). It
remains to bound the expected value of x̃p (i) =

∑
S ∈S′ ĩ(S).

We say that a set S ∈ S is bad if ĩ(S) ≤ ε2
322

i and good otherwise.
We let b(i) and д(i) be the number of bad and good sets, respectively.
Observe that each set is bad independently with probability at most
ε2
32 , hence E [b(i)] ≤ ε2

32p. By Markov’s inequality,

Pr
[
b(i) ≥

ε2

16
p

]
≤

1
2
.

Given the event E =
{
b(i) < ε2

16p
}
, one has that at least one half of

the ε2
8 p selected sets are good, in which case deterministically

x̃p (i) ≥
ε2

16
p ·

ε2

32
2i =

ε4

512
2ip.

We can conclude that

E
[
x̃p (i)

]
≥ Pr [E] · E

[
x̃p (i)

�� E]
≥

1
2
·
ε4

512
2ip. □

Finally, we put the above lemmas together to obtain the desired
bound.

LEMMA 8. The expected running time of the algorithm in the

decremental case is O
(
f n +

f 2

ε5 · t
)
, where t is the number of dele-

tions.

PROOF. Let us consider a given level i. One has

E [t(i) | i ∈ GC,p(i) = p] ≥ E [x(i) | i ∈ GC,p(i) = p]

Lem. 6
≥ E

[
x̃p (i)

] Lem. 7
≥

ε4

1024
2ip. (3)

Hence

E [t(i) | i ∈ GC] =
∑
p

Pr [p(i) = p | i ∈ GC] · E [t(i) | i ∈ GC,p(i) = p]

(3)
≥

∑
p

Pr [p(i) = p | i ∈ GC] ·
ε4

1024
2ip =

ε4

1024
2i · E [p(i) | i ∈ GC]

≥
ε4

1024
2i · E [d(i) | i ∈ GC] . (4)

Now, we note that
L∑
i=0

Pr [i ∈ GC] ·
f 2

ε
2iE [d(i) | i ∈ GC]

(4)
≤

L∑
i=0

Pr [i ∈ GC] ·
f 2

ε
2i
1024
ε42i

E [t(i) | i ∈ GC]

≤

L∑
i=0

1024f 2

ε5
E [t(i)] =

1024f 2

ε5
t .

The lemma now follows from Lemma 5. □

We summarize the results in the following theorem.

THEOREM 1. Given an ε > 0, let ∆ = f 2

ε5 . There exists a decre-
mental algorithm for set cover that achieves an f (1 + ϵ) approxima-
tion and takes O(∆ · t) time in expectation over t updates.

3 The Fully Dynamic Set Cover Algorithm
In this section, we extend the algorithm for the decremental case to
the fully dynamic case. At any time t , let A ⊆ X denote the elements
that need to be covered; we call these the active elements. Our goal
is to maintain a feasible set cover F for the active elements A and
ensure that the cost of F is at most (1 + ϵ)f times that of an optimal
solution. At the beginning, A = ∅ and F = ∅. Elements are then
inserted or deleted from A in a fixed sequence, independent of the
randomness of the algorithm. If an element is inserted and then gets
deleted and reinserted, we treat the two insertions separately as two
copies of the same element.

3.1 The Algorithm
We now describe the update phases where the algorithm changes
its solution in response to the insertions and deletions of elements.
The update phases are very similar to the decremental algorithm,
but with a few critical changes. To describe the changes, we need
to introduce some additional notation. Just like the decremental
algorithm, the fully dynamic algorithm maintains a set of pivots P ,
and at any time, the solution F can be completely specified by P
as follows: F = {S | S ∋ p}. S(p) denotes the set of elements from
which a pivot p ∈ P is chosen and X(p) denotes the set of elements p
is accounted to cover at any point of time. If |S(p)| ∈ [2i , 2i+1), we
say that pivot p is a level-i pivot, and denote ℓ(p) = i. We call the sets
{S | S ∋ p, ℓ(p) = i} level-i sets. In addition, we partition X (p) into
two subsetsOriд(p) and Extra(p), that is X (p) = Oriд(p)∪Extra(p)
and Oriд(p) ∩ Extra(p) = ∅. An element e ∈ Oriд(p) is called an
original element and an element e ∈ Extra(p) is called an extra
element.Oriд(p) consists of all elements that p is accounted to cover
at the time when p was chosen to be a pivot and F + = {S ∈ S′ :
p ∈ S} sets are included in the solution. Thus, S(p) ⊆ Oriд(p). It
is possible that p is accounted to cover more elements due to later
updates. Those elements are added to Extra(p). Along with P , the
algorithm also maintains sets D and U of deleted and undeleted

Dynamic Set Cover: Improved Algorithms and Lower Bounds STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

pivots respectively, just like in the decremental algorithm. When
an element e ∈ P is deleted, we move e from U to D but keep this
element in P . Changes to P are done only during an update phase
which we describe below.
Insertion of a new active element. Supppose a new element e is
inserted in the set of active elements A. If {S | S ∋ e} ∩ F , ∅, then
e is already covered by the current solution F . In this case, let S be
the set containing e at the highest level breaking ties arbitrarily. If
p ∈ P ∩ S denotes the pivot in S , then we insert e in Extra(p) and
X (p), and F remains unchanged. Otherwise, e is not covered by the
current solution F . In this case, we include e as a level-0 pivot and set
S(e) = {e}, X (e) = Oriд(e) = {e}. We update F = F ∪ {S | S ∋ e}.
We also update the sets P and U to include e.
Deletion of an existing active element. When an element e is
deleted from the set of active elements A, we mark e as deleted
from the sets {S | S ∋ e} ∩ F . If e ∈ P , we move e from U to D. By
doing so, if |D | > ϵ · |P |, then we say that an update phase has been
triggered, and perform the following additional steps.
Update Phase. First, we fix a critical level ℓ using the level fixing
process of the decremental algorithm. Having fixed this level ℓ, we
discard all sets F (p) from F that were added by pivots p at levels ℓ
or lower, i.e., where ℓ(p) ≤ ℓ. Correspondingly, these pivots p are
also removed from P and from either D or U depending on whether
they are deleted or undeleted. As a result, a set of active elements
become uncovered in F ; this set is denoted X ′.

Next, the update phase has two steps, a movement step and a
covering step, to cover the elements in X ′.
Movement step: For each element e ∈ X ′, we check if there is a set
S ∈ F containing e at a level ℓ′ > ℓ. If yes, we select a set S ∋ e at
the highest level (breaking ties arbitrarily). If p = P ∩ S , then e is
added to Extra(p) and X (p).
Covering step: Let Y ′ ⊆ X ′ denote the elements left uncovered
after the movement step. We now run the Random Cover subroutine
on the instance (Y ′,S′) induced by Y ′ and add the resulting sets
F ′ to the overall solution F . We say that levels ℓ and below have
been updated in the current update phase. The newly selected pivots
are added to P and U . For every newly chosen pivot p ∈ Y ′ ∩ P ,
if S(p) ∈ [2i , 2i+1), then pivot p is a level-i pivot and we include
{S | S ∋ p} at level i. Note that it is possible that i > ℓ due to newly
inserted elements. Also note that all the elements of Y ′ now become
original elements after the covering step.

The next lemma, shown in Section 4, establishes the time taken
to implement the above algorithm.

LEMMA 9. The above algorithm for the insertion of a new el-
ement, or the deletion of an existing element that does not trigger
an update phase, takes O(f) time. The time complexity of an update
phase is O(f |X ′ |).

3.2 Analysis of the Competitive Ratio
LEMMA 10. The competitive ratio of the algorithm is at most

f /(1 − ε).

PROOF. Consider the data structure right before the t-th update.
Let P t be the set of pivots at that time, with U t being the subset
of undeleted pivots. We also let OPT t and F t be the optimal and
approximate solution at that time.

Observe that |F t | ≤ f · |P t | by construction. We claim that
|OPT t | ≥ |U t |. This implies the claim since by construction |P t | ≤
|U t |/(1 − ε) at any time.

To see that, let us show by a simple induction that, for any two
distinct p,p′ ∈ U t , there is no set S ∈ F covering both p and p′.
Thus OPT t needs to include a distinct set for each element of U t .
Since we start with an empty set cover, the property holds at the
outset. Assume the property holds up to step t ≥ 1, and consider
step t + 1. If an element e is inserted at time t + 1, then e becomes a
pivot if and only if e is not covered by any existing set in F . Hence,
the property holds. If a non-pivot element e is deleted at t + 1, or e is
a pivot but its deletion does not trigger an update phase, then since
we do not change the solution F , the property holds by the inductive
hypothesis.

Now, assume e is a pivot and its deletion triggers an update phase
at critical level ℓ′, with the elements covered at levels i ≤ ℓ being
denoted by X ′. Note that we select a set of new pivots from Y ′ ⊆ X ′

and let F ′ denote the new sets that are added after the update phase.
We consider three cases. if p,p′ ∈ F , then they do not belong to the
same set by the inductive hypothesis. If p,p′ ∈ F ′, then they do not
belong to the same set since the Random Cover subroutine picked
both these elements as pivots. Finally, if p ∈ F and p′ ∈ F ′, then
the movement step ensures that p′ is not covered by F whereas all
sets containing p are in F . Therefore, p and p′ do not belong to the
same set in this case either. Therefore, the property holds after the
(t + 1)-st update. □

3.3 Analysis of the Amortized Update Time
Consider a sequence of t updates, and let T be the time right before
the (t + 1)-st update occurs (or the end of the execution if no such
update occurs). Our goal is to bound the expected update time till

T as O
(
t ·

f 2 logn
ϵ

)
. We recall some definitions from Section 2 and

introduce some new notation for the purpose of the analysis.
Old notation. Recall the definition of the critical level ℓ and Lemma 4.
Note that when performing an update at a critical level ℓ, a level
i ≤ l is said to be charged if di ≥ ϵ

2pi and uncharged otherwise.
Suppose that level i is updated qi times in total, and let P ji be the

total set of pivots in the j-th such update. P(i) is the multiset of pivots
obtained by taking union over P ji and p(i) = |P(i)|. The pivots of
type P ji where level i is charged on the j-th update are called charged
and denoted CH (i), ch(i) = |CH (i)|. The charged deleted pivots at
level i are denoted D(i),d(i) = |D(i)|. Let I be the total number of
insertions up to time T .

Recall that a level i is globally-charged iff ch(i) ≥ ϵ
4p(i), and

globally-uncharged otherwise. Let GC denote the random set of
globally-charged levels.
New notation. Let us now define a new mapping R that maps an
element e (on which an update phase operates) either to a charged
deleted pivot or to an insertion. To construct this mapping, if an ele-
ment e takes part in qe update phases, including both the movement
and the covering steps, then each of these occurrences is treated
separately.

An element e ∈ Oriд(p) is mapped to a charged deleted pivot d,
i.e., R(e) = d , if M(p) = d . Now consider an element e ∈ Extra(p). If
e has never been an original element, then it must have been inserted

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud and R. Addanki and F. Grandoni and D. Panigrahi and B. Saha

as an extra element and has taken part only in movement steps since
then. This is because whenever a covering step processes an element,
it becomes an original element. In this case, we map e to its insertion,
denoted eI and set R(e) = eI . Otherwise, consider the last update
phase, when e was an original element just before the update and
became an extra element immediately after it. If e ∈ Oriд(p′) and
M(p′) = d ′ during that phase, then set R(e) = d ′.

Note that all qe occurrences of e are mapped by R to either to
the insertion eI or to charged deleted pivots. If R(e) = eI , we say
insertion eI is responsible for e and if R(e) = d, we say the charged
deleted pivot d is responsible for e. Note that a charged deleted pivot
d is responsible for an element e if an only if e ∈ Oriд(p) for some
pivot p and M(p) = d.

Let us use L = ⌊log2 n⌋ to denote the largest level and X to denote
the multiset of elements obtained by taking the union of Oriд(p) and
Extra(p) over all p ∈ P .

LEMMA 11. Each charged deleted pivot d ∈ D(i) is responsible
for at most (2/ϵ) · f · 2i+1 · (L + 1) elements of X.

PROOF. Consider a deleted pivot d ∈ D(i) and let Pd = {p |

M(p) = d} be the set of pivots mapped to d. Consider any pivot
p ∈ Pd . Note that, d is only responsible for the elements in Oriд(p)
and that ℓ(p) ≤ ℓ(d) = i. By definition of ℓ(p), each set containing
p covers less than 2ℓ(p)+1 new elements at the time p was selected
to be a pivot. Hence |Oriд(p)| < f · 2ℓ(p)+1 ≤ f · 2i+1. Now let us
count the number of times d was held responsible for e ∈ Oriд(p).
The element e was an original element just before the update phase
that operates on d. If e gets processed during that phase by the
covering step, then d was responsible for e only once. Otherwise, e
gets processed by the movement step during that phase and becomes
an extra element. If e is processed r times by the movement step
before becoming an original element again, then d is responsible
r + 1 times for e. However, the level of e strictly increases after each
movement step. Therefore, r ≤ L. Thus, d can be responsible for e at
most L + 1 times. This holds for all p ∈ Pd . Now, the claim follows
noting |Pd | ≤ 2/ε by Lemma 4. □

LEMMA 12. Each insertion eI ∈ I is responsible for at most L+1
elements of X.

PROOF. An insertion eI is only responsible for the element e. If e
takes part in r movement steps before becoming an original element
for the first time, then eI is responsible r + 1 times for e. Since the
level of e strictly increases after each movement step, we have r ≤ L.
Thus, the claim follows. □

We now have an analog of Lemma 5.

LEMMA 13. The expected running time of the algorithm after t
updates is

O

(
f · |I | · (L + 1) +

L∑
i=0

Pr [i ∈ GC] · E
[
f 2

ε
· 2i · d(i) · (L + 1)

���� i ∈ GC

])
.

PROOF. From Lemma 9, the total update time up to time T is
O(f · (|I | + |X|)). Now from Lemma 11 and Lemma 12,

f ·(|I |+ |X|) = f ·

(
(L + 1) · |I | + (2/ϵ) · f · (L + 1) ·

∑
i
d(i) · 2i+1

)
.

We can give each charged deleted pivot 4
ϵ · f · (L + 1) · 2i tokens

and then follow the token transfer process of Lemma 5 so that all
these tokens are transferred to charged deleted pivots in the globally
charged levels. Moreover, each charged deleted pivot in a globally
charged level contains at most 8

ϵ · f · (L + 1) · 2i tokens. The lemma
now follows. □

Let t(i) denote the (random) number of deletions at level i up
to time T , and let t ′ =

∑
i t(i). Then t ′ ≤ t . Exactly as in the

decremental case, we can now use Lemmas 6, 7, and 8 to bound

L∑
i=0

Pr [i ∈ GC] · E
[
f 2

ε
2id(i)(L + 1)

���� i ∈ GC

]
≤

1024
ϵ5

f 2t(L + 1).

(5)

LEMMA 14. The expected running time of the algorithm in the

fully dynamic case is O
(
f 2 logn

ε5 · t
)
, where t is the number of up-

dates.

PROOF. This follows from Lemmas 8 and 13, and Eq. (5), noting
that t ′ ≤ t , |I | ≤ t , and L = (loдn). □

We summarize the results in the following theorem.

THEOREM 2. Given an ε > 0, let ∆ = f 2 logn
ε5 . There exists

a fully-dynamic algorithm for set cover that achieves an f (1 + ϵ)
approximation and takes O(∆ · t) time in expectation over t updates.

4 Implementation Details and Running Time
In this section, we give implementation details of the algorithms,
leading to the proofs of Lemma 2 (decremental) and Lemma 9 (fully
dynamic).

4.1 Decremental Algorithm
We assume that any given set cover instance (X ′,S′), with maximum
frequency f is represented as follows. Elements (resp., sets) are
labelled 1 to n′ = |X ′ | (resp., m′ = |S′ |). W.l.o.g. we can assume
that each set covers at least one element of X ′, so that m′ ≤ f · n′.
We have a vector SET indexed by elements, where SET [e] is the list
of sets S′(e) containing e. Observe that SET [e] contains at most f
entries. We assume that sets are described by a vector ELEM indexed
by sets, where ELEM[S] is a list of elements contained in set S . We
keep a pointer from each e ∈ ELEM[S] to the corresponding entry S
in SET [e] and vice-versa.

In order to implement deletions, we proceed as follows. We main-
tain a Boolean vector DEL indexed by e ∈ X ′, which is initialized
to false. When element e is deleted, we set DEL[e] = true. Further-
more, we scan SET [e], and for each S ∈ SET [e] we remove e from
ELEM[S]. Note that this can be done in O(1) time for each set S
using the pointers mentioned above, i.e., in time O(f) per element
e. This also implies that deleting all the elements one by one takes
O(f |X ′ |) time in total.
The Random Cover Subroutine. The Random Cover procedure
computes a sequence of pivots P ′. Furthermore, for each pivotp ∈ P ′,
it computes a collection F (p) of sets that are added to the solution
because of p, and the corresponding set X(p) of newly covered
elements. This takes O(f + |X(p)|) time for a given pivot p.

Dynamic Set Cover: Improved Algorithms and Lower Bounds STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

It remains to specify how we efficiently extract a set S of max-
imum cardinality at each step to select a pivot. We maintain a list
SORT whose entries are pairs (i,Li), where i is the cardinality of
a set and Li is the list of sets of cardinality i. We store all such
entries with Li not empty, in decreasing order of i. This list can be
initialized in linear time O(f |X ′ |) (say, using radix sort). We also
maintain pointers from each set S to the corresponding entry in the
list L |S | .

The first element of the first list Li is the selected set S at each
step. Then we update SORT as follows. Each time we remove an
element e from some set S ′ of cardinality i, we remove S ′ from
Li and add it to Li−1. Note that this might involve creating a new
entry (i − 1,Li−1) in SORT (if S becomes the only set of cardinality
i − 1), or deleting the entry (i,Li) from SORT (if S was the only set
of cardinality i). In any case, these operations can be performed in
O(1) time. It follows that the entire procedure can be implemented
in time O(f · |X ′ |) time.
The Set Cover Solution. We store and maintain the approximate so-
lution as follows. We maintain the set cover instance under deletions
as described before. Furthermore, we maintain vectors F and X. For
a pivot p, F (p) is the corresponding list of selected sets because of
p, and X(p) is the associated list of newly covered elements due to
these selected sets. These two lists are empty if p is not a pivot.
Level selection. We maintain counters D and P labelled by levels
i = 0, . . . , ⌈log2 n⌉, where D[i] (resp., P[i]) is the number of deleted
pivots (resp., all pivots) at level i. When we delete a pivot at level
i, we increment D[i]. When we update at critical level ℓ, we set
D[i] = P[i] = 0 for all i ≤ ℓ. Furthermore we increment P[i] for
each newly computed pivot of level i. Clearly these operations have
amortized cost O(1) per update. We similarly maintain the total
number D̃ and P̃ of deleted pivots and all pivots, respectively. By
comparing D̃ and P̃ at each deletion, we can check whether the
condition for the update of a suffix is satisfied. In that case, using D
and P , it is easy to compute in O(ℓ2) time the lowest critical level ℓ.
Update Phase. We next describe how, given a critical level ℓ, we
update the approximate solution. We keep a list GREEDY whose
entries are pairs (j, Pj). Here j is a level and Pj is the list of pivots of
that level. We keep such entries only for non-empty Pj , in increasing
order of j.

Given a critical level ℓ, we scan the list GREEDY and compute
P ′ := ∪j≤ℓPj together with X ′ := ∪p∈P ′X(p) (represented as lists).
We remove all the corresponding entries from GREEDY , and reset
the corresponding values of ℓ(p), S(p), F (p), and X(p).

Let us show how to build the data structures for the subinstance
(X ′,S′), with S′ = {S ∩ X ′ : S ∈ S and S ∩ X ′ , ∅}, in time
O(f |X ′ |). Let n′ = |X ′ | and m′ = |F ′ | ≤ f n′. By scanning the
entries of SET corresponding to X ′, we build the list of indexes S′.
We now map X ′ into a set of new indexes in [1,O(n′)] by means
of a perfect hash function, and similarly map F ′ into a set of new
indexes in [1,O(m′)]. These perfect hash functions can be built in
expected linear time using well-known constructions (say, 2-level
hashing [20]). Observe that some indexes might not be used: we
interpret those indexes as dummy elements and sets. Given this, we
can easily build in linear time the data structures SET ′ and ELEM ′

for the new instance.

The use of random hash functions can be avoided by assuming that
we are given access to two arraysMAPelem andMAPset respectively
of size n and m ≤ nf that are initialized to all zeros. We now
map X ′ to [1,n′] and S′ to [1,m′] as follows. We create vectors
MAP−1elem and MAP−1set of size n′ and f n′, resp., which are initialized
to zero. We iterate over X ′: when considering the j-th element of
X of global id k (that is, it is the k-th element in [1,n]), then we
set MAPelem [k] = j and MAP−1elem [j] = k. Similarly, we iterate
over S′ and update MAPset and MAP−1set analogously. In order to
handle possible duplicates in S′ (and possibly in X ′), we simply
do not perform the update when we find an entry of MAPset (or
MAPelem) that is already non-zero. Now, X ′ has been mapped to
[1,n′] and S′ has been mapped to [1,m′]. This allows us to build
vectors ELEM ′ and SET ′ in the same way as above. Once the update
phase has ended, we reset MAPelem and MAPset to 0 by iterating
over MAP−1elem and MAP−1set . The overall process takes O(f n′) time.

We feed the vectors SET ′ and ELEM ′ to the Random Cover sub-
routine that outputs a list P ′ of pivots, plus the associated values ℓ(p),
S(p), F (p), and X(p) for each p ∈ P ′. Using MAP−1elem and MAP−1set
we can map back the indexes of the corresponding elements and sets
into the original indexes.

We remark that by construction, we will have ℓ(p) ≤ ℓ. Now,
we build a list GREEDY ′ of the same type as GREEDY , however
restricted to pivots in P ′ and to the respective levels. Finally, we
concatenate GREEDY ′ to the beginning of the list GREEDY .

We are now ready to prove Lemma 2. We first observe that, up to
constant factors, the time taken in one level fixing process at critical
level ℓ is at most that in the subsequent update phase. Indeed, recall
that level fixing at level ℓ takes time O(ℓ2). Since ℓ is the lowest
critical level, ℓ−1 is not critical, therefore there is at least one deleted
pivot in level ℓ. This implies that this update involves at least 2ℓ
elements, thus having cost Ω(2ℓ). The claim follows.

We can therefore focus on the cost of the update phase. Each pivot
p at level i that participates in the update corresponds to at most f
sets of size at most 2i+1 each. Hence the set X ′ of elements that
participate in the update has size at most

∑
i≤ℓ f pi2i+1. As argued

above, we can build the corresponding set cover instance (X ′,S′)

and run the Random Cover subroutine on it in O(f |X ′ |) time. This
completes the proof of Lemma 2.

4.2 Fully Dynamic Algorithm
We now briefly describe the changes in the fully-dynamic algorithm
that leads to Lemma 9. Along with each X(p), we also maintain
two disjoint subsets of X(p): Oriд(p) and Extra(p). When a set S
is included in the current solution with pivot p and newly covers
elements X(p), we follow the implementation details of the decre-
mental case. In addition, we set Oriд(p) = X(p) and Extra(p) = ∅.
This does not change the asymptotic run time.

When an element e is inserted, we iterate over SET (e) and check
if there exists any set S ∈ SET (e) present in the current solution.
For each S ∈ SET (e), the check can be implemented in O(1) time
by maintaining a Boolean variable for every S ∈ S and setting
it to 1 whenever it is included in the solution. If S ∈ S, we also
maintain a pointer to its pivot p, and the value ℓ(p). If none of the
sets in SET (e) is present, then we include all sets in SET (e) in the
solution, mark e as the pivot for these sets and set ℓ(e) = 0. We set

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud and R. Addanki and F. Grandoni and D. Panigrahi and B. Saha

X(e) = {e}, Oriд(e) = {e} and Extra(e) = ∅. This entire process
can be implemented in O(f) time as |SET (e)| ≤ f . Thus, insertion
takes O(f) time.

Deletion without an update phase is implemented in the same way
as in the decremental case and, therefore, takes O(f) time as well.
If there is an update phase at a critical level ℓ, given the instance
(X ′,S′), we first execute the movement step as follows. We scan
every element e ∈ X ′ and iterate over SET (e) to check if there exists
a set S ∈ SET (e) that is in the current solution at a level strictly
higher than ℓ. If so, we include e as an extra element in the highest
such set and discard e from X ′. This entire operation takes O(f |X ′ |)

time.
Let Y ′ be the uncovered elements at the end of the movement

step. We run the covering step as in the decremental case over Y ′.
This takes O(f |Y ′ |) time which is bounded by O(f |X ′ |). Whenever
a new pivot p is selected, the level of p and the corresponding sets are
determined in O(|S(p)|) time. Accordingly, the lists Li s are updated.
These updates take O(1) time per set.

Thus, the update phase in the fully dynamic algorithm can be
implemented in O(f |X ′ |) time, thereby proving Lemma 9.

5 Conditional Lower Bounds for Dynamic Set
Cover

A fast algorithm for a dynamic problem usually gives a fast algo-
rithm for its static version. If we can solve dynamic Set Cover with
preprocessing time P(n, f) and update time T (n, f), then we can
solve the static Set Cover problem in P(n, f) + n · T (n, f) time: n
updates are sufficient in order to create an offline instance. This
simple connection immediately leads to some lower bounds for dy-
namic Set Cover. In particular, we get that it is NP-Hard to get an
o(logn) approximation with polynomial preprocessing and update
times. However, this connection does not give any lower bound in the
polynomial time solvable regime of Set Cover where a min{ f , logn}
approximation is possible in linear time. Could there be a dynamic
algorithm with such approximation factors that has o(f) or even
O(1) update time? This would not imply a new static algorithm for
Set Cover.

Of course, such an algorithm is impossible if to insert an element
we must explicitly specify the O(f) sets it appears in. But in the
model we consider, an update can be specified with much fewer bits.
We assume that all elements X and sets S are given in advance, as
well as all the membership information. Then, an update can add
or remove an elements (in the Element-Update case) or sets (in the
Set-Updates case). Only elements from X (or sets from S) can be
added or removed, and when an element is removed then a set-cover
does not need to cover it. Notice that O(log |X |) bits are needed to
specify an element insertion, and its membership in all the sets is
known from the initial input. In this model, it is conceivable that
an algorithm can spend o(f) time per update and maintain some
non-trivial approximation. The results in this section show that this
is unlikely.

Under SETH, we show that no algorithm can preprocess an in-
stance with m sets and n elements in poly(n,m) time, and subse-
quently maintain element (or set) updates in O(m1−ε) time, for any
ε > 0, unless the approximation factor is essentially mδ , for some

δ > 0. Note that a factor m approximation can be maintained triv-
ially in constant time (pick either zero or all sets). and we show that
essentially any mo(1) approximation algorithm requires Ω(m0.99)
time.

THEOREM 3 (MAIN LOWER BOUND). Let nω(1) < m < 2o(n)
and t ≥ 2, such that t = (n/logm)o(1). Assuming SETH, for all ε > 0,
no dynamic algorithm can preprocess a collection of m sets over
a universe [n] in poly(n,m) time, and then support element (or set)
updates in O(m1−ε) amortized time, and answer Set Cover queries
in O(m1−ε) amortized time with an approximation factor of t .

We can state the following corollary in terms of the frequency
bound f .

COROLLARY 1. Assuming SETH, any dynamic algorithm for Set
Cover on n elements and frequency bound f , where nω(1) < f <

2o(n), that has polynomial time preprocessing and amortized update
and query time O(f 1−ε), for some ε > 0, must have approximation
factor at least (n/log f)Ω(1).

PROOF. Without assuming anything about the instances in Theo-
rem 3 we can conclude that f ≤ m whilem ≤ nf < f 2. Therefore,
any approximation algorithm with factor O((n/log f)δ) also gets
an approximation of O((n/2 log f)δ) = O((n/log f 2)δ) which is
smaller than O((n/logm)δ) and it is enough to refute SETH via
Theorem 3. □

The rest of this section is dedicated to the proof of Theorem 3.
Our starting point is the following SETH-based hardness of approxi-
mation result, which was proven first in [1] with a slightly smaller
approximation factor, and was strengthened in [16] using, in part, the
technique of [35]. These results use the distributed PCP framework
of [1] for hardness of approximation results in P, and ours is the first
application of this framework to dynamic problems.

THEOREM 4 ([1, 16, 35]). Let nω(1) < m < 2o(n) and t ≥ 2,
such that t = (n/logm)o(1). Given two collections of m sets A,B

over a universe [n], no algorithm can distinguish the following two
cases in O(m2−ε) time, for any ε > 0, unless SETH is false:
YES case there exist A ∈ A,B ∈ B such that B ⊆ A; and
NO case for every A ∈ A,B ∈ B we have |A ∩ B | < |B |/t .

From this theorem and standard manipulations it is easy to con-
clude the following statement. There are two differences in the
statement below: first, the sizes of A and B are asymmetric, and
second, the approximation is in terms of the number of sets required
to cover a single b ∈ B, rather than the size of the overlap.

LEMMA 15. Let nω(1) < m < 2o(n) and t ≥ 2, such that t =
(n/logm)o(1), and for all 0 < a ≤ 1. Given two collections of
sets A,B over a universe [n], where |B| = m and |A| = ma , no
algorithm can distinguish the following two cases in O(m1+a−ε)
time, for any ε > 0, unless SETH is false:
YES case there exist A ∈ A,B ∈ B such that B ⊆ A; and
NO case there do not exist t sets A1, . . . ,At ∈ A, and a set B ∈ B

such that B ⊆ A1 ∪ · · · ∪At .

PROOF. Assume for contradiction that such an algorithm exists.
Given an instance A,B of the problem in Theorem 4 we show how

Dynamic Set Cover: Improved Algorithms and Lower Bounds STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

to solve it in O(m2−ε) time. Partition A into k =m1−a collections
A1, . . . ,Ak of sizema each, and invoke our algorithm on the asym-
metric instance Ai , B for each i = 1 · · ·k. The total time will be
k ·O(m1+a−ε) = O(m2−ε). If the original (symmetric) instance was
a YES case, then clearly at least one of the k asymmetric instances is
a YES case. On the other hand, if it was a NO case, then any A ∈ A

cannot cover more than a 1/t fraction of any set B ∈ B and therefore
all the asymmetric instances are NO cases. □

Next we take this static set-containment problem and reduce it to
dynamic Set Cover. We show two distinct reductions, a simpler one
for the element updates case, and then a more complicated one with
set updates.

5.1 Element Updates
Given an instance A,B of the problem in Lemma 15, we construct
an instance of dynamic Set Cover with approximation factor (t − 1)
as follows. The universe [n] will be the same, and all sets in A will
appear in the instance. However, the sets in B will not, and they
will be implemented implicitly in a dynamic way. Initially, all the
universe elements are activated, and the algorithm may preprocess
the instance. Note that the number of sets is onlyma .

For each set Bi ∈ B we will have a stage. We start the stage by
removing from the universe all elements e ∈ Bi that belong to Bi .
After we do these O(n) updates, we ask a Set Cover query. If the
answer is less than t then we can stop and answer YES. Otherwise,
we finish the stage by adding back all the elements that we removed
and move on to the next stage. After we finish all m stages for all
the sets in B, we answer NO.

In total we have O(nm) updates and queries, and so the final
runtime is P(n,ma) + O(nm) · (T (n,ma) + Q(n,ma)). Assume we
have an algorithm with update and query timeT (n,ma)+Q(n,ma) =

O(ma ·(1−ε)) and polynomial preprocessing, P(n,ma) = O(ma ·c) for
some c ≥ 1, then we can choose a = 1/c and get an algorithm for
the problem in Lemma 15 with runtime O(m1+a−εa), contradicting
SETH.

Finally, let us show the correctness of the answer. If we are in the
YES case, then there is a set B ∈ B that is contained in some set
in A. When we ask a query at the stage corresponding to this set
B, the size of the minimum set cover is 1. To see this note that all
active universe elements are the elements of B and so we can cover
all of them with some set in A. Therefore, our (t − 1) approximation
algorithm must output an answer that is less than t and we will
output YES. On the other hand, if we are in the NO case, then in
all stages, the size of the minimum set cover is at least t since at
least t sets from A are required to cover any set in B. Thus, the
approximation algorithm will always return an answer that is at least
t and we will never output YES.

5.2 Set Updates
The previous reduction fails in this case because we are only allowed
to update sets, not elements. A natural approach for extending it is
to have all sets from B in our instance and then at each stage we
activate one of them. This would work, except that the number of
sets grows to m which would only give us a weaker lower bound.
Indeed such a simple reduction can rule out O(m1−ε) update times if
the preprocessing is restricted to take subquadratic time. A different

idea is to add n auxiliary sets, one per element, so that this set only
contains that element. Then, if we want to remove an element, we
can add this set and somehow ensure that it is a part of the solution
so that, effectively, the corresponding element is removed. This is
the approach we take. The main challenge, however, is that these
auxiliary sets have to be picked in our set cover solution and so
they contribute to the size of the optimal solution. That is, we will
no longer have a set cover of size 1 in the YES case and the gap
between the YES and NO cases changes. To overcome this issue, we
introduce another idea where we create many copies of everything
and combine them into one instance in a certain way.

Given an instance A,B of the problem in Lemma 15, we con-
struct an instance of dynamic Set Cover with approximation factor
(t − 1) as follows.

Our universe will be k := n2 times larger, and for each element
e ∈ [n] in the universe of the original instance we will add k elements
e1, . . . , ek to our instance. (So, our universe is isomorphic to [kn].)

For each set A ∈ A we construct t sets A1, . . . ,Ak in our dy-
namic instance. All of these sets will remain activated throughout
the reduction. The set Ai contains all elements ei such that e ∈ A.
That is, Ai contains the ith copy of all the elements that were in A.
Note that Ai does not contain e j for any i , j.

We also add sets S1, . . . , Sn which will be activated dynamically,
and we let Se contain all copies of the element e ∈ [n]. That is,
Se contains e1, . . . , ek . These sets will allow us to simulate the
deactivation of a set B.

Next we explain the dynamic part of the reduction. For each set
B ∈ B we have a stage where we effectively deactivate all universe
elements that are not in B. To do this, we activate the set Se for all
e < B such that e is not in B. Note that we have activated up to n sets
Se , and that together they cover all copies of all elements that are in
the complement of B. After we perform theseO(n) updates, we ask a
Set Cover query. If the answer to the query is at most (n +k) · (t − 1)
we return YES. Otherwise, we undo the changes we made in this
stage and we move on to the next B ∈ B. After all the stages are
done, we return NO.

The runtime analysis is similar to before since the only difference
is in the universe size which increased from n to kn = n3 but it is still
mo(1). We have O(nm) updates and queries, and so the final runtime
is P(nk,ma) + O(nm) · (T (nk,ma) + Q(nk,ma)). Assume we have
an algorithm with update and query time T (nk,ma) +Q(nk,ma) =

O(ma ·(1−ε)) and polynomial preprocessing, P(nk,ma) = O(ma ·c)

for some c ≥ 1, then we can choose a = 1/c and get an algorithm for
the problem in Lemma 15 with runtime O(m1+a−εa), contradicting
SETH.

Finally, we show the correctness of the answer. For the YES case,
there is a set B ∈ B that is contained in some set in A. When we
ask a query at the stage corresponding to this set B, the size of the
minimum set cover is at most n + k . This is because of the following
set cover: Choose all sets Se that are active in this stage; this cover
all copies of all universe elements that are not in B. Then choose all
copies Ai of the set A ∈ A that contains B; this covers all copies
of all elements that are in B. Therefore, our (t − 1) approximation
algorithm must output an answer that is at most (n + k)(t − 1) and
we will output YES. On the other hand, in the NO case, the size of
the minimum set cover is at least k · t in every stage. This is because

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud and R. Addanki and F. Grandoni and D. Panigrahi and B. Saha

at least t sets from A are required to cover any set in B, and in a
stage of some set B the only way we can cover copies of elements
that belong to B is by choosing copies of sets A that contain them.
There are k copies of the universe elements, and for each such copy
we have to choose at least t sets from A to cover the elements of
that copy, and these sets do not contain any elements from any other
copy of the universe. Thus, the approximation algorithm will always
return an answer that is at least kt , which is larger than (n +k)(t − 1)
since k = n2 and t = no(1), and we will never output YES.

Acknowledgements. The authors are grateful to Shay Solomon for
pointing out an error in a preliminary version of this paper. The
authors would also like to thank the anonymous reviewers for their
insightful comments. F. Grandoni is partially supported by the SNSF
grants 200021_159697/1 and 200020B_ 182865/1. D. Panigrahi is
partially supported by NSF contracts CCF 1535972, CCF 1527084,
an NSF CAREER Award CCF 1750140, and the Indo-US Virtual
Networked Joint Center on Algorithms under Uncertainty. B. Saha
is partially supported by an NSF CRII grant CCF 1464310, an NSF
CAREER Award CCF 1652303, and an Alfred P. Sloan fellowship.

References
[1] Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. 2017. Distributed PCP

Theorems for Hardness of Approximation in P. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017. 25–36.

[2] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular conjectures imply
strong lower bounds for dynamic problems. In Foundations of Computer Science
(FOCS). 434–443.

[3] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. 2018. Matching
triangles and basing hardness on an extremely popular conjecture. SIAM J. Comput.
47, 3 (2018), 1098–1122.

[4] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. 2017. Fully dynamic
all-pairs shortest paths with worst-case update-time revisited. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
440–452.

[5] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. 2017. Fully dynamic
all-pairs shortest paths with worst-case update-time revisited. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
440–452.

[6] Sepehr Assadi and Sanjeev Khanna. 2018. Tight bounds on the round complexity
of the distributed maximum coverage problem. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2412–2431.

[7] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. 2018. Fully
dynamic maximal independent set with sublinear update time. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM,
815–826.

[8] Surender Baswana, Manoj Gupta, and Sandeep Sen. 2015. Fully Dynamic Maxi-
mal Matching in O (logn) Update Time. SIAM J. Comput. 44, 1 (2015), 88–113.

[9] Aaron Bernstein and Cliff Stein. 2016. Faster fully dynamic matchings with
small approximation ratios. In Proceedings of the twenty-seventh annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 692–711.

[10] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. 2017. De-
terministic fully dynamic approximate vertex cover and fractional matching in O
(1) amortized update time. In International Conference on Integer Programming
and Combinatorial Optimization. Springer, 86–98.

[11] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon
Nanongkai. 2018. Dynamic Algorithms for Graph Coloring. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
1–20.

[12] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. 2015. Design
of dynamic algorithms via primal-dual method. In International Colloquium on
Automata, Languages, and Programming. Springer, 206–218.

[13] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. 2015. Determin-
istic fully dynamic data structures for vertex cover and matching. In Proceedings
of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 785–804.

[14] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New
deterministic approximation algorithms for fully dynamic matching. In Proceed-
ings of the forty-eighth annual ACM symposium on Theory of Computing. ACM,
398–411.

[15] Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Lacki, and
Nikos Parotsidis. 2016. Decremental Single-Source Reachability and Strongly
Connected Components in Õ(m

√
n) Total Update Time. In IEEE 57th Annual

Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA. 315–324.

[16] Lijie Chen. 2018. On The Hardness of Approximate and Exact (Bichromatic)
Maximum Inner Product. In 33rd Computational Complexity Conference, CCC
2018, June 22-24, 2018, San Diego, CA, USA. 14:1–14:45.

[17] Camil Demetrescu and Giuseppe F. Italiano. 2004. A New Approach to Dynamic
All Pairs Shortest Paths. J. ACM 51, 6 (Nov. 2004), 968–992.

[18] Irit Dinur and David Steurer. 2014. Analytical approach to parallel repetition. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing.
ACM, 624–633.

[19] Greg N Frederickson. 1985. Data structures for on-line updating of minimum
spanning trees, with applications. SIAM J. Comput. 14, 4 (1985), 781–798.

[20] Michael L. Fredman, János Komlós, and Endre Szemerédi. 1984. Storing a Sparse
Table with 0(1) Worst Case Access Time. J. ACM 31, 3 (1984), 538–544.

[21] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Pani-
grahi. 2017. Online and dynamic algorithms for set cover. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 537–550.

[22] Manoj Gupta and Richard Peng. 2013. Fully dynamic (1+ e)-approximate match-
ings. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on. IEEE, 548–557.

[23] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and Strengthening Hardness for Dynamic Problems
via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015. 21–30.

[24] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and strengthening hardness for dynamic problems via
the online matrix-vector multiplication conjecture. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing. ACM, 21–30.

[25] Monika R Henzinger and Valerie King. 1999. Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. Journal of the ACM (JACM)
46, 4 (1999), 502–516.

[26] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. Journal of the ACM (JACM) 48, 4 (2001), 723–760.

[27] Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld, Jonathan Ullman, Ali Vakil-
ian, and Anak Yodpinyanee. 2017. Fractional set cover in the streaming model.
In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 81. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[28] Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, and Piotr Sankowski. 2017.
Decremental single-source reachability in planar digraphs. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017. 1108–1121.

[29] Subhash Khot and Oded Regev. 2008. Vertex cover might be hard to approximate
to within 2- ε . J. Comput. System Sci. 74, 3 (2008), 335–349.

[30] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher Lower Bounds from
the 3SUM Conjecture. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016. 1272–1287.

[31] Andrew McGregor and Hoa T Vu. 2016. Better streaming algorithms for the
maximum coverage problem. arXiv preprint arXiv:1610.06199 (2016).

[32] Ofer Neiman and Shay Solomon. 2016. Simple deterministic algorithms for fully
dynamic maximal matching. ACM Transactions on Algorithms (TALG) 12, 1
(2016), 7.

[33] Krzysztof Onak and Ronitt Rubinfeld. 2010. Maintaining a large matching and a
small vertex cover. In Proceedings of the forty-second ACM symposium on Theory
of computing. ACM, 457–464.

[34] Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. 2018. Fully
Dynamic MIS in Uniformly Sparse Graphs. In 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic. 92:1–92:14.

[35] Aviad Rubinstein. 2018. Hardness of approximate nearest neighbor search. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. 1260–1268.

[36] Shay Solomon. 2016. Fully dynamic maximal matching in constant update time.
In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on. IEEE, 325–334.

[37] Christian Wulff-Nilsen. 2017. Fully-dynamic minimum spanning forest with im-
proved worst-case update time. In 49th ACM Symposium on Theory of Computing.
ACM, 1130–1143.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 The Decremental Set Cover Algorithm
	2.1 The Algorithm
	2.2 Analysis of the Competitive Ratio
	2.3 Analysis of the Amortized Update Time

	3 The Fully Dynamic Set Cover Algorithm
	3.1 The Algorithm
	3.2 Analysis of the Competitive Ratio
	3.3 Analysis of the Amortized Update Time

	4 Implementation Details and Running Time
	4.1 Decremental Algorithm
	4.2 Fully Dynamic Algorithm

	5 Conditional Lower Bounds for Dynamic Set Cover
	5.1 Element Updates
	5.2 Set Updates

	References

