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Abstract

A novel approach for parameter estimation in Bayesian networks is presented.
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tions belonging to the same conditional probability table, thus borrowing statis-
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priori induced by the hierarchical model is performed and an ad hoc variational
algorithm for fast and accurate inference is derived. The proposed hierarchical
model yields a major performance improvement in classification with Bayesian
networks compared to traditional models. The proposed variational algorithm re-
duces by two orders of magnitude the computational time, with the same accuracy
in parameter estimation, compared to traditional MCMC methods. Moreover, mo-
tivated by a real case study, the hierarchical model is applied to the estimation of
Bayesian networks parameters by borrowing strength from related domains.
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1. Introduction

Bayesian networks (BNs) are probabilistic models that have been success-
fully applied in a large variety of domains, as reviewed for instance by Darwiche
(2010). Almost always, BNs model the relations between discrete variables. In-
deed, for discrete data many powerful inference algorithms have been developed
(Darwiche, 2009, Chap. 6–8) . In the BN terminology, inference is the task of
computing the posterior distribution of a set of variables, given the observation of
another set of variables.

Learning a Bayesian network is accomplished in two main steps: structure
learning, which consists in the identification of the most probable structure, de-
fined by means of a Direct Acyclic Graph (DAG), and parameter estimation,
which corresponds to the estimation of the conditional distributions in each node
of the DAG. In particular, given a DAG, we need to estimate the conditional prob-
ability table (CPT) of each variable (a node of the DAG), containing the condi-
tional probability distributions of the variable given each possible configuration
of its parents. A single conditional distribution is also referred to as a column of
the CPT.

While there have been many works on structure learning in recent years (Cam-
pos and Ji, 2011; Yuan et al., 2011; Bartlett and Cussens, 2015; Scanagatta et al.,
2016), parameter estimation is usually addressed adopting the established ap-
proach (Koller and Friedman, 2009, Sec. 17) of performing Bayesian estimation,
assuming Multinomial likelihood and Dirichlet prior over the parameters. Each
conditional distribution is estimated independently of the others. Moreover, all
the states of the conditional distribution are usually assumed to be equally prob-
able a priori; hence the maximum likelihood estimates are smoothed towards the
uniform distribution.

Under this model, parameter estimation is very efficient, thanks to the conju-
gacy of Multinomial and Dirichlet distributions. However, parameter estimation
is not accurate in sparse data scenarios, which arise frequently even in presence of
moderate number of variables due to the exponential number of conditional dis-
tributions to be estimated at a node. In these scenarios, instead of smoothing the
conditional distributions towards the uniform distribution, it would be more rea-
sonable to learn from all the available data an optimal distribution towards which
the estimates should be smoothed. It has already been conjectured (Koller and
Friedman, 2009, Sec. 17.5.4) that the estimates could be improved by estimating
the different columns jointly rather than independently, since different conditional
distributions belonging to the same CPT are expected to be similar to each other.
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Yet, parameter estimation becomes in this way much harder, as it is no longer
possible to express the posterior distribution of the parameters in closed form.

We propose a novel approach for improving parameter estimation in Bayesian
networks, based on hierarchical Bayesian modelling. We thus adopt an approach
similar to the one proposed in Kim et al. (2013), based on finite version of the
Hierarchical Dirichlet Process (Teh et al., 2006). The proposed generative model
assumes that the parameters of different conditional distributions belonging to the
same CPT are drawn from a common higher-level distribution, constituted by a
mixture of Dirichlet distributions. On the one hand, mixtures of Dirichlet distri-
butions improve the estimation of Multinomial parameters (Casella and Moreno,
2009) with respect to simple Dirichlet distributions. On the other hand, the mix-
ing parameter is a random vector ↵, whose posterior distribution is informative
about the distribution towards which the estimates should be smoothed. Such
distribution is determined by the values of ↵ that are most probable a posteri-
ori. Moreover, the hierarchical model jointly estimates the different conditional
distributions belonging to the same CPT, thus borrowing statistical strength from
each other (Murphy, 2012, Sec. 6.3.3.2). As a result, the hierarchical approach
yields a major improvement in parameter estimation, compared to the traditional
approach.

The idea of estimating a set of conditional distributions with a hierarchical ap-
proach has already brought interesting results in the context of Gaussian Graphical
Models (Leday et al., 2017), dynamic Bayesian networks (Grzegorczyk and Hus-
meier, 2012) and specific Bayesian network classifiers (Petitjean et al., 2018). Yet,
an important shortcoming of the hierarchical approach is its computational com-
plexity. The posterior distribution of its parameters does not have a closed form
and it should be numerically sampled; this can be time consuming when dealing
with Bayesian networks containing a large number of variables, even adopting
state-of-the-art Monte Carlo Markov Chain (MCMC) samplers, such as those im-
plemented in Stan (Carpenter et al., 2017). Variational Inference (VI) (Jaakkola
and Jordan, 2000; Blei et al., 2017) is instead a technique which efficiently ap-
proximates the posterior distribution.

We derive an original VI algorithm for the proposed hierarchical model, which
computes the posterior distributions with a negligible decrease of accuracy with
respect to MCMC, while reducing the computational time by two orders of mag-
nitude. We also show that, being specifically tailored for our model, it compares
favourably to recently proposed algorithms for automatic variational inference
(Kucukelbir et al., 2017).

We then extensively assess the impact of the novel parameter estimates based
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on hierarchical modelling when performing classification with Bayesian networks.
We consider a large number of data sets, and we show a consistent improvement of
classification accuracy when the hierarchical model is adopted for parameter es-
timation. Remarkably, the improvement is found even if we favor the traditional
Multinomial-Dirichlet by tuning its equivalent sample size, while we run the hier-
archical model without any tuning. The advantage over the traditional estimation
approach is huge when dealing with very small sample sizes, while it decreases as
the sample size increases, as predicted by the theoretical analysis.

We then consider the problem of learning parameters from related data sets;
this task is called meta-analysis in the statistical literature (Gelman et al., 2014,
Chap. 5.6) and transfer learning (Pan and Yang, 2010) in the machine learning
literature. There is currently no established method for learning parameters of
Bayesian networks from related data sets; we show how this task can be easily ac-
complished thanks to the hierarchical model, by borrowing strength across related
data sets. To the best of our knowledge, this is the first principled and scalable ap-
proach for learning parameters of Bayesian networks from related data sets. As an
application, we consider the case study of a mobile phone application that should
classify the user behaviour by means of a small amount of data available for each
user. The proposed Bayesian network classifiers, whose parameters are estimated
by borrowing strength across users, are much more accurate than their counter-
parts trained independently on the data set of each user. They are also more ac-
curate than random forest classifiers trained independently on the data set of each
user, despite random forests being extremely effective classifiers (Fernández Del-
gado et al., 2014; Wainberg et al., 2016; Bagnall and Cawley, 2017). Variational
inference is fundamental in this application, as it performs parameters estimations
borrowing strength across 100 users in minutes rather than in days, as it would be
required by MCMC.

The paper is organised as follows. Section 2 introduces both the traditional and
the hierarchical models for parameter estimation in Bayesian networks; moreover,
it derives analytical properties and exact inference for the proposed hierarchical
model. Section 3 describes a variational inference algorithm for approximating the
posterior distributions under the hierarchical model and reports some simulation
studies for assessing the accuracy of the proposed method. Section 4 describes the
parameter estimation setting in Bayesian networks and reports some simulation
studies for comparing the performance of hierarchical estimators with respect to
traditional estimators in a classification setting. Section 5 shows how to apply
the hierarchical model to the problem of parameter learning in Bayesian networks
from data coming from related data sets and shows the application to a real case
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study. Section 6 outlines future research directions. The appendix details exact
inference for the proposed hierarchical model and reports all the proofs.

2. Multinomial-Dirichlet models

We describe in this section both the traditional Multinomial-Dirichlet (MD)
model and the novel hierarchical model for parameter estimation in Bayesian net-
works. We present both models assuming a discrete children variable X (with
values in the set X ) and a discrete parent variable Y (with values in the set Y).
Even if we present the models in a Bayesian network framework, they are quite
general and they could be applied to the estimation of any set of related condi-
tional distributions.

The conditional distribution of X given Y = y is characterised by the param-
eter vector ✓X|y 2 R|X |, whose generic element ✓x|y represents the probability
of X being in state x, when its parent variable is in state y, i.e., ✓x|y = P (X =
x|Y = y) > 0. The collection of the conditional probability distributions of X
is ✓X|Y =

�
✓X|y1 ,✓X|y2 , . . .

 
, which constitutes the conditional probability table

(CPT) of X . Each conditional distribution ✓X|y, with y 2 Y , is also referred to as
a column of the CPT.

Given a data set D, the sufficient statistics for the estimation of ✓x|y are the
counts nxy, i.e., the number of observations with X = x and Y = y, where x 2 X
and y 2 Y . We denote by ny =

P
x2X nxy the counts for the variable Y .

2.1. Traditional Multinomial-Dirichlet model
The traditional parameter estimation approach in Bayesian networks (Koller

and Friedman, 2009, Sec. 17) assumes the prior over each parameter vector ✓X|y
to be a Dirichlet distribution. Thus, the generative model is:

✓X|y|↵ ⇠ Dirichlet(↵) y 2 Y ,

X|Y = y,✓X|y ⇠ Categorical(✓X|y) y 2 Y , (1)

where ↵ 2 R|X | is a parameter vector such that
P

x2X ↵x = s, where s 2 R+

denotes the prior strength, also called equivalent sample size. The most com-
mon choice is to set ↵x = (|Y||X |)�1, which is called BDeu (Bayesian Dirichlet
equivalent uniform) prior (Koller and Friedman, 2009, Sec. 17). A graphical rep-
resentation of model (1) is given in Figure 1 (top panel).
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Given a data set D of n i.i.d. observations (xk, yk) for k = 1, . . . , n drawn
from the MD model (1), the posterior distribution of ✓X|y is still a Dirichlet dis-
tribution (Gelman et al., 2014). In the following we denote by ED [·] the posterior
average and by CovD(·, ·) the posterior covariance.

The estimator of ✓x|y is the posterior expectation:

ED[✓x|y] =
nxy + ↵x

ny + s
, (2)

which shrinks the maximum likelihood estimates towards the fixed vector 1
s↵,

usually set to the uniform distribution. The value of ↵ has a large impact on pa-
rameter estimates; however, no prior knowledge is usually available in real prob-
lems to set it in an informed way.

The posterior covariance between ✓x|y and ✓x0|y is

CovD(✓x|y, ✓x0|y) =
ED[✓x|y]

�
�x,x0 � ED[✓x0|y]

�

ny + s+ 1
, (3)

where �x,x0 is a Kronecker delta. The posterior covariance between elements com-
ing from different columns of the CPT is instead zero, i.e., if y 6= y

0

CovD(✓x|y, ✓x0|y0) = 0, (4)

since different columns of the same CPT are independently estimated.

2.2. Hierarchical Multinomial-Dirichlet model
We generalise the model (1) to a hierarchical Multinomial-Dirichlet (hierar-

chical MD) model by assuming ↵ to be a latent random vector, with Dirichlet
prior:

↵|s,↵0 ⇠ s · Dirichlet(↵0),

✓X|y|↵ ⇠ Dirichlet(↵) y 2 Y , (5)
X|Y = y,✓X|y ⇠ Categorical(✓X|y) y 2 Y ,

where the hyper parameters of the model are the equivalent sample size s 2 R+

and the parameter vector ↵0 2 R|X |, whose elements sum to s0 2 R+, i.e.,P
x2X [↵0]x = s0. In the following we do not write explicitly the conditioning

on the fixed parameters s and ↵0. The hierarchical model (5) is represented as a
probabilistic graphical model in Figure 1 (bottom panel).

6



X|Y = y✓X|y↵↵0

X|Y = y✓X|y↵

Cat.Dir.Dir.

s

Cat.Dir.

8y 2 Y

8y 2 Y

Figure 1: Directed factor graphs for traditional (top panel) and hierarchical (bottom panel)
Multinomial-Dirichlet model. Cat. and Dir. represent respectively Categorical and Dirichlet dis-
tributions.

The proposed hierarchical model corresponds to the finite version of the Hi-
erarchical Dirichlet Process (HDP), proposed by Teh et al. (2006). Similar finite
HDP models have been introduced in natural language processing to extend the
Latent Dirichlet Allocation model by Kim et al. (2013) and in Tree-Augmented
Naive (TAN) classifiers by Petitjean et al. (2018). Although less general than HDP,
the hierarchical model (5) overcomes the computational efficiency limitations of
HDP. We also point out that a simpler model with Binomial likelihood, Beta prior
and a non-informative hyper prior on the parameters of the Beta distribution, has
been proposed by Gelman et al. (2014). However, the adopted non-informative
prior can lead to improper posterior distributions.

According to (5) the prior of ✓X|Y is a mixture of Dirichlet distributions:

p(✓X|Y ) =

Z
p(✓X|Y ,↵)d↵ =

Z Y

y2Y

p(✓X|y|↵)p(↵)d↵.

This type of prior is known (Casella and Moreno, 2009) to improve the estimates
of the Categorical distribution, compared to the adoption of simple Dirichlet dis-
tributions as prior. Notice that the above prior is not factorised with respect to
different values of y and for this reason the parameters of different conditional
distributions are no longer independent a priori.

We now analyse in detail Cor
�
✓x|y, ✓x|y0

�
in order to understand the correla-

tions induced by the hierarchical model between the different columns of the same
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CPT. The analysis is performed a priori.

Lemma 1. A priori, the correlation between ✓x|y and ✓x|y0 is

Cor
�
✓x|y, ✓x|y0

�
=

s

s+ s0 + 1
. (6)

Notice that s0 corresponds to the equivalent sample size of the higher-level prior.
Large values of s0 make the hyper-prior sharply peaked around its mean value,
thus producing similar values of ↵. In the limit of s0 going to infinity, the ran-
dom vector ↵ becomes deterministic. Hence the hierarchical model reduces to
the traditional MD model (1), and there is no correlation between the parame-
ters of different columns of the same CPT. The hierarchical model is thus more
expressive than the traditional one, since it includes the latter as special case.

Instead, the correlation between ✓x|y and ✓x|y0 increases as s increases. Indeed,
large values of s make the distribution Dirichlet(↵) sharply peaked around its
mean; hence the parameter vectors ✓X|y1 , ✓X|y2 , ... sampled from such distribution
are similar to each other. In the limit of s going to infinity, the same parameter
vector is sampled for all the columns of the CPT, implying a correlation of 1
between the parameters of the different columns.

2.2.1. Posterior distribution of the parameters
Given a data set D of n i.i.d. observations (xk, yk) for k = 1, . . . , n, the

posterior distribution of the parameters is a mixture of Dirichlet distributions:

p(✓X|Y |D) =

Z Y

y2Y

p(✓X|y|↵, D)p(↵|D)d↵ (7)

/
Z

� (s)Q
x2X � (↵x)

Y

x2X
y2Y

✓
nxy+↵x�1
x|y

⇣
↵x

s

⌘[↵0]x�1 d↵

s
,

where the mixing is controlled by the posterior distribution of ↵. The values of ↵
that are more probable a posteriori have a higher weight in determining the pos-
terior distribution of ✓X|Y . Although the posterior distribution (7) is not analyti-
cally tractable, we can compactly express its posterior expectation and covariance.
These quantities are defined in terms of posterior expectation and covariance of
↵, respectively denoted as ED [↵] and CovD (↵x,↵x0).
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Lemma 2. The posterior average of ✓x|y is:

ED
⇥
✓x|y
⇤
=

nxy + ED [↵x]

ny + s
, (8)

while the posterior covariance between ✓x|y and ✓x0|y is:

CovD
�
✓x|y, ✓x0|y

�
=

CovD (↵x,↵x0)

(ny + s)(ny + s+ 1)
+

ED
⇥
✓x|y
⇤ �
�xx0 � ED

⇥
✓x0|y

⇤�

ny + s+ 1
, (9)

and the posterior covariance between ✓x|y and ✓x0|y0 , with y 6= y
0, is:

CovD
�
✓x|y, ✓x0|y0

�
=

CovD (↵x,↵x0)

(ny + s)(ny0 + s)
. (10)

Notice that the posterior expectation ED
⇥
✓x|y
⇤

smooths the maximum likelihood
estimates towards the posterior expectation of 1

s↵x. The posterior expectation of
↵x depends on all the available data (not only on those conditioned on Y = y)
and thus it can be reliably estimated by sharing information between different
columns of the same CPT, i.e., borrowing strength between columns of the CPT.
The posterior expectation shrinks thus the maximum likelihood estimates towards
a reliable distribution learnt from data, rather than towards a fixed a priori distri-
bution, as in the traditional model. Moreover, the covariances (9) and (10) contain
an additional term that models the relation between different columns of the CPT,
compared to the covariances of the MD model (3) and (4).

It is clear from (7) that the posterior distribution of the parameters is not fac-
torised over different values of y; hence the conditional distributions ✓X|y referring
to different values of y are jointly estimated, rather than independently estimated
as usual. Considering in (10) the specific case of x = x

0, we obtain the covariance
between elements in the same row of the CPT, i.e.,

CovD
�
✓x|y, ✓x|y0

�
=

VarD(↵x)

(ny + s)(ny0 + s)
.

It is clear that CovD
�
✓x|y, ✓x|y0

�
is non-negative, thus there is always a positive

association between ✓x|y0 and ✓x|y. As the number of observations goes to infinity,
the covariance vanishes: asymptotically the parameter estimates for the different
conditional distributions are independent, as the effect of the prior is overwhelmed
by the data.
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2.2.2. Posterior moments of ↵
The posterior moments of ↵ cannot be computed analytically since the asso-

ciated posterior distribution is

p(↵|D) /
Y

y2Y

 
� (s)

Q
x2X� (↵x + nxy)

� (s+ ny)
Q

x2X� (↵x)

↵
[↵0]x�1
x

s[↵0]x

!
.

However, the following lemma states a general result for computing the first two
moments of ↵. The generalisation to any posterior moment of ↵ is stated in
Appendix A.3.

Lemma 3. Under the assumptions of model (5) and setting for simplicity [↵0]x =
1 8x 2 X , the element x0 of the posterior average vector ED [↵] is

ED [↵x0 ] = �

Z Y

x2X
y2Y

s.t. nxy>0

nxyY

m=1

(↵x +m� 1)
⇣
↵x

s

⌘�x,x0 d↵
s
,

where �x,x0 is a Kronecker delta and � is a proportionality constant such that

�
�1 =

Z Y

x2X
y2Y

s.t. nxy>0

nxyY

m=1

(↵x +m� 1)
d↵

s
.

The element (x0
, x

00) of ED [↵x0↵x00 ] is

ED [↵x0↵x00 ] = �

Z Y

x2X
y2Y

s.t. nxy>0

nxyY

m=1

(↵x +m� 1)
⇣
↵x

s

⌘�x,x0+�x,x00 d↵

s
.

All the integrals in Lemma 3 are multiple integrals computed with respect to
the |X | elements of vector 1

s↵, such that
P

x2X
1
s↵x = 1. The space of integration

is thus the standard |X |-simplex.
These integrals cannot be computed analytically, unless the integration space

is low dimensional and the polynomial degree is very small. In a general case,
it is possible to resort to symbolic calculus to compute them. We adopt such
exact solution in order to assess the accuracy of the estimates yielded by varia-
tional inference on some low-dimensional examples. Specifically we make use of
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Python’s symbolic calculus library sympy. The numerical computation, detailed
in Appendix A.3, consists in an iterative algorithm that goes through all the layers
of the multiple integral, integrating a polynomial function in one variable at a time.
This approach allows to compute exactly the posterior moments of ↵; however,
it has some computational limitations. As the number of observations increases,
the numerical computation of the integral becomes more expensive due to the in-
crease in polynomial degree of the integrand. The integration is very expensive
also in the case of high number of states for the X variable, due to the increase in
dimension of the integration space. For this reason, in the following we propose
a variational inference algorithm in order to compute a fast approximation of the
posterior distributions.

3. Variational inference

Since the posterior distribution for ✓X|Y is not analytically tractable, a possible
solution consists in approximating it numerically. A traditional approximation
is obtained by means of Markov-Chain Monte Carlo (MCMC) methods. Yet,
the MCMC approximations can be too time-consuming when dealing with large
models, as we will show in Section 3.2. We thus adopt Variational Inference (VI)
(Jordan et al., 1999; Wainwright and Jordan, 2008; Blei et al., 2017) in order to
efficiently approximate the joint posterior distribution of the parameters.

Specifically, we approximate p(✓X|Y ,↵|D) by means of the factorised distri-
bution

q(✓X|Y ,↵|⌫, ⌧,) =
Y

y2Y

q(✓X|y|⌫y)q(↵|⌧,), (11)

which treats ✓X|y and ↵ as independent random variables. ⌫y 2 R|X | for y 2 Y ,
⌧ 2 R+ and  2 R|X |, such that

P
x2X x = 1, are the parameters of the following

variational model:

↵|s, ⌧, ⇠ s · Dirichlet(⌧),
✓X|y|⌫y ⇠ Dirichlet(⌫y) y 2 Y , (12)

X|Y = y,✓X|y ⇠ Categorical(✓X|y) y 2 Y .

The variational model (12) is similar to the original hierarchical MD model (5),
but it removes the dependence between ✓X|y and ↵. The dependence between
✓X|y and ↵ is later recovered by making the variational parameters ⌫y, ⌧ and 
dependent. Notice that we used for convenience a non-standard notation for the
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X|Y = y✓X|y⌫y

↵⌧

Cat.Dir.

Dir.

s

8y 2 Y

Figure 2: Directed factor graphs for variational model (12). Cat. and Dir. represent respectively
Categorical and Dirichlet distributions.

Dirichlet distribution of the parameter vector ↵. The proposed variational model
is shown in Figure 2.

For ease of notation, in the following we drop the dependence of q on the vari-
ational parameters, i.e., q(✓X|y) = q(✓X|y|⌫y) and q(↵) = q(↵|⌧,). The joint
variational distribution q(✓X|Y ,↵) is a function of the variational parameters ⌧ , 
and ⌫y for y 2 Y . These parameters are estimated from the available data D in or-
der to minimise the Kullback-Leibler (KL) divergence between the exact posterior
distribution p(✓X|Y ,↵|D) and the variational approximation q(✓X|Y ,↵).

It is well known that minimising the KL divergence is equivalent to maximis-
ing the evidence lower bound (ELBO) L for the marginal likelihood log(p(D))
(Blei et al., 2017):

L = Eq

⇥
log
�
p(D,✓X|Y ,↵)

�⇤
� Eq

⇥
log
�
q(✓X|Y ,↵)

�⇤
, (13)

where Eq[·] represents the mean with respect to the variational distribution q. In-
deed, the KL divergence between the variational and the real posterior distribu-
tions corresponds to the difference between log(p(D)) and L, i.e.,

log(p(D))� L = KL(q(✓X|Y ,↵) || p(✓X|Y ,↵|D)).

Thus, the maximisation of L corresponds to the minimisation of the KL diver-
gence, since the KL divergence is a positive quantity. On the other hand, the min-
imisation of the KL divergence corresponds to the approximation of log(p(D)) by
means of a tight lower bound.
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3.1. Variational inference algorithm
In the specific case of the hierarchical MD model (5) with approximating

model (12) it is not possible to write explicitly the ELBO L as an analytical func-
tion of the variational parameters. Thus, we resort to a tight lower approximation
of L, named L̃, which can be written as an analytical function of the parameters.
The quantity L̃, which satisfies

log(p(D)) � L � L̃,

can be written as

L̃ =
X

y2Y
x2X

nxy( (⌫xy)�  (⌫·y)) +
X

y2Y
x2X

(sx � 1)
⇣
 (⌫xy)�  (⌫·y)

⌘
+

+
X

y2Y
x2X

log�(⌫xy)�
X

y2Y
x2X

(⌫xy � 1)( (⌫xy)�  (⌫·y))�
X

y2Y

log�(⌫·y)+

� |Y|
X

x2X

log�(sx) + |Y|
X

x2X

(sx � 1)(log(x)�  (⌧x) +  (⌧))+

�
X

x2X

log�([↵0]x) +
X

x2X

log�(⌧x) +
X

x2X

([↵0]x � ⌧x)( (⌧x)�  (⌧))+

+ |Y| log�(s)� s

⌧
|Y| (|X |� 1) + log� (s0)� log�(⌧),

where  (·) is the digamma function, derivative of the log Gamma function. The
derivation of the lower bound L̃ is in Appendix B.1.

In order to estimate the variational parameters ⌫y, ⌧ and , we then maximise
L̃. The proposed optimisation method rests on an iterative fixed-point method,
which alternates between an analytical optimisation with respect to ⌫y and a nu-
merical optimisation with respect to ⌧ and . It is similar to the variational infer-
ence proposed by Kim et al. (2013).

The iterative structure of the variational inference method is detailed in the
following algorithm.

Algorithm 1. Variational algorithm for inference under the hierarchical Multinomial-
Dirichlet model.
Fix starting values for the parameters ⌫y, for y 2 Y , ⌧ , , i.e., set ⌫̂0

y, ⌧̂ 0, ̂0;
while K < maxiter1 or tolerance > tol1:

1. update the estimate of ⌫y 8y 2 Y , i.e., compute ⌫̂K+1
y with  = ̂K and

⌧ = ⌧̂
K;
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2. fix starting values for inner optimisation, i.e., ⌧̂K+1
0 =⌧̂K , ̂K+1

0 = ̂K;
3. while k < maxiter2 or tolerance > tol2:

(a) update the estimate of ⌧ , i.e., compute ⌧̂K+1
k+1 with  = ̂K+1

k and
⌫y = ⌫̂K+1

y ;
(b) update the estimate of , i.e., compute ̂K+1

k+1 with ⌧ = ⌧̂
K+1
k+1 and

⌫y = ⌫̂K+1
y ;

(c) increase the iterator k;
4. define ⌧̂K+1 and ̂K+1 as the estimates for ⌧ and  obtained in the inner

loop;
5. increase the iterator K;

define ⌫̂y for y 2 Y , ⌧̂ and ̂ as the estimates for ⌫y, ⌧ and  obtained in the
outer loop.

The optimisation with respect to ⌫y is derived analytically. It provides, given
a value for the parameter vector , an estimate ⌫̂xy for the parameter ⌫xy, element
x of parameter vector ⌫y:

⌫̂xy = nxy + sx. (14)

Instead, the optimisation with respect to the parameters ⌧ and  is performed
by means of a fixed-point method, which alternates the optimisation of L̃ with
respect to ⌧ and the optimisation of the same quantity with respect to . Since
an analytical solution for the optimisation problems is not available, we propose
solving the two optimisation problems by means of a Newton algorithm.

The analytical optimisation of L̃ with respect to ⌫y is derived in Appendix
B.2, while the numerical optimisations with respect to ⌧ and  are detailed in
Appendix B.3.

Notice that the estimated variational parameters are functions of the obser-
vations D. Thus, the variational distribution varies as well as a function of the
observations. Moreover, the estimated variational parameters ⌫̂y, ⌧̂ and ̂ are
mutually dependent. This dependence partially recovers the dependence between
✓X|y and ↵. These dependences are particularly clear in the closed form update
for the parameter ⌫xy. Indeed, the update formula (14) corresponds exactly to the
numerator of the posterior expectation of ✓x|y in (8), where Eq [↵x] is approxi-
mated by means of ŝx. The posterior expectation of ✓x|y is thus approximated by
means of the average of a Dirichlet distribution with parameter ⌫̂y, i.e.,

Eq

⇥
✓x|y
⇤
=

⌫̂xyP
x2X ⌫̂xy

=
nxy + ŝx

ny + s
,

14



while the posterior expectation of ↵x is approximated by means of the average of
a Dirichlet distribution with parameter ⌧̂ ̂, i.e., Eq [↵x] = ŝx.

3.2. Experimental comparison of variational inference and MCMC
We perform a simulation study to assess the performance of the proposed vari-

ational inference algorithm with respect to Markov Chain Monte Carlo. The com-
parison is performed in terms of accuracy in parameter estimation and computa-
tional time. Both the methods provide parameter estimates based on the proposed
hierarchical model. The variational inference algorithm of Section 3.1 is im-
plemented in R and is available at https://ipg.idsia.ch/software.
php?id=139. The MCMC hierarchical model is implemented in stan (Car-
penter et al., 2017) in order to have a state-of-the-art sampler as a term of com-
parison. Specifically, a Hamiltonian Monte Carlo algorithm is used in stan to
perform MCMC. We run all experiments in R, using the rstan package (Car-
penter et al., 2017) as interface between R and stan, with rstan default op-
tions. We expect VI to be faster and computationally more efficient than MCMC.
However, we are interested in understanding if the computational efficiency of VI
causes any major loss of accuracy. For this reason in the following experiments
we run both VI and MCMC till convergence and we analyse the accuracy of the
estimates. The stopping criteria for VI are: number of iterations greater than 1000
and tolerance lower than 10�6 . The stopping criteria for MCMC are the rstan
default options.

We generate observations by sampling from the hierarchical model (5), in
different settings. We consider all the possible combinations of the number of
states |X | and the number of conditioning states |Y|, with |X | 2 {2, 4, 6, 8} and
|Y| 2 {2, 4, 6, 8}. For each combination of |X | and |Y| we generate data sets with
size n 2 {20, 40, 80, 160, 320, 640}.

In the following we denote with a tilde the sampled parameters, which corre-
spond to the true underlying parameters of the model. In every repetition of the
experiment we sample the data as follows:

1) we sample ↵̃ as s = |X | times a Dirichlet distribution with parameter ↵0 =
11⇥|X|,

2) we sample ✓̃X|y, for each y 2 Y , from a Dirichlet distribution with param-
eter ↵̃,

3) we sample the observations from a Categorical distribution with parameters
✓̃X|Y .
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We repeat the data sampling and the estimation procedure 10 times for each com-
bination of |X |, |Y| and n. For the hierarchical model we set s = |X | and
↵0 = 11⇥|X |; we then use the posterior expectation of ✓X|Y and ↵ as parame-
ter estimates.

We consider the following measures of accuracy to assess the goodness of an
estimator ✓̂X|Y :

• the mean squared error (MSE), computed as

MSE(✓̂X|Y ) =
1

|X ||Y|
X

x2X
y2Y

⇣
✓̂
i
x|y � ✓̃x|y

⌘2
, (15)

• the Kullback-Leibler divergence (KL), computed as

KL(✓̂X|Y ) =
1

|Y|KL(✓̃X|y, ✓̂X|y) =
1

|Y|
X

x2X
y2Y

✓̃
i
x|y log

⇣
✓̃
i
x|y/✓̂x|y

⌘
,

• the Hellinger distance (H), computed as

H(✓̂X|Y ) = H(✓̂X|y, ✓̃X|y) =
1p
2

vuuut
X

x2X
y2Y

✓q
✓̂
i
x|y �

q
✓̃x|y

◆2

,

where ✓̂ix|y represents the estimate of ✓x|y in the i-th repetition of the experiment
and ✓̃x|y represents the true underlying parameter.

Figure 3 shows that the MSE, KL and H obtained by means of VI and MCMC
are equivalent in every setting. There is therefore no loss of accuracy due to the
adoption of the proposed VI method instead of MCMC. As expected, for both al-
gorithms MSE, KL and H decrease with the number of observations and increases
with |Y|. The same qualitative behaviour has been observed for different values
of |X |.

The accuracy being equal, the speedup allowed by VI is instead of paramount
importance. The VI algorithm converges in tens of iterations in all the performed
simulations: the estimated lower bound reaches a plateau in few iterations (less
than 5) and only minor adjustments are performed in the following iterations. The
computational times decrease of about two orders of magnitude with respect to

16



●●
●
●

●●

●●
●

●
●

 |Y| = 2

number of observations

M
SE

(θ̂
)

●●
●
●

●●

●●
●

●
●

20 40 80 160 320 640

0.
00

0.
02

0.
04

0.
06

●

●

MCMC
VI

●
●

●

●●
●

●

●

● ●

●●
●● ●●

 |Y| = 4

number of observations

M
SE

(θ
)

●
●

●

●
●●
●

●

●

● ●

●●
●● ●●

20 40 80 160 320 640

0.
00

0.
02

0.
04

0.
06 ●

●

●

● ●

●●
●●●●

 |Y| = 6

number of observations

M
SE

(θ
)

●

●

●

●

●●
●●●

20 40 80 160 320 640

0.
00

0.
02

0.
04

0.
06

●

●

●●●●
●

●
●
●

 |Y| = 8

number of observations

M
SE

(θ
)

●

●

●●●

●
●
●

20 40 80 160 320 640

0.
00

0.
02

0.
04

0.
06

●
●

●

●

 |Y| = 2

number of observations

KL
(θ̂

)

●

●

●

20 40 80 160 320 640

0.
0

0.
2

0.
4

●

●

MCMC
VI

●

●

 |Y| = 4

number of observations

KL
(θ

)

●

●

20 40 80 160 320 640

0.
0

0.
2

0.
4

●

 |Y| = 6

number of observations

KL
(θ

)
●

20 40 80 160 320 640

0.
0

0.
2

0.
4

●

 |Y| = 8

number of observations

KL
(θ

) ●

20 40 80 160 320 640

0.
0

0.
2

0.
4

●

 |Y| = 2

number of observations

H
el

lin
ge

r(θ̂
)

●

20 40 80 160 320 640

0.
0

0.
2

0.
4

0.
6

0.
8

●

●

MCMC
VI

●
●

 |Y| = 4

number of observations

H
el

lin
ge

r(θ
)

●

20 40 80 160 320 640

0.
0

0.
2

0.
4

0.
6

0.
8

 |Y| = 6

number of observations

H
el

lin
ge

r(θ
)

●

20 40 80 160 320 640

0.
0

0.
2

0.
4

0.
6

0.
8

 |Y| = 8

number of observations

H
el

lin
ge

r(θ
)

20 40 80 160 320 640

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 3: Boxplots of MSE (top panel), KL divergence (central panel) and Hellinger distance
(bottom panel) for MCMC (red) and VI (orange) with different dimension of the conditioning set
(|Y| = 2, 4, 6, 8). In each plot all the results obtained with different numbers of states for the child
variable are summarised. In general, there is no noticeable difference between MCMC and VI.

MCMC, as shown in Figure 4. For instance the average time required by MCMC
is between 10 and 60 seconds, respectively for |X | = 2 and |X | = 8; it drops
respectively to 0.04 and 0.5 seconds for VI. The dimension of the conditioning
set |Y| does not affect the computational times. Such efficiency allows to deal
with a large number of variables and conditioning states, as for instance in the
application presented in Section 5.

For small values of n (20, 40, 80, 160), we compare the parameter estimates
obtained by means of VI also with respect to the posterior expectation computed
by means of polynomial integration, as described in Appendix A.3. The obtained
mean squared errors are on average equal to 10�5. Comparing to the automatic
variational inference (Kucukelbir et al., 2017) implemented in Stan, we obtain on
average a relative improvement of about 35% in terms of MSE (corresponding to
an absolute improvement of 3 · 10�6), 20% in terms of KL , 8% in terms of H and
30% in terms of computing time.

17



●●●●

 |X| = 2

number of observations

co
m

pu
tin

g 
tim

e

●● ●● ●●

20 40 80 160 320 640

0
10

0
20

0
30

0

●

●

MCMC
VI

●●
●

●●

●
●●●

●●
●

●

● ●●
●● ●●●

●

 |X| = 4

number of observations

co
m

pu
tin

g 
tim

e

●● ●●●● ● ●

20 40 80 160 320 640

0
10

0
20

0
30

0

●
●
●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

 |X| = 6

number of observations

co
m

pu
tin

g 
tim

e

●●

20 40 80 160 320 640

0
10

0
20

0
30

0

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

 |X| = 8

number of observations

co
m

pu
tin

g 
tim

e

●●● ●●●●

20 40 80 160 320 640

0
10

0
20

0
30

0

Figure 4: Boxplots of computing time (seconds) for MCMC (red) and VI (orange) with different
number of states for the child variable (|X | = 2, 4, 6, 8). In each plot all the results obtained with
different dimensions of the conditioning set are summarised. VI provides a major reduction of
computing times especially for large number of observations and/or large values of |X |.

We thus conclude that the proposed VI method provides accurate and reliable
parameter estimates.

4. Learning parameters in Bayesian networks

We use the hierarchical model to estimate the conditional probability tables of
a Bayesian network over a set of discrete random variables X = {X1, . . . , XI}.
We assume that the Bayesian network structure is known and we apply the hier-
archical model separately on each single node Xi 2 X . We choose X = Xi for
i 2 1, . . . , I and Y to be a discrete variable representing the joint states of Pai,
the parent set of Xi. The parameter vector ✓X|y, for y 2 Y , corresponds to the
columns of the CPT associated to the variables Xi and Pai, i.e., ✓X|y = ✓Xi|pa, for
i = 1, . . . , I and pa in the set of the joint states of Pai. A graphical representation
of the model is shown in Figure 5.

We adopt the posterior expectation of ✓X|Y as estimator, i.e., ✓̂x|y = ED
⇥
✓x|y
⇤
.

The estimator is hence given by (2) for the traditional inference under BDeu and
by (8) for inference under the hierarchical model.

The hierarchical model is suitable for a general Bayesian network; in the fol-
lowing we focus however on parameter estimation for Bayesian network classi-
fiers, in order to assess the quality of parameter estimation by means of simple
measures, like e.g., accuracy and area under the ROC curve. The aim of the fol-
lowing experiments is thus to show the parameter estimation improvement yielded
by the proposed hierarchical method with respect to traditional approaches.

4.1. Experiments in classification with Bayesian networks
In the following we consider a classification problem. Without loss of gen-

erality, we split the set of random variables X into k = I � 1 feature variables
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Xi|Pai = pa✓Xi|pa↵↵0
Cat.Dir.Dir.

s
8pa 2 Pi

8i 2 {1, . . . , I}

Figure 5: Hierarchical model applied to parameter learning in Bayesian networks represented by
means of a directed factor graph. Pi represents the set of the joint states of Pai. Cat. and Dir.
represent respectively Categorical and Dirichlet distributions.

{X1, . . . , Xk} and a class variable C = XI .
One of the simplest Bayesian network classifiers is the naive Bayes, which

assumes the stochastic independence of the features given the class. This assump-
tion is represented by a DAG whose arcs connect the class to each feature, as
shown in Figure 6 (left panel). Naive Bayes is a good model if the goal is simple
classification, without any need of accurate probability estimates, i.e., under 0-1
loss (Friedman, 1997; Domingos and Pazzani, 1997).

More accurate posterior probabilities can be estimated by relaxing the assump-
tion of conditional independence. This can be done for instance by adopting a
Tree-Augmented Naive classifier (TAN), whose graph contains a tree that links
the feature variables, in addition to the edges already present in the naive Bayes
graph, as shown in Figure 6 (right panel). The algorithm for learning the TAN
structure has been presented by Friedman et al. (1997).

In the following experimental studies we compare the performance of the TAN
classifier when its parameters are estimated by means of the hierarchical model
or by the traditional ones. We consider 57 data sets from UCI Machine Learning
Repository1 and the Weka data sets page2; they are listed, together with informa-
tion on the number of instances, attributes, states of the class variable and missing
values, in Table B.1. We impute missing values with the median (for continuous
variables) and the mode (for discrete variables). We then discretise the numerical
variables into five equal-frequency bins.

1https://archive.ics.uci.edu/ml/index.php
2https://www.cs.waikato.ac.nz/ml/weka/datasets.html
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C

X1 X2 X... Xk

C

X1 X2 X... Xk

Figure 6: Structure of naive Bayes (left panel) and TAN (right panel). The TAN structure contains
the same arcs of naive Bayes, with an additional tree that connects the features.

For each data set we first learn the maximum-likelihood TAN structure using
all the available samples under the BDeu assumption; we adopt the R package
bnlearn (Scutari, 2010), which learns the TAN structure according to the al-
gorithm of Friedman et al. (1997). We then keep fixed this structure for all the
experiments performed with the same data set and we estimate the parameters of
TAN using different methods.

Then, for each data set and for each n 2 {20, 40, 80, 160, 320, 640}, we re-
peat 10 times the procedure: 1) create a training set by randomly sampling n

observations from the original data set, 2) estimate the parameters of TAN from
the training set, 3) create a test set containing either 1000 instances randomly sam-
pled from all instances not included in the training set or, if the data set is not large
enough, all the instances not included in the training set, 4) classify the instances
of the test set. We perform parameter estimation using the traditional BDeu prior,
↵x = iss

|Y||X | , with two values of equivalent sample size iss=1, the most common
choice, and iss=10, the default value proposed by bnlearn. For the hierar-
chical model we set s = |X | and ↵0 = 11⇥|X |, without any further tuning of the
equivalent sample size.

We measure the classification performance through classification accuracy,
which corresponds to the percentage of correctly classified instances, and the area
under the ROC curve (ROC AUC). In a binary classification problem the ROC
AUC represents the probability that a randomly chosen positive instance and a
randomly chosen negative instance are correctly ranked based on the posterior
probability of being positive (Bradley, 1997). In multi-class problems, the ROC
AUC is averaged over the different classes, by considering in turn each class as
the positive one.

As shown in Figure 7 and 8, the hierarchical model improves both accuracy
and ROC AUC of the TAN classifier on the large majority of the 57 data sets.
The improvements are huge when the training sets are small, i.e, n = 20, n =
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Figure 7: Improvement of accuracy in classification, obtained by estimating the TAN parame-
ters through the hierarchical model rather than the BDeu prior with s = 1 (blue) and s = 10
(light blue). The experiments refer to 57 data sets and to different sizes of the training set
(n = 20, 40, 80, 160, 320, 640). The data sets are ordered according to the number of instances,
as in Table B.1. Positive values imply that the hierarchical model yields a higher ROC AUC.
The y-axes have a different scale in different panels in order to highlight the gain attained by the
hierarchical model even for large values of n. 21
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Figure 8: Improvement of the area under the ROC in classification, obtained by estimating the
TAN parameters through the hierarchical model rather than the BDeu prior with s = 1 (blue) and
s = 10 (light blue). The experiments refer to 57 data sets and to different sizes of the training set
(n = 20, 40, 80, 160, 320, 640). The data sets are ordered according to the number of instances, as
in Table B.1. Positive values correspond to a higher ROC AUC yielded by the hierarchical model.
The y-axes have a different scale in different panels in order to highlight the gain attained by the
hierarchical model even for large values of n. 22
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Figure 9: Difference in MSE between the BDeu and the hierarchical estimator on the Adult data
set. Positive values favour the hierarchical model. Left panel: MSE difference of each CPT, for
a selected sample size. Right panel: MSE difference summing over all the CPTs of the TAN
structure, as a function of the sample size.

40, (the maximum achievable value of both indicators is 1). However, consistent
improvements, albeit smaller, are observed also on the largest sample sizes.

These considerations remain valid regardless whether traditional estimation
is carried out using iss=1 or iss=10, although in general the latter setting
performs better.

4.1.1. Further insights
We further analyse the parameter estimates by considering the Adult data set,

which contains 45,000 instances. We estimate the TAN structure and its param-
eters on the whole data set. Given the large sample size, we then consider such
estimates to be the ground truth against which we compare the estimates obtained
with subsampled versions of the data set. We then measure the MSE of the hierar-
chical model and the one of the traditional approach, adopting the same simulation
procedures of the previous section. The MSE for each CPT is computed by means
of (15).

In Figure 9 (right panel) for each CPT we represent the MSE difference be-
tween the traditional model and the hierarchical one, for a given sample size
(n=160). Positive values favour the hierarchical model. The larger advantages
are obtained for the features whose parents have a large number of joint states,
namely: X3, X4, X5, X8, X10, X12. Indeed, the number of the joint states of their
parents is respectively 28, 28, 10, 82, 14 and 28.
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In Figure 9 (left panel) we instead represent the difference between traditional
and hierarchical model in terms of global MSE, which is defined as the average
MSE over different CPTs in the TAN. The difference in global MSE is represented
as a function of the number of observations. The hierarchical model achieves
lower MSE for each sample size then the traditional parameter estimation (which
we carry out both with equivalent sample size iss=1 and iss=10). As expected,
the difference between the hierarchical estimators and the traditional estimator
decreases with n; yet even for n = 640, the difference in MSE is positive in favor
of the hierarchical model in all the simulations.

4.1.2. Computational considerations
Using MCMC sampling, the time required for estimating the parameters of a

single CPT on the Adult data set ranges between 6 seconds and 1 hour. Using VI,
such a time is comprised between 0.01 and 18 seconds when our VI algorithm is
used. Learning the parameters of the whole TAN model on the Adult data set re-
quires on average 20 seconds using the proposed VI algorithm; the computational
time required on average by MCMC is instead about one hour and ten minutes.
Another practical advantage of our variational inference implementation is that
it always converged successfully in all the experiments, while we experienced a
significant number of crashes (around 10% of the CPTs to be estimated in the
Adult data set) with Stan automatic variational inference, especially when dealing
with the largest examples. We have also considered the HDP method presented in
Petitjean et al. (2018) for a comparison on the Adult data set with 2500 training
samples. Compared to HDP, the proposed method provides faster inference (one
order of magnitude faster, i.e., 4 seconds against 86 seconds reported in Petitjean
et al. (2018)), with similar accuracy (10% higher accuracy with respect to random
forests, against which Petitjean et al. (2018) compare the performance of HDP).
However, this comparison is only illustrative since the computing times depend
on the machine on which the experiments are run.

5. Learning parameters from related data sets

A typical application of hierarchical models is the estimation of parameters
from related data sets (Gelman et al., 2014, Chap. 5). Nowadays, related data
sets arise commonly for instance in the contexts of multi-user platforms, patient
specific treatments or multi-center clinical studies. In all these settings, some traits
of the user/patient/center behaviour should be modeled and typically only few
data for each user/patient/center are available. For convenience, in the following
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we refer to each related data set as domain. However, the method can be applied
equally well to multi-user, multi-patient, multi-center problems.

At the moment, there is not an established method for learning the parameters
of Bayesian networks from related domains. There are instead some methods for
learning the structure of related Bayesian networks (Niculescu-Mizil and Caru-
ana, 2007; Oates et al., 2016), which encourage the inferred graphs to be similar.
However, both works recognise the problem of estimating the parameters from
related domains as an open challenge. Oates et al. (2016) states: “At present this
[referring to information sharing for parameters] appears to be challenging to in-
clude within our framework and represent an area of future research”. Attempts of
learning parameters in BNs from related domains include the work of Demichelis
et al. (2006) for the Gaussian case and Malovini et al. (2012) for the discrete case,
which however estimates the parameters of the hyper-prior in a point-wise fash-
ion via maximum likelihood. The reported results deal only with the simple naive
Bayes structure.

The hierarchical model proposed here can be easily customised to learn pa-
rameters of Bayesian networks from related domains. To the best of our knowl-
edge, this is the first principled and scalable approach suitable to this end. For
simplicity, we assume that there is a shared structure G common to all different
domains. We then introduce the auxiliary discrete variable F with values in F ,
which represents the domain. We assume in the following that the domain vari-
able is always observed. We will hence estimate the parameters of the |F| related
Bayesian networks, characterised by the same structure G. We apply the hierar-
chical model independently to each node Xi of G. For each Xi, we introduce the
variable X 0

i = Xi ⇥Pai, whose states are constituted by the joint states of Xi and
its parent set Pai. We apply the hierarchical model by considering X = X

0
i and

the parent variable Y = F . Using the hierarchical model we simultaneously infer
the |F| joint distributions ✓Xi,Pai|f , one for each domain f 2 F . In this way, the
joint distributions of Xi and Pai for different domains are estimated by borrowing
strength between the domains.

The parameter vector ✓X|y, for y 2 Y , corresponds now to the joint distribu-
tion associated to a variable Xi and its parents Pai, for a specific domain f , i.e.,
✓X|y = ✓Xi,Pai|f , for i = 1, . . . , I , pa 2 Pi and f 2 F . In order to obtain the as-
sociated CPT, the joint distribution ✓Xi,Pai|f for a given f 2 F is normalised with
respect to the marginal distribution ✓Pai|f , obtained summing by column ✓Xi,Pai|f .
Figure 10 shows a directed graphical model representing the hierarchical model
applied to parameter learning from related domains.
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X 0
i|F = f✓Xi,Pai|f↵↵0

Cat.Dir.Dir.

s 8f 2 F

8i 2 {1, . . . , I}

Figure 10: Hierarchical model applied to parameter learning in Bayesian networks from related
domains represented by means of a directed factor graph. X

0

i = Xi⇥Pai represents a new variable
whose states are constituted by the joint states of Xi and its parent set Pai. Cat. and Dir. represent
respectively Categorical and Dirichlet distributions.

5.1. Application to multi-domain classification
We analyse the multi-user data set collected within by the GoEco!3 (Bucher

et al., 2016; Cellina et al., 2016) project, which tracks the travels of the users in
order to suggest alternative mobility options. During the first phase of the project,
each user logs via a mobile phone application the means of transport adopted for
each displacement. This phase lasts about one week; such displacements, whose
actual means of transport is known, constitute the training set of each user. After
this phase, the application has to autonomously identify the means of transport
adopted by the user in their next displacements.

There are thirteen means of transport to be recognised: {foot, bike, e-bike,
kick scooter, e-car, car, motorbike, scooter, bus, train, tram, plane, ship}. The clas-
sification is based on sixteen features, which include average speed, total traveled
distance, maximum distance between track-points, average heading change be-
tween track-points, differences between actual travel information (duration, start-
ing and ending points); see the work of Bucher et al. (2016) for more details. As
a first step, we discretise the numerical features into five equal-frequency bins.

As a first approach we train a TAN classifier independently for each user; we
learn its parameters using the BDeu prior, with equivalent sample sizes iss=1
and iss=10. As a further term of comparison, we learn an independent Ran-
dom Forest (RF) classifier for each user. The random forest algorithm has been
recognised as one of the best performing classifiers in extensive classification
studies (Fernández Delgado et al., 2014), and the R implementation provided by

3http://goeco-project.ch/index.php/en/

26



C

X1 X2 X... Xk

C

F

X1 X2 X... Xk

Figure 11: A TAN structure (left panel) and the artificial TAN structure associated to the problem
of learning parameters from related domains (right panel). The class variable and the features have
the domain variable F as an extra parent.

randomForest package is empirically more accurate than other implementa-
tions (Bagnall and Cawley, 2017). We thus train a different RF for each user,
using the default settings of the randomForest package.

We then implement the proposed hierarchical approach to learn a classifier
from related data sets as follows. We first learn a TAN structure by pooling the
training data of different users; this yields an estimated structure G, shared across
domains. We then estimate the parameters of G one node at a time; for each node
we jointly estimate the parameters of different users by means of the hierarchical
model. Hence each user has his own parameters, but the parameters of different
users are shrunk towards each other. The real TAN structure and the artificial TAN
structure associated to the problem of parameter learning from related domains are
represented respectively in left and right panels of Figure 11.

We consider 72570 travels of 351 users collected during one month. We select
from the data set 100 users with more than 200 labeled records. We adopt this
threshold since we need a reasonably sized test set in order to obtain reliable
empirical results; as already shown, the advantage of the hierarchical model would
further increase when considering smaller training sets. For each of the K users
and for each n 2 {100, 250, 500}, we repeat 10 times the procedure of 1) sampling
n observations as training set and 100 observations from the remaining data as
test set, 2) learning the classifiers and 3) classifying the instances of the test set.
The analyses differ not only in terms of number of observations per user, i.e.,
n 2 {100, 250, 500}, but also in terms of number of users involved in the analysis,
i.e., K 2 {100, 69, 6}. Only 6 users recorded more than 600 observations.

We then classify each instance of the test set. For each of the K users, the test
set contains 100 instances sampled uniformly from all the instances not included
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Figure 12: Boxplots of accuracy gain (left panel) and area under the ROC gain (right panel) ob-
tained comparing the hierarchical method with respect to user-specific traditional methods (BDeu
with s = 1 in blue, BDeu with s = 10 in light blue and Random Forest in green) for three scenar-
ios (n = 100, 250, 500) in the multi-user problem. Positive values favour the hierarchical model.
The boxplots for n = 100, 250, 500 collect respectively a number of users K = 100, 69, 6.

in the training set. In Figure 12 we report the difference in accuracy (left panel)
and ROC AUC (right panel) between the multi-user TAN and the user-specific
classifiers. The boxplots collect the results obtained for 100 instances of the test
set, K users and 10 repetitions of the experiment. Notice that the hierarchical
BN produces a large gain in both accuracy and ROC AUC with respect to both
BDeu approaches. Moreover, it produces comparable results with respect to RF.
In Figure 13 and 14 we instead report respectively the difference in accuracy and
ROC AUC between the hierarchical BN and the traditional classifiers for each of
the K = 100 users, when n = 100. Notice that the hierarchical approach provides
a gain in accuracy and ROC AUC with respect to both BDeu for approximately
the 95% of users. The comparison with respect to RF is instead more balanced.
There is not a clear difference between the two methods.

According to Figures 12, 13 and 14, the hierarchical approach yields con-
sistently better results in multi-user classification with respect to both the BDeu
classifiers. Qualitatively similar results are obtained if we consider as competi-
tors the TAN models whose structure is learned on the pooled data set and whose
parameters are learned independently for each user using the BDeu prior. More-
over, the hierarchical BN makes BN a competitive method with respect to RF in
multi-user problems.

Variational inference makes the introduction of hierarchical models in Bayesian
networks possible. Indeed, the computational time of VI for parameter estimation
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Figure 13: Improvements of accuracy yielded by the multi-domain approach over the user-specific
classifiers: TAN with BDeu prior and s = 1 (top panel), TAN with BDeu prior and s = 10
(central panel) and Random Forest (bottom panel). Positive values imply a higher accuracy of the
hierarchical model. The results refer to 100 users with a user training set of 100 observations each.

in a single CPT with 100 users ranges between 2 seconds and 7 minutes. The same
estimation performed by means of MCMC takes more than 30 hours for a single
CPT estimation. If the number of users, i.e., the number of conditioning states,
diminishes, the computing time diminishes as well. With 6 users, the computa-
tional time of VI ranges between 0.6 and 12 seconds, while the computing time of
MCMC ranges between 23 minutes and 20.5 hours. In both settings the advantage
of introducing VI instead of MCMC in parameter estimation procedures is clear.
The proposed VI method always converged successfully in all the experiments,
while Stan automatic variational inference experienced crashes in about 20% of
the cases, when borrowing strength among 100 users.
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Figure 14: Improvements of area under the ROC yielded by the multi-domain approach over the
user-specific classifiers: TAN with BDeu prior and s = 1 (top panel), TAN with BDeu prior and
s = 10 (central panel) and Random Forest (bottom panel). Positive values imply a higher ROC
AUC of the hierarchical model. The results refer to 100 users with a user training set of 100
observations each.

6. Conclusions and future work

In this work, we have introduced an innovative method for parameter estima-
tion in Bayesian networks by relaxing the local independence assumption. The
proposed variational method provides faster inference with respect to MCMC
methods and more accurate inference with respect to Stan automatic variational
inference. Moreover it improves classification performance of a BN classifier
with respect to traditional Bayesian estimation under parameter independence.
The proposed hierarchical method can be also applied to the problem of learn-
ing Bayesian networks parameters from related domains. The hierarchical model
allows to improve parameter estimation by borrowing statistical strength from re-
lated domains, while the variational approximation makes inference feasible even
when the number of related domain is large.
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Although focused on BN applications, the proposed approach can be applied
whenever a set of related conditional distributions should be estimated.

One interesting development consists in the application of the proposed method
to other classifiers. Indeed, further advances in classification can be obtained by
considering ensembles of TAN classifiers, such as AODE (Webb et al., 2005). An-
other interesting development consists in the adoption of a hierarchical approach
also in structural learning. Coupling a hierarchical approach in structural learn-
ing with the proposed hierarchical parameter learning would further increase the
performance of the Bayesian networks classifiers. A further research direction
consists in modelling also the hyper parameters s and ↵0 as random variables, by
adopting full Bayesian or empirical Bayesian approaches.
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Appendix

Appendix A. Posterior distributions under the hierarchical model

Appendix A.1. Prior correlation
PROOF (LEMMA 1). The correlation between ✓x|y and ✓x|y0 is

Cor
�
✓x|y, ✓x|y0

�
=

Cov
�
✓x|y, ✓x|y0

�
q

Var
�
✓x|y
�q

Var
�
✓x|y0

� .

In order to derive Cor
�
✓x|y, ✓x|y0

�
we thus need to derive Var

�
✓x|y
�

and Cov
�
✓x|y, ✓x|y0

�
.

The prior average of ✓x|y is obtained by means of the law of total expectation
as

E
⇥
✓x|y
⇤
= E

⇥
E↵
⇥
✓x|y
⇤⇤

=
1

s
E [↵x] ,

where E↵ [·] = E [· |↵ ].
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Analogously, the posterior covariance between ✓x|y and ✓x0|y0 is obtained by
means of the law of total covariance, i.e.,

Cov
�
✓x|y, ✓x0|y0

�
= Cov

�
E↵
⇥
✓x|y
⇤
,E↵

⇥
✓x0|y0

⇤�
+ E

⇥
Cov↵

�
✓x|y, ✓x0|y0

�⇤
.

The first quantity is:

Cov
�
E↵
⇥
✓x|y
⇤
,E↵

⇥
✓x0|y0

⇤�
=

1

s2
Cov (↵x,↵x0) .

If y0 = y, the second quantity is:

E
⇥
Cov↵

�
✓x|y, ✓x0|y

�⇤
= E


↵x(s�xx0 � ↵x0)

s2(s+ 1)

�

=
E [↵x] (s�xx0 � E [↵x0 ])

s2(s+ 1)
� (E [↵x↵x0 ]� E [↵x]E [↵x0 ])

s2(s+ 1)

=
(s0 + 1)Cov (↵x,↵x0)

s2(s+ 1)
� Cov (↵x,↵x0)

s2(s+ 1)

=
s0

s2(s+ 1)
Cov (↵x,↵x0) ,

since ↵ is distributed as a rescaled Dirichlet with parameter vector ↵0.
Otherwise, if y0 6= y, E

⇥
Cov↵

�
✓x|y, ✓x0|y0

�⇤
= 0, since ✓X|y ?? ✓X|y0 given ↵.

Exploiting the law of total covariance, we obtain

Cov
�
✓x|y, ✓x0|y0

�
=

Cov (↵x,↵x0)

s2
+
�yy0s0Cov (↵x,↵x0)

s2(s+ 1)
.

The covariance between ✓x|y and ✓x|y0 and the variance of ✓x|y are obtained as
special cases of Cov

�
✓x|y, ✓x0|y0

�
as

Cov
�
✓x|y, ✓x|y0

�
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1

s2
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and
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Thus,
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1
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s2(s+1)Var(↵x)

=
s+ 1

s+ s0 + 1
.
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Appendix A.2. Posterior distribution of ✓X|Y
PROOF (LEMMA 2). Assuming ↵ to be known, the marginal posterior density for
✓X|y is a Dirichlet distribution with parameters ↵+ny, where ny = (nx1y, nx2y, . . .)

0.
It is thus easy to compute

E
⇥
✓x|y
��↵, D

⇤
= E↵,D

⇥
✓x|y
⇤
=

nxy + ↵x

ny + s
,

where E↵,D [·] = E [· |↵, D ].
The posterior expectation of ✓x|y can thus be computed by means of the law of

total expectation as
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In order to compute the posterior covariance between ✓x|y and ✓x0|y0 we can
use the law of total covariance, i.e.,
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Appendix A.3. Posterior moments of ↵
The following lemma states a general result for computing any posterior mo-

ment of ↵, whose general expression is ED
⇥Q

x2X ↵
kx
x

⇤
, where kx 2 N represents

the power of element ↵x. Thanks to this lemma it is possible to easily prove
Lemma 3.

Lemma 4. Under the assumptions of model (5), the posterior average of the
quantity

Q
x2X ↵

kx
x , with kx 2 N, 8x 2 X , is

ED

"
Y

x2X

↵
kx
x

#
= �

Z Y

x2X
y2Y

s.t. nxy>0

nxyY

m=1

(↵x +m� 1)
⇣
↵x

s

⌘k̃x d↵

s
, (A.1)

where k̃x = [↵0]x + kx � 1 and � is a proportionality constant such that

�
�1 =

Z Y

x2X
y2Y

s.t. nxy>0

nxyY

m=1

(↵x +m� 1)
⇣
↵x

s

⌘[↵0]x�1 d↵

s
. (A.2)

PROOF. Under the assumptions of model (5), the joint posterior density of ↵,✓X|Y
is

p(↵,✓X|Y |D) / � (s)Q
x2X � (↵x)

Y

y2Y

Y

x2X

✓
nxy+↵x�1
x|y

⇣
↵x

s

⌘[↵0]x�1 1

s
.

Marginalising p(↵,✓X|Y |D) with respect to ✓X|Y , we obtain

p(↵|D) / � (s)Q
x2X � (↵x)

Y

y2Y

Q
x2X � (↵x + nxy)

� (s+ ny)

Y

x2X

⇣
↵x

s

⌘[↵0]x�1 1

s
. (A.3)

Thanks to the well-known property of the Gamma function

�(↵ +M) =
MY

m=1

(↵ +m� 1) · �(↵), for M � 1

we can write the posterior marginal density (A.3) as

p(↵|D) /
Y

x2X
y2Y

s.t. nxy>0

nxyY

m=1

(↵x +m� 1)
⇣
↵x

s

⌘[↵0]x�1 1

s
. (A.4)
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The proportionality constant of the posterior marginal density is obtained by in-
tegrating the right term in (A.4) with respect to the |X | elements of ↵, such thatP

x2X ↵x = s. The resulting proportionality constant is thus

� =

0

BBBB@

Z Y

x2X
y2Y

s.t. nxy>0

nxyY

m=1

(s↵x +m� 1)
⇣
↵x

s

⌘[↵0]x�1 d↵

s

1

CCCCA

�1

.

The posterior average for the quantity
Q

x2X ↵
kx
x can be derived directly from

the posterior marginal density of ↵ as

ED

"
Y

x2X

↵
kx
x

#
= �

Z Y

x2X
y2Y

s.t. nxy>0

nxyY

m=1

(↵x +m� 1)
⇣
↵x

s

⌘k̃x
d↵,

where k̃x = [↵0]x + kx � 1. In the special case of [↵0]x = 1, 8x 2 X , we have
k̃x = kx.

The proof of Lemma 3 derives directly from Lemma 4.

PROOF (LEMMA 3). Both the posterior expectation for ↵x0 and the posterior ex-
pectation for the product of ↵x0 and ↵x00 are obtained directly from (A.1), by
choosing respectively kx = �xx0 , i.e., kx = 1 for x = x

0 and kx = 0 for 8x 6= x
0,

and kx = �xx0 + �xx00 , i.e., kx = 1 for x 2 {x0
, x

00} and kx = 0 for 8x 2 {x0
, x

00}.

The numerical computation of integrals in Lemma 4 consists in an iterative
algorithm that goes through all the layers of the multiple integral, integrating a
polynomial function in one variable at each time. In the following the first ar-
gument of a function represents the integration variable, while the second one
represents a fixed parameter.

Algorithm 2. Numerical computation of moments.
Fix starting value I(↵x|X| ; �x|X|) = 1, where �x|X| = s� ↵x|X| .
For i in |X | : 1:

1. compute the integrand function f(↵xi ; �xi) as the product of the binomials
in (A.1) or (A.2) and I(↵xi ; �xi);
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2. compute the primitive function F (↵xi ; �xi) associated to the integrand f(↵xi ;
�xi);

3. evaluate the primitive in �xi , i.e., F (�xi) = F (�xi ; �xi);
4. set �xi�1 = �xi � ↵xi;
5. compute the inner integral I(↵xi�1 ; �xi�1) by evaluating F in �xi�1 �↵xi�1 .

The four steps can be computed by means of symbolic calculus in Python.

The computation starts from the innermost integral, which corresponds, e.g.,
to the last index of ↵. We always define the quantity �x = s �

P
x0<x ↵x0 . At

each step of the algorithm the integrand function f(↵x; �x) is a polynomial func-
tion of ↵x, whose coefficients depend on the quantity �x. The integrand function
f(↵x; �x) is computed by multiplying the integral computed in the previous step
I(↵x; �x) by all the binomials (↵x + m � 1) in (A.1) or (A.2). In the first step
I(↵x; �x) = 1. The primitive F (↵x; �x) associated to f(↵x; �x) is computed by
means of symbolic calculus with sympy. F (↵x; �x) is still a polynomial func-
tion in ↵x with degree increased by one with respect to the integrand. The in-
tegral is then computed by evaluating the primitive function in �x and in 0, i.e.
F (�x; �x) � F (0; �x). F (�x) = F (�x; �x) is a polynomial function in �x, while
F (0; �x) = 0, since there are no constant terms in the primitive function. The
quantity �x is now written as �x0 � ↵x0 , with x

0
< x, thus by means of symbolic

calculus we set I(↵x0 ; �x0) = F (�x0 � ↵x0). The polynomial function I(↵x0 ; �x0)
represents the inner integral as a function of the new integration variable ↵x0 , with
coefficients depending on �x0 . All these steps are repeated through all the layers
of the multiple integral. When the outer integral has been reached, the final result
is obtained as I(s; s).

Appendix B. Variational inference

Appendix B.1. ELBO derivation
The general expression (13) for the ELBO and its relation with the KL diver-

gence are well known in the machine learning literature. Blei et al. (2017) derived
them in some general cases. Exploiting Jensen’s inequality, the ELBO bound of
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the hierarchical MD model is:

log(p(D)) = log

✓Z Z
p(D,✓X|Y ,↵)d✓X|Y d↵

◆

= log

✓Z Z
q(✓X|Y ,↵)

p(D,✓X|Y ,↵)

q(✓X|Y ,↵)
d✓X|Y d↵

◆

�
Z Z

q(✓X|Y ,↵) log

✓
p(D,✓X|Y ,↵)

q(✓X|Y ,↵)

◆
d✓X|Y d↵

=

Z Z
q(✓X|Y ,↵) log

�
p(D,✓X|Y ,↵)

�
d✓X|Y d↵

�
Z Z

q(✓X|Y ,↵) log
�
q(✓X|Y ,↵)

�
d✓X|Y d↵

= Eq

⇥
log
�
p(D,✓X|Y ,↵)

�⇤
� Eq

⇥
log
�
q(✓X|Y ,↵)

�⇤
= L.

The KL divergence between the variational and the real posterior distributions
corresponds to the difference between log(p(D)) and L, i.e.,

log(p(D))� L = KL(q(✓X|Y ,↵) || p(✓X|Y ,↵|D)).

Indeed,

L =

Z Z
q(✓X|Y ,↵) log

✓
p(D,✓X|Y ,↵)

q(✓X|Y ,↵)

◆
d✓X|Y d↵

=

Z Z
q(✓X|Y ,↵) log

✓
p(✓X|Y ,↵|D)p(D)

q(✓X|Y ,↵)

◆
d✓X|Y d↵

= KL(q(✓X|Y ,↵) || p(✓X|Y ,↵|D)) + log(p(D)).

Since the KL divergence is a positive quantity, the maximisation of L corresponds
to the minimisation of the KL divergence. On the other hand, the minimisation of
the KL divergence corresponds to the approximation of log(p(D)) by means of a
tight lower bound.

In order to derive the ELBO L̃ we first derive the bound (13) in the specific
case of the hierarchical MD model (5) with approximating model (12), i.e.,

L =
X

y2Y

Eq

⇥
log
�
p(D|✓X|y)

�⇤
+
X

y2Y

Eq

⇥
log
�
p(✓X|y|↵)

�⇤

+ Eq [log (p(↵))]�
X

y2Y

Eq

⇥
log
�
q(✓X|y)

�⇤
� Eq [log (q(↵))] . (B.1)
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Then, the five terms of equation (B.1) are expanded as functions of the variational
parameters. To this end some results reported in Blei et al. (2003) and Kim et al.
(2013) have been used.

Lemma 5 (Blei et al. (2003)). Let ⌘ be a parameter vector whose distribution is
Dirichlet with parameter �, then the expected value of the logarithm of ⌘x is

E[log(⌘x)] =  (�x)�  

 
X

x02X

�x0

!
, (B.2)

where  (·) is the digamma function, derivative of the log Gamma function.

Lemma 6 (Kim et al. (2013)). Let ⌘ be a parameter vector whose distribution is
Dirichlet with parameter � and � 2 R+, then

E[log�(�⌘x)]  log�(�E[⌘x]) +
�(1� E[⌘x])P

x02X �x0
+ (1� �E[⌘x])(log(E[⌘x])

+  

 
X

x02X

�x0

!
�  (�x)) (B.3)

and the bound is tight.

Thanks to (B.2), we can expand the terms of (B.1) as:

Eq

⇥
log
�
p(D|✓X|y)

�⇤
=
X

x2X

nxy( (⌫xy)�  (⌫·y)),
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P

x2X ⌫xy,

Eq

⇥
log
�
p(✓X|y|↵)

�⇤
= log�(s)�

X

x2X

Eq[log�(↵x)]�
X

x2X

(sx � 1)( (⌧x)�  (⌧)),

Eq [log (p(↵))] =
X

x2X

([↵0]x � 1)( (⌧x)�  (⌧)) + log� (s0)�
X

x2X

log�([↵0]x),

Eq

⇥
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�
q(✓X|y|D)

�⇤
= log�(⌫·y)�

X

x2X

log�(⌫xy) +
X

x2X

(⌫xy � 1)( (⌫xy)�  (⌫·y)),

Eq [log (q(↵)|D))] = log�(⌧)�
X

x2X

log�(⌧x) +
X

x2X

(⌧x � 1)( (⌧x)�  (⌧)).
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Since we cannot compute analytically the quantity Eq[log�(↵x)], we bound
the second term of L by means of (B.3):

Eq

⇥
log
�
p(✓X|y|↵)

�⇤
� log�(s)�

X

x2X

log�(sx)�
s

⌧
(|X |� 1)+

+
X

x2X

(sx � 1)(log(x)�  (⌧x) +  (⌧) +  (⌫xy)�  (⌫·y)).

The ELBO can be thus lower bounded by means of the quantity

L̃ =
X

y2Y

X
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X

x2X
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X
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+
X

y2Y
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x2X

(sx � 1)
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 (⌫xy)�  (⌫·y)

⌘
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X

x2X

log�([↵0]x)+

+
X

x2X

([↵0]x � 1)( (⌧x)�  (⌧))�
X

y2Y

log�(⌫·y) +
X

y2Y

X

x2X

log�(⌫xy)+

�
X

y2Y

X

x2X

(⌫xy � 1)( (⌫xy)�  (⌫·y))� log�(⌧) +
X

x2X
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Appendix B.2. Parameter estimation: ⌫y

In order to maximise L̃ with respect to ⌫x0y0 we compute the partial derivative
of L̃ with respect to ⌫x0y0 and we set it to zero.

The partial derivative with respect to ⌫x0y0 is

@L̃[⌫y ]

@⌫x0y0
= ( 0(⌫x0y0)�  

0(⌫·y0))(nx0y0 + sx0 � ⌫x0y0).

Assuming  to be fixed to a known value, the estimate for ⌫xy is obtained by
setting the partial derivative of L̃ with respect to ⌫xy to zero, i.e.,

⌫̂xy = nxy + sx.
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Appendix B.3. Parameter estimation: ⌧ and 

Given a value for ⌫ =
�
⌫1, . . . ,⌫ |Y|

�
, we propose to estimate parameters ⌧

and  by means of a fixed-point method, which alternates the optimisation of
L̃ with respect to ⌧ and the optimisation of the same quantity with respect to
. Since we cannot find analytical solutions for the two optimisation problems,
we propose for both of them a numerical optimisation performed by means of a
Newton algorithm.

The Newton update for the parameter ⌧ is obtained by considering the pa-
rameter vector  fixed to a known value. If we define g⌧ (⌧,) = @L̃/@⌧ and
h⌧ (⌧,) = @

2L̃/@⌧ 2, the Newton update for the parameter ⌧ becomes

⌧̂k+1 = ⌧̂k exp

✓
� g⌧ (⌧̂k,)

h⌧ (⌧̂k,)⌧̂k + g⌧ (⌧̂k,)

◆
, (B.4)

where ⌧̂k represents the estimate for the parameter ⌧ obtained in the previous iter-
ation of the Newton algorithm.

The Newton update for the parameter vector  is obtained by considering the
parameters ⌧ and ⌫ fixed to a known value. If we define gx(, ⌧,⌫) = @L/@x
and hx(, ⌧,⌫) = @

2L̃/@2x we can write the Newton update for the element x
of the parameter vector as


k+1
x = 

k
x +

X

x02X

gkx0 (
k
, ⌧,⌫)

hkx0 (
k, ⌧,⌫)

X

x02X

hx(
k
, ⌧,⌫)

hkx0 (
k, ⌧,⌫)

�
gkx0 (

k
, ⌧,⌫)

hx(k, ⌧,⌫)
, (B.5)

where ̂k represents the estimate for the parameter vector  obtained in the pre-
vious iteration of the Newton algorithm.

Appendix B.3.1. Newton step for ⌧
In order to derive a Newton algorithm to maximise L̃ with respect to ⌧ , we

need to compute the first and second partial derivative of L̃.
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The partial derivative of L̃ with respect to ⌧ is

@L̃[⌧ ]

@⌧
=
X

x2X
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while the second partial derivative with respect to ⌧ is

@
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2
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0(⌧)� 2s

⌧ 3
|Y| (|X |� 1) .

Since the parameter ⌧ is always positive, we derive a Newton algorithm for the
update of log(⌧). If we define g⌧ (⌧,) = @L̃[⌧ ]/@⌧ and h⌧ (⌧,) = @

2L̃[⌧ ]/@⌧
2,

we have that

@L̃[⌧ ]

@ log(⌧)
=
@L̃[⌧ ]

@⌧

✓
@ log(⌧)

@⌧

◆�1

= g⌧ (⌧,)⌧ ;

@
2L̃[⌧ ]

@(log(⌧))2
=

@

@ log(⌧)

 
@L̃[⌧ ]

@ log(⌧)

!
=
@(g⌧ (⌧,)⌧)

@⌧

✓
@ log(⌧)

@⌧

◆�1

= (h⌧ (⌧,)⌧ + g⌧ (⌧,))⌧.

Assuming the parameter vector  to be fixed to a known value, the Newton update
at step k is

� log(⌧ k) = �
@L̃[⌧ ]/@ log(⌧)

@2L̃[⌧ ]/@(log(⌧))2
= � g⌧ (⌧ k,)

h⌧ (⌧ k,)⌧ + g⌧ (⌧ k,)

and the updated parameter ⌧ k+1 can be obtained as

⌧
k+1 = ⌧

k exp(� log(⌧ k)).
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Appendix B.3.2. Newton step for 
In order to derive a Newton algorithm to maximise L̃ with respect to , we

need to compute the first and second partial derivative of L̃ with respect to x.
The partial derivative of L̃[] with respect to x0 is

@L̃[]

@x0
=⌧ 0(⌧x0)([↵0]x0 � ⌧x0 � |Y|(sx0 � 1))�  (⌧x0)(⌧ + |Y|s)+
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=⌧ 0(⌧x0)([↵0]x0 � ⌧x0 � |Y|(sx0 � 1))� s|Y|( (⌧x0) +  (sx0)+

� log(x0)� 1)� |Y|
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y2Y

s (⌫x0y).

The second partial derivative with respect to x0 is

@
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2
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2
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2
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,

while all the mixed second order derivatives @2L̃[]

@x0@x00
are equal to zero.

Since
P

x2X x = 1, we need to use a constrained Newton method to optimise
L̃. Specifically, at step k we need to obtain a Newton update �k such thatP

x2X �kx = 0. As a consequence, the system to be solved is:

H

k 1
10 0

� 
�k

u

�
=


�gk

0

�
,

where the elements of u are the dual variables for the constrain, Hk is the Hessian
matrix at step k, 1 is the identity matrix and gk is the gradient vector at step
k. We define gx(, ⌧,⌫) = @L̃[]/@x and hx(, ⌧,⌫) = @

2L̃[]/@
2
x. Given

a value for the parameters ⌧ and ⌫, we can write the element x of the gradient
vector as [gk]x = gx(

k
, ⌧,⌫). In the specific case under exam the Hessian
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matrix is diagonal with elements [hk]x = hx(
k
, ⌧,⌫), i.e., H = diag(hk). The

constrained Newton step for the element x of the vector is thus

�kx =
1

hk
x

✓P
x02X g

k
x0/h

k
x0P

x02X 1/hk
x0

� g
k
x

◆
.

See, e.g., Kim et al. (2013) for a similar optimisation method.
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Table B.1: Data sets for classification analysis sorted in terms of number of instances. Marked
data sets (*) are part of Weka agricultural data sets agridatasets. All the other data sets are part of
the UCI Machine Learning repository.

# Name instances attributes classes missing

1 Connect-4 67557 42 3 -
2 Adult 45222 14 2 replaced
3 Letter 20000 16 26 -
4 Nursery 12960 8 5 -
5 Pendigits 10992 16 10 -
6 Mushroom 8124 22 2 replaced
7 Satimage 6435 36 6 -
8 Shuttle 5800 9 7 -
9 Optdigits 5620 64 10 -

10 Page blocks 5473 10 5 -
11 Waveform 5000 21 3 -
12 Spambase 4601 57 2 replaced
13 Hypothiroid 3772 29 4 replaced
14 Chess 3196 36 2 -
15 Splice 3190 60 3 -
16 Segmentation 2310 19 7 -
17 Yeast 1484 8 10 -
18 Cmc 1473 9 3 -
19 German credit 1000 20 2 -
20 Vowel 990 12 11 -
21 Anneal 898 38 6 -
22 Diabetes 768 8 2 -
23 Eucalyptus* 736 19 5 replaced
24 Breast cancer 699 9 2 -
25 Credit approval 690 15 2 replaced
26 Soybean 683 35 19 -
27 Monk’s 2 601 6 2 -
28 Monk’s 1 556 6 2 -
29 Monk’s 3 554 6 2 -
30 Ionosphere 351 34 2 -
31 Liver disorders 345 6 2 -
32 Primary tumor 339 17 22 replaced
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# Name instances attributes classes missing

33 Ecoli 336 7 8 -
34 Solar flare C 323 10 3 -
35 Solar flare M 323 10 4 -
36 Solar flare X 323 10 2 -
37 Cleveland-heart 303 13 2 replaced
38 Hungary-heart 303 13 2 replaced
39 Spect 267 22 2 -
40 Audiology 226 69 24 replaced
41 Glass 214 9 7 -
42 Sonar 208 60 2 -
43 Wine 178 13 3 -
44 Hayes-Roth 160 4 3 -
45 Grub damage* 155 8 4 -
46 Hepatitis 155 19 2 replaced
47 Tae 152 5 3 -
48 Iris 150 4 3 -
49 Lymphography 148 18 4 -
50 Zoo 101 16 7 -
51 Post-operative 90 8 3 -
52 White clover* 63 31 4 -
53 Labor 57 16 2 replaced
54 Squash stored* 52 24 3 replaced
55 Squash unstored* 52 23 3 replaced
56 Pasture* 36 22 3 -
57 Lenses 24 4 3 -
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