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Abstract— Small-footprint mobile ground robots, such as
the popular Turtlebot and Kobuki platforms, are by necessity
equipped with sensors which lie close to the ground. Reli-
ably detecting and tracking people from this viewpoint is a
challenging problem, whose solution is a key requirement for
many applications involving sharing of common spaces and
close human-robot interaction. We present a robust solution
for cluttered indoor environments, using an inexpensive RGB-
D sensor such as the Microsoft Kinect or Asus Xtion. Even
in challenging scenarios with multiple people in view at once
and occluding each other, our system solves the person detec-
tion problem significantly better than alternative approaches,
reaching a precision, recall and F1-score of 0.85, 0.81 and
0.83, respectively. Evaluation datasets, a real-time ROS-enabled
implementation and demonstration videos are provided as
supplementary material.

I. INTRODUCTION

Many emerging robotics applications require that mobile
robots and humans share common spaces and interact with
each other. One of the main issues to be solved to enable
these scenarios is reliable detection and tracking of nearby
humans. Only after this issue is solved, robots can manage
tasks such as the following.

• Safely and efficiently navigate an environment shared
with pedestrians [16], following predictable paths that
stay out of the pedestrians’ way (a form of indirect
interaction).

• Adjust their position, following social rules that take
into account personal spaces [31], in order to facilitate
direct interaction and cooperation [23]; an example is
a robot moving at an appropriate distance in front
of an human with which an interaction is desired or
ongoing [34].

• Carry out application-specific tasks such as: monitoring
crowd movements; following a specific person in a
cluttered environment to provide assistance or predict
its intentions [20]; standing in a line with humans [27].

RGB-D sensors, such as the Microsoft Kinect [2] or Asus
Xtion [1], are an ideal and widely-adopted tool for human
perception: in this work, we deal with the problem of detect-
ing and tracking one or multiple people when the sensor is
mounted on the robot itself. More specifically, we focus on
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the issues arising from configurations in which the sensor’s
viewpoint is close to the ground: this is the case of the widely
popular Turtlebot and Kobuki robots [5], which we use as a
reference platform; however, this is in general true for any
small-footprint ground robot, such as autonomous vacuum
cleaners, small platforms for surveillance, monitoring, or
item delivery.

RGB-D sensors were designed for perceiving people, and
many techniques have been published for solving problems
much more demanding than detection and tracking, with im-
pressive results [13], [28]. Unfortunately, existing algorithms
are not suitable for the task at hand, because in our case one
or more key assumptions, such as the visibility of the upper
body of the subject in the frame, are not met (we review
related literature in Section II). Detecting and tracking people
from a low-lying viewpoint is a fundamentally different
and mostly unexplored problem with unique challenges (see
Figure 3):

• occlusions (by other subjects, other robots, or even short
objects such as tables and chairs) happen frequently and
are severe;

• when the subject is close to the robot – i.e. just when
accurate perception is of paramount importance – most
of the subject falls outside of the sensor’s field of view;
the only visible feature is part of the person’s legs,
which exhibit a complex, highly-variable appearance
with irregular motion and no obvious markers for de-
tection;

• typical indoor environments are cluttered with distrac-
tors (such as table legs and chairs) which are not easily
distinguishable from human legs;

• the robot’s own motion disallows to adopt straightfor-
ward techniques for segmenting moving objects.

Our main contribution is an efficient technique (Sec-
tion III) which robustly solves people detection and tracking
in this challenging scenario, under the assumption that the
floor is planar – which is reasonable for most indoor en-
vironments drivable by a ground robot. More specifically,
our system detects each person visible in the sensor’s field
of view and returns its position relative to the robot and
its approximate orientation; moreover, each subject is also
tracked through time as long as it stays visible (note that we
do not deal with the problem of person re-identification after
a track is lost for a long time).

In our approach, leg-like objects protruding from the floor
are initially segmented, then classified as either human legs



or distractors by means of a statistical classifier learned
from a large, 26000-instance training dataset acquired in 15
different real-world environments; the resulting probabilistic
information is processed in a two-level tracking framework,
which associates data in space and time to detect and track
people. We illustrate our algorithm in detail using real-
world datasets, and showcase results in various complex,
realistic scenarios (Section IV), representing environments
disjoint from those used during training. Quantitative results
show significant performance improvements over alternative
approaches, highlighting the contributions of the learned
classifier and tracking framework. Extensive demonstration
videos and a real-time, open-source, ROS-enabled imple-
mentation are provided as supplementary material at http:
//bit.ly/perceivingpeople. A preliminary version
of our system will be demonstrated to the public in the
HRI 2014 video track [35].

II. RELATED WORK

Due to the importance of detection and tracking for
practical applications, many solutions have been proposed
in the robotics literature.

2D laser range data: Early works mainly exploited 2D
laser range data on an horizontal plane: depending on the
sensor height, different horizontal sections of the human
body are considered, the most common being the waist [15]
or the legs [7], [24], [30]. Range measurements are first
spatially clustered on the horizontal plane, then each cluster
is classified using either machine learning [7] or model
fitting algorithms [21]. Approaches based on 2D laser data
are efficient, but operate on perceptions limited to one (or
few) planar sections of the scene; then, depending on the
sensor height, an human and a different object could yield
very similar observations and therefore be impossible to
discriminate [26]. This yields a reduced accuracy compared
to methods based on more powerful sensors, as we verify
in Section IV. Moreover, the cheapest 2D laser scanners
cost more than 4 times as much as an RGB-D sensor and
inexpensive robots such as the Turtlebot and Kobuki are
not equipped with one in their default configuration. On
the other hand, it’s interesting to note that several laser-
based approaches [7], [24], [30] share with our system the
challenging requirements that arise from adopting a low-
lying sensor position, such as dealing with the problem of
pairing legs belonging to the same person [6].

RGB-D data: Despite being cheaper than 2D laser scan
technology, RGB-D sensors provide aligned color and depth
images of the environment in their field of view, allowing
to reconstruct a 3D point cloud of the observed space.
Furthermore, one may easily merge 2D RGB image pro-
cessing tecniques with 3D point cloud analysis, which is
a key advantage over a monocular video stream, where
3D information is computationally expensive to infer. Since
they use structured infrared lighting, RGB-D sensors are not
suitable for outdoor applications; in these cases, 3D point
clouds of the environment in front of the robot can be
instead acquired by means of stereo cameras or 3D laser

scanners [33]. Roboticists use RGB-D sensors for disparate
indoor perception tasks, ranging from indoor environment
mapping [18] to human body pose and gesture recogni-
tion [28].

A fundamental issue to be solved when perceiving people
is the detection problem, i.e., determining whether a person
is in the field of view, and its approximate position. Most
algorithms dealing with people perception from RGB-D data
focus instead on higher-level tasks, such as pose recovery,
action or gesture recognition. In these scenarios, a reasonable
assumption is that at least the subject’s upper body is
visible: then, the detection problem is solved through simpler
techniques such as: looking for obvious person markers (e.g.
the head [37]); filtering point clusters matching the expected
approximate dimensions of a person (most importantly, the
height [9]); or using statistical classifiers trained on the whole
shape of the person [32]. However, in order to ensure that the
subject’s upper body is visible, the viewpoint can not lie too
close to the subject; moreover, in order to avoid occlusions,
expecially in crowded or cluttered environments, the sensor
should stay in an elevated position, at least at the level of
the subjects’ chest or eyes. The mentioned algorithms, thus,
cannot be directly used on small-footprint ground robots,
which must by necessity be short, with sensors lying close to
the ground, and which may get very close to the subjects. In
this case, the detection problem becomes significantly more
complicated, due to the uncommon viewpoint, from which
the lower part of the human body is the most prominent
feature and severe occlusions frequently occur in cluttered
scenarios.

Moreover, several RGB-D based methods not developed
explicitly for robotics applications assume that the sensor is
still, and segment moving objects using background subtrac-
tion [4], which is not a suitable approach if the sensor is
mounted on a mobile robot, since the whole scene moves
w.r.t. the reference frame of the sensor.

A relevant related work [17] faces the problem of people
detection in presence of occlusions, by splitting the 3D point
cloud in layers according to the height from the floor, then
finding clusters in each layer and classifying each cluster as
a human segment or not: different clusters classified to be
part of an human are finally connected according to their
relative distance in order to reconstruct the visible part of
the person. However, only occlusions affecting the lower part
of the subject are considered (conversely, in our scenario the
legs are often the only visible part, which raises a number of
challenging issues detailed in the rest of the paper), and each
frame is independently processed: instead, our method adopts
tracking at different levels of the pipeline, which yields a
significant advantage in overall accuracy, which we quantify
in Section IV.

To the best of our knowledge, our approach is the first to
demonstrate practical and robust detection and tracking of
people from an RGB-D sensor mounted on a mobile, low-
lying viewpoint.
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Fig. 2. Point clusters within the first 20 cm above the floor are identified as
candidate feet (a). The centroids of the clusters are projected onto the floor
plane and are used as generators of a Voronoi diagram. Each candidate
foot is then expanded to a candidate leg, by constraining its expansions
up to the knee level and only to the points whose vertical projections fall
within the corresponding Voronoi region (b). The Rectified Depth Image is
computed on each candidate leg (c) and from it the Histogram of Oriented
Gradients feature vector is extracted (d). The latter is classified (e) and the
corresponding leg probability is obtained (f).

III. METHOD

Legs are the most prominent (and, for close subjects, the
only) feature which is visible from our considered point
of view. Therefore, our approach is based on the detection
of legs in the 3D point cloud. However, legs have a very
variable appearance, and many objects with a similar shape
are present in cluttered environments: therefore, our approach
first detects candidate legs (Section III-A) using simple rules
that yield high sensitivity (i.e. rarely misses an actual leg)
but suffer from low specificity (i.e., detects many spurious
objects); then, a statistical classifier previously learned from
large training datasets is applied to candidates in order to
discriminate actual legs from other objects (Section III-B).
Individual candidates are tracked along time (Section III-C)
and their leg-likelihood continuously updated by integrating
classifier outputs in time: at this stage, people can finally
be detected and tracked using leg positions and likelihoods
as observations in a Kalman filter. An overall view of the
system is presented in Figure 1.

A. Data Preprocessing and Selection of Candidate Legs

Initially, point cloud data is preprocessed by discarding
points outside the declared range of the sensor (which are
affected by large amounts of noise [22]); then, the point cloud
is downsampled using a voxel grid approach [3] with a voxel-
size of 1 cm. This reduces by more than 80% the amount of
data to be processed and yields a more homogeneous point
density at different distances from the sensor (Figure 3).

Floor Plane Detection: Because the sensor position and
rotation may be only approximately known, we initially
detect the floor plane in the 3D point cloud using RANSAC-
based [14] plane detection, constraining the search to quasi-
horizontal planes. The whole point cloud can now be rigidly
transformed in such a way that the floor lies onto the plane

Fig. 3. Original (left) and downsampled (right) point cloud.

z = 0, the z-axis points upwards, the y-axis is directed along
the projection of the optical axis onto the floor plane and the
x-axis is determined to complete a right-handed reference
frame.

Candidate Selection: Candidates are identified as point
clusters emerging from the floor (Figure 2(a)): in particular,
we initially limit the analysis to 3D points within the
first 20 cm above the floor and apply a density-based 3D
clustering technique. This family of clustering algorithms
defines clusters as areas of higher density than the remainder
of the data set. The point cloud section we select to apply
this search is generally characterized by few sparse objects in
large areas: these clear variations in point density perfectly
meet the requirements of DBSCAN [12]. The method re-
quires two parameters: a radius delimiting the neighborhood
extent and the minimum number of neighbors required to
form a cluster. Density-based clustering methods greatly
benefit from a relatively homogeneous density in the input
point cloud: in our case, this is ensured by the voxel-grid
downsampling preprocessing step mentioned above. Indeed
this simplifies the setup of the parameters, which we em-
pirically tuned to be a minimum of 5 neighbors in a 4 cm
radius, having verified they perform well in very different
situations. In practice, this approach may occasionally lead
to cluster together two feet, expecially when the person is
standing still (conversely, while a person is walking its feet
are usually well-spaced and would not be merged): we accept
this possibility, and let the subsequent machine learning and
tracking approaches handle this case.

The dimensions of the bounding box of each cluster’s
horizontal projection are used as a simple criterion to pre-
filter candidates which are obviously too large or too small
to represent either an actual single foot or a joint couple of
feet.

Expansion of Candidates to Candidate Legs: The resulting
3D point clusters are limited to a maximum height of
20 cm, and therefore contain little geometric information
for discriminating actual feet from other objects; attempting
to exploit such data alone would incur in the same issues
observed with 2D laser-scans, as many objects would appear



Fig. 4. Grayscale representation of the rectified depth image for four leg
candidates, the last of which is a non-leg object.

similar to feet. Therefore, we now expand candidates up to
knee-height (50 cm), thus incorporating useful information
about the characterizing features of a person’s leg, like the
ankle shape and the almost cylindrical surface of the limb.
Further expansion would lead to issues with subjects close to
the sensor, where anything above the knee would fall outside
of the sensor’s field of view.

In order to avoid adding too many unrelated points to a
candidate leg, which would inevitably occur in case of very
close clusters and may lead to an erroneous classification,
the expansion of each candidate foot is spatially bounded. In
particular, we consider the projection on the floor plane of
the centroids of all candidates and compute the 2D Voronoi
region for each. For a given candidate, the expansion only
considers 3D points whose projection on the floor falls within
the respective Voronoi region (Figure 2(b)).

B. Classification

For each candidate 3D shape, a rectified depth image is
computed and used to build a feature vector for classification
by means of a statistical SVM classifier [19].

Rectified Depth Image Computation: The rectified depth
image for a given candidate is computed by an orthographic
projection of its 3D points onto a vertical plane (Figure 2(c)
and 4). Note that, unlike the depth image directly acquired
by the sensor, the rectified depth image is not affected
by the sensor’s pitch and roll (which may not be exactly
horizontal), nor by perspective distortions; therefore, it is
expected to yield a standardized representation of the candi-
date’s appearance, robust to variations in the sensor’s position
on the robot. Depth values are computed on a 40x50 cm
grid with cell-size of 1 cm, and regularized through mild
morphological filtering.

Feature Computation and Classification: We summarize
the rectified depth image for a candidate by means of the
Histogram of Oriented Gradients [11] descriptor (HOG):
this allows us to robustly characterize local 3D shape and
appearance of an object by representing local depth changes
in simple histograms. A similar descriptor is the Histogram
of Depths, which was also adopted for people detection in
RGB-D data [32].

We divide the rectified depth image in 4 × 5 square
windows with an edge of 10 cm, then discretize the depth
gradients within each window over a 9-bin histogram. This
yields a good trade-off between classification accuracy and
feature dimensions. The resulting 180-dimensional feature

Fig. 5. Visualization of the results of candidate classification: green and
red correspond respectively to high and low leg probability.

vector is processed by a pre-trained soft SVM binary clas-
sifier (with RBF kernel) returning the probability of the leg
and non-leg classes (Figure 2(d,e,f)).

After the classification phase, a set of leg observations,
consisting of the leg candidates 3D points together with their
leg probability, is available for further processing (Figure 5).

C. Tracking

People are detected and tracked from leg observations
computed for each frame by means of a two-step approach: in
the first step, individual leg observations are used to robustly
detect and track legs in time, obtaining a set of leg tracks;
in the second step, leg tracks are used as observations in a
filter which yields a set of person tracks, solving challenging
data association issues.

Legs Tracking: Tracking leg observations across frames
is not trivial, because temporary occlusions of the legs (by
foreground objects, the other leg, or other people) are very
frequent. The state variables tracked for each leg observation
consist of the 2D position and velocity of the leg centroid
projected onto the floor plane, as well as its probability of
being a leg. The update step is performed by associating each
leg observation to the closest leg track and using the cluster
centroid and the leg probability returned by the classifier
as measurements. A constant velocity model is assumed for
each leg track, considering random gaussian noise to account
for a variable acceleration (in practice, legs have a very
irregular movement pattern).

Because the robot may be moving or rotating while
sensing, tracking must be performed using a fixed reference
frame, not the robot’s own: in particular, leg observations are
converted from the sensor’s reference frame to a fixed refer-
ence frame by exploiting the robot’s odometry information.
We demonstrate this feature in the supplementary video, by
showing how tracking is stable to robot rotations, and how
a person’s velocity is correctly estimated regardless of the
robot’s own motion.

Tracking multiple objects in cluttered environments is
known to be a very challenging task. Several sophisti-
cated algorithms (most notably JPDAF [8], GMPHD [36],
MHT [10], and multi-target particle filters [29]) have been
proposed to deal with these complex scenarios. We have ob-
served satisfactory results with a simpler and more efficient
approach, which accounts for some particular features of the



problem at hand.
In order to associate leg observations to leg tracks, we

perform a variant of nearest neighbor data association. In
particular, we project on floor the foot points of the leg
observation and compute their minimum euclidean distance
to the leg track centroid. When this minimum distance is
under a small threshold (5 cm), the leg observation is directly
associated to that leg track and a classic Kalman Filter
update step is performed. If a leg observation can be directly
associated to two distinct leg tracks, revealing a consistent
possibility that two close legs previously tracked separately
have been merged by the clustering phase into a unique leg
observation, then both leg tracks are updated, each with a
measure corresponding to an estimate of its new centroid.
Leg tracks not directly associated to a leg observation are
updated through a PDAF [8] approach, accounting for all
observations within 15 cm of the track’s centroid. The
PDAF algorithm extends the standard Kalman Filter in order
to perform the track state update in presence of multiple
measures, of which the correct association is unknown, also
accounting for the fact that none of them may be the target
measure. Finally, in the case a leg observation is far (more
than 15 cm) from any existing track, a new track is created.

Note that only leg tracks with a leg probability larger than
a threshold τ are used for the subsequent level of tracking.
τ represents an important parameter of the system, whose
impact is evaluated in Section IV.

People Tracking: The second tracking step uses leg tracks
as observations and returns a set of person tracks, which
is the final output of the system. In particular: the state
variables tracked for each person consist on the 2D position
of its barycenter and its velocity; the motion model is
assumed to be constant velocity with random gaussian noise;
the measurements used for updating the state are derived
from leg tracks as described below.

In crowded scenarios, correctly associating each leg track
to the correct person track is not straightforward: we adopt
the following geometric approach.

• First, we find pairs of leg tracks which most likely
belong to the same person. In particular, the 3D point
cluster associated to each leg track is expanded upwards,
to the hip level: if a pair of clusters join, we check
whether their barycenter can be directly associated to an
existing person track using a nearest-neighbor policy. If
this is verified, a classic Kalman state update is applied
on the person track, and the two leg tracks are removed
from further processing. Note that this procedure misses
many leg pairs, expecially for subjects close to the
sensor (whose hip area falls outside the sensor’s field
of view).

• Remaining leg tracks are used to create a list of all
leg track pairs which may belong to the same person –
i.e. whose mutual distance is shorter than 80 cm. Note
that the same leg track may appear in more than one
of such pairs. The centroid of each pair is computed
and added to a list of potential person barycenters.
Additionally, the centroid of each individual leg is also

included in the same list, in order to account for the
frequent case in which a single leg is visible for a
person. For each person track yet to be updated, a PDAF
approach is performed by accounting for all potential
person barycenters within a 40 cm radius from the
barycenter of the person track.

A critical aspect turns out to be the creation of a new
person track. Our system adopts a conservative strategy,
creating a new person only when two leg tracks have high
classification probabilities, the upward expansions of the
associated clusters nearly merge, and their barycenter is
far enough from the barycenter of existing person tracks.
Consequently, single leg tracks far from any known person
track are assumed to belong to a yet untracked person whose
second leg has not been observed yet.

IV. EXPERIMENTAL RESULTS

A. Implementation

The prototype system is implemented in MATLAB, with
the most computationally expensive tasks written as mex
functions able to exploit multi-core CPUs thanks to OpenMP
support. Various ROS-Matlab bridges exist [25] which allow
to use our prototype within ROS: in particular, it appears
as a node listening for RGB-D data and robot odometry,
and publishing the positions and velocities of tracked people.
Alternatively, the prototype can use the OpenNI library for
accessing to live or recorded sensor data. The release is
available on-line at bit.ly/perceivingpeople. De-
pending on the scenario complexity, the system processes
10 to 30 fps on a low-end Intel Core i5 laptop. When
using a top-end laptop based on an Intel Core i7-4930MX
processor, the minimum framerate observed in very complex
scenarios raises to 25 fps, whereas for most of the time the
full frame rate is achieved with less than 40% CPU load. As
we measure in Section IV-F, the system’s performance does
not significantly degrade even with as few as 10 fps.

B. Dataset Acquisition and Classifier Training

The training dataset for the SVM classifier is acquired
as follows. We recorded two set of videos: the first set was
shot in 15 different cluttered indoor environments without
any person appearing in the frame; the second set was shot
by placing the sensor in several wide indoor halls, recording
only passing people. In the first set of videos, all detected leg
candidates have been labeled with ground truth class non-leg;
in the second set, all leg candidates have ground truth class
leg. The resulting training dataset contains 26000 candidates,
of which 35% are legs.

Moreover, testing datasets have been created for evalu-
ating the overall performance of the system. We recorded
three 30 seconds RGB-D videos in different and completely
new environments (i.e., not included in the training dataset)
and manually labelled each single frame, by marking every
visible leg and indicating which person it belonged to. The
testing scenarios are the following:

S-Easy: The sensor is still and two people randomly walk
in an obstacle-free environment.



S-Medium: The sensor is still and three people walk
around a small table with few other obstacles in the scene.

S-Difficult: The sensor is on a mobile platform in a quite
cluttered environment and a total of three people walk around
a small table.

The three testing datasets with associated ground truth
are also available as supplementary material, to promote
quantitative comparisons with future systems.

C. Performance measures

We tested the performance of our system using the frame-
based metrics of precision (p), recall (r) and F1 score (f1 )
defined as:

p =
TP

TP + FP
r =

TP

TP + FN
f1 =

2pr

p+ r
(1)

where: TP is the number of True Positives, FP is the
number of False Positives and FN is the number of False
Negatives.

We separately evaluated leg detection and person detec-
tion.

Legs Detection: This evaluation is intended to measure
the performance in correctly identifying legs in each frame,
regardless of the person which they belong to. In this case,
a True Positive is a correctly detected leg, a False Positive
is a leg detection returned by our system which can not be
associated to any leg in the ground truth of the frame, and a
False Negative is a leg in the ground truth of the frame for
which no detection has been reported.

People Detection: This evaluation is intended to express
an overall performance measure of our system, which only
accounts for whether people visible in the frame are in fact
detected. True Positives are counted for each person in the
ground truth for which a person track has been returned
within a 25 cm radius. False Negatives are counted for each
person in the ground truth for which no person track is found
within the same limit. False Positives are counted for each
detected person track whose associated legs are not in the
ground truth, or do not belong to the same person.

D. Alternative methods

In order to evaluate how our system compares with al-
ternative methods, we implemented and tested on the same
datasets three different approaches to leg detection.

Inscribed Angles Variance (IAV [21]): a 2D laser-based
method that classifies a cluster to be a leg based on geomet-
rical relations.

Supervised Learning on 2D Range Data [7]: a 2D laser-
based method which trains a machine learning classifier on
13 cluster features. We compare results obtained with both
Adaboost and SVM classifiers.

Histogram of Local Surface Normals (HLSN [17]): an
alternative classification feature extracted from 3D points.

For 2D laser-based methods, we synthesize input data by
computing an horizontal section of our 3D leg candidates at
30 cm above the floor plane.

E. Quantitative results

We report results computed on the S-Difficult scenario in
our testing dataset.

Initially, we analyze how the performance changes when
tuning the leg probability threshold τ , i.e. the probability
used to discriminate legs and non-legs candidates. The plot
in Figure 6(a) shows the precision-recall curves concerning
Legs Detection both for our and alternative methods. The
HOG SVM curve is the output of the classifier used by our
system, which clearly outperforms all alternative approaches.
Moreover, the HOG SVM + Tracking curve shows that
tracking also improves frame-based detection performance,
because the leg probability associated to each candidate is
filtered over time, which limits the impact of occasional
occlusions. Moreover, due to the peculiar way data asso-
ciation is handled (see Section III-C), our tracking algorithm
manages to return two distinct legs close to each other, even
when the preceding clustering algorithm merges both into a
single cluster.

The plot in Figure 6(b) shows the precision-recall curves
concerning People Detection, using both our system, and
alternative methods for leg detection. In particular, the perfor-
mance of a given alternative method is computed by applying
our own tracking approach to detections returned by such
method.

In order to determine the optimal leg probability threshold
τ , in Figure 7(a) we analyze the People Detection perfor-
mance of the system while varying τ . We observe that the
F1 score reaches a stable maximum level in the interval 0.5
- 0.9, which shows that the parameter is not a critical one.
We select an intermediate value of τ = 0.8 for the following
experiment. In the same plot we also report the F1 score
obtained when tuning τ for the two alternative approaches
returning probabilities. In the case of the Laser SVM curve,
we note that the maximum F1 score is both lower, and less
robust to variations in the threshold parameter.

The following table reports the performance of our system
on the three different testing scenarios, when using τ = 0.8
as determined above.

Legs Detection People Detection

Scenario p r f1 p r f1

S-Easy 0.97 0.91 0.94 0.88 0.91 0.89
S-Medium 0.98 0.81 0.88 0.93 0.83 0.88
S-Difficult 0.96 0.79 0.87 0.85 0.81 0.83

Additional qualitative results and considerations are re-
ported in Figure 8.

F. Effect of frame rate for real-time application

Our tracking approach assumes a constant velocity state
transition model. This simplifying hypothesis is a good
approximation as long as the temporal interval between two
observations remains small. Therefore, we study how the
performance changes when limiting the input framerate –
which may be useful in case of systems with low processing
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Fig. 6. Performance in the Precision-Recall plane for different detection approaches. The ideal algorithm has precision = recall = 1 (which yields an
F1-score of 1). By tuning the τ parameter, the tradeoff between precision and recall is explored, yielding a precision-recall curve. Some methods appear
as single points since by design they only output a binary classification.
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(b) Effect of Frame Rate on F1 Score

Fig. 7. F1 score curves. On the left we show how the F1 score changes while tuning τ , for both our system and alternative methods. On the right we
plot, for our system, the effect of frame rate on performance using τ = 0.8.

power. Adopting the optimal leg probability threshold deter-
mined above, we evaluate our system by simulating a given
frame rate on the recorded S-Difficult scenario test video.
Figure 7(b) reports the F1 score for both the leg detection
problem and the people detection problem, versus the sim-
ulated frame rate. It can be observed that the performance
penalty when limiting the framerate is marginal as soon as
the framerate is kept above 10 fps. Under this threshold,
the legs tracking performance starts degrading significantly,
which also impacts the people tracking performance.

V. DISCUSSION AND CONCLUSIONS

We presented a practical approach for detecting and track-
ing people indoors, from a small-footprint ground robot
using an RGB-D sensor. Solving the problem required care-
ful handling of the peculiar challenges arising from this
scenario. We demonstrated that, in all considered datasets,

our system performs better than alternatives, and yields
good results both quantitatively (Section IV-E) and quali-
tatively (see supplementary videos at http://bit.ly/
perceivingpeople). We provided a practical, real-time,
ROS-enabled implementation ready to run on common robot
platforms such as the Turtlebot and Kobuki. In its current
version, the system does not exploit the RGB data provided
by the sensor; this is precious information that we plan to ex-
ploit for improving data association, and enabling additional
functionality such as person re-identification once a track is
temporarily lost.

REFERENCES

[1] Asus xtion pro live. http://bit.ly/19Sfn62.
[2] Microsoft kinect. http://bit.ly/1cAhjxI.
[3] The point cloud library. http://pointclouds.org/.
[4] Primesense nite middleware. http://bit.ly/IAIHRb.
[5] The turtlebot robot development kit. http://bit.ly/lqRgND.



Fig. 8. Example outputs from our system in challenging scenarios. All 3D points corresponding to each detected person are displayed in a different color.
A large disk drawn on the floor represents the barycenter for each person, with an arrow pointing towards the computed motion direction. Remaining
images show various failure modes. In c) one leg of the person on the left is not joined to the other. In d) part of the wall was merged with the person’s
leg (which was nonetheless correctly detected). In e) the person on the right was not re-associated to the correct person track (gray disk) after being briefly
lost, but a new track was created instead. In f) two legs were not correctly joined, and each was associated to its own person track. Note that most of these
failure cases are unstable, short-lived configurations which quickly resolve, as is apparent in supplementary videos.

[6] K. Arras, S. Grzonka, M. Luber, and W. Burgard. Efficient people
tracking in laser range data using a multi-hypothesis leg-tracker with
adaptive occlusion probabilities. In Proc. ICRA 2008.

[7] K. O. Arras, O. M. Mozos, and W. Burgard. Using boosted features
for the detection of people in 2d range data. In Proc. ICRA 2007.

[8] Y. Bar-Shalom et al. The probabilistic data association filter. IEEE
Control Systems, 29(6):82–100, 2009.

[9] F. Basso, M. Munaro, S. Michieletto, E. Pagello, and E. Menegatti.
Fast and robust multi-people tracking from rgb-d data for a mobile
robot. In Proc. Intelligent Autonomous Systems (IAS) 2012.

[10] S. Blackman. Multiple hypothesis tracking for multiple target tracking.
Aerospace and Electronic Systems Magazine, IEEE, 19(1):5–18, Jan
2004.

[11] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In Proc. CVPR, 2005.

[12] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise.
In Proc. Knowledge Discovery and Data Mining (KDD) 1996.

[13] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Van Gool.
Random forests for real time 3d face analysis. Int. J. Comput. Vision,
101(3):437–458, February 2013.

[14] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[15] A. Fod, A. Howard, and M. Mataric. A laser-based people tracker. In
Proc. ICRA 2002.

[16] J. Guzzi, A. Giusti, L. Gambardella, G. Theraulaz, and G. Di Caro.
Human-friendly robot navigation in dynamic environments. In Proc.
ICRA 2013.

[17] F. Hegger, N. Hochgeschwender, G. K. Kraetzschmar, and P. G.
Ploeger. People detection in 3d point clouds using local surface
normals. In RoboCup 2012: Robot Soccer World Cup XVI.

[18] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping:
Using depth cameras for dense 3d modeling of indoor environments.
In Proc. International Symposium on Experimental Robotics (ISER)
2010.

[19] T. Joachims. Making large scale svm learning practical. 1999.
[20] T. Kanda, D. Glas, M. Shiomi, and N. Hagita. Abstracting people’s

trajectories for social robots to proactively approach customers. IEEE
Transactions on Robotics, 25(6):1382–1396, 2009.

[21] H. Kheyruri and D. Frey. Comparison of people detection techniques
from 2d laser range data.

[22] K. Khoshelham and S. O. Elberink. Accuracy and resolution of kinect

depth data for indoor mapping applications. Sensors, 12(2):1437–
1454, 2012.

[23] C.-P. Lam, C.-T. Chou, K.-H. Chiang, and L.-C. Fu. Human-centered
robot navigation – towards a harmoniously human-robot coexisting
environment. IEEE Transactions on Robotics, 27(1):99–112, 2011.

[24] J. H. Lee, T. Tsubouchi, K. Yamamoto, and S. Egawa. People tracking
using a robot in motion with laser range finder. In Proc. IROS 2006.

[25] ROS Wiki Contributors. Ros on matlab. http://wiki.ros.org/
groovy/Planning/Matlab, 2014.

[26] O. Mozos, R. Kurazume, and T. Hasegawa. Multi-part people detection
using 2d range data. International Journal of Social Robotics, 2(1):31–
40, 2010.

[27] Y. Nakauchi and R. Simmons. A social robot that stands in line.
Autonomous Robots, 12(3):313–324, 2002.

[28] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Efficient model-
based 3d tracking of hand articulations using kinect. In Proc. British
Machine Vision Conference (BMVC) 2011.

[29] K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D. G. Lowe.
A boosted particle filter: Multitarget detection and tracking. In Proc.
European Conference on Computer Vision (ECCV) 2004.

[30] D. Schulz, W. Burgard, D. Fox, and A. B. Cremers. People track-
ing with mobile robots using sample-based joint probabilistic data
association filters. The International Journal of Robotics Research,
22(2):99–116, 2003.

[31] E. Sisbot, R. Alami, T. Simeon, K. Dautenhahn, M. Walters, and
S. Woods. Navigation in the presence of humans. In Proc. IEEE-RAS
International Conference on Humanoid Robots (Humanoids) 2005.

[32] L. Spinello and K. O. Arras. People detection in rgb-d data. In Proc.
IROS 2011.

[33] L. Spinello, K. O. Arras, R. Triebel, and R. Siegwart. A layered
approach to people detection in 3d range data. In Proc. AAAI 2010.

[34] M. Svenstrup, S. Tranberg, H. J. Andersen, and T. Bak. Adaptive
human-aware robot navigation in close proximity to humans. Interna-
tional Journal of Advanced Robotic Systems, 8(2):1–15, 2011.

[35] O. Tarabini et al. Video: Perceiving people from a low-lying viewpoint.
In Proc. Human Robot Interaction (HRI) 2014, to appear.

[36] B.-N. Vo and W.-K. Ma. The gaussian mixture probability hypothesis
density filter. Signal Processing, IEEE Transactions on, 54(11):4091–
4104, 2006.

[37] L. Xia, C.-C. Chen, and J. Aggarwal. Human detection using depth
information by kinect. In In Proc. Computer Vision and Pattern
Recognition Workshops (CVPRW) 2011.


