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Abstract
In this paper, the naive credal classifier, which is a set-valued counterpart of naive Bayes, is ex-
tended to a general and flexible treatment of incomplete data, yielding a new classifier called naive
credal classifier 2 (NCC2). The new classifier delivers classifications that are reliable even in the
presence of small sample sizes and missing values. Extensive empirical evaluations show that, by
issuing set-valued classifications, NCC2 is able to isolate and properly deal with instances that are
hard to classify (on which naive Bayes accuracy drops considerably), and to perform as well as
naive Bayes on the other instances. The experiments point to a general problem: they show that
with missing values, empirical evaluations may not reliably estimate the accuracy of a traditional
classifier, such as naive Bayes. This phenomenon adds even more value to the robust approach to
classification implemented by NCC2.

Keywords: naive Bayes, naive credal classifier, imprecise probabilities, missing values, conserva-
tive inference rule, missing at random

1. Introduction

Is it possible to draw credible conclusions about a domain only looking at some data produced
within the domain itself?

The answer to this question appears to be related to the problem of modeling ignorance.1 In fact,
there are at least two kinds of ignorance involved in the process of learning from data. The first is
prior ignorance about the domain, as we are assuming that data are our only source of information.
The second is ignorance arising from missing values, as data are often incomplete; in this case,
ignorance is about the process that originates the missing values: that is, the missingness process.
So, in principle, we should model both ignorances properly in order to deliver credible conclusions.

Let us consider pattern classification, which is the focus of this paper. Considering Bayesian
classifiers, we see that prior ignorance is modeled in common practice by so-called non-informative
prior densities (or just priors, for short). But such an approach can lead, especially when the
learning set is small, to the known problem of prior-dependent classifications, whose reliability is

1. When we use the word “ignorance” in this paper, we actually mean a condition of near-ignorance. Indeed, full
ignorance is not compatible with learning, as it is well known (e.g., see Section 7.3.7 of Walley, 1991, Section 2.3 of
Zaffalon, 2005b).
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questionable. This appears to indicate that non-informative priors do not model prior ignorance
satisfactorily.

A more objective-minded2 model of prior ignorance has been proposed through a classifier
called naive credal classifier (NCC), see Zaffalon (2001), which is an extension of naive Bayes
classifier (NBC) to imprecise probabilities (Walley, 1991). NCC models prior ignorance by a set
of prior densities (also called prior credal set), which is turned into a set of posteriors by element-
wise application of Bayes’ rule. The classification is eventually issued by returning all the classes
that are non-dominated by any other class according to the posterior credal set, where class ci is
said to dominate c j if for all the posteriors it holds that the probability of ci is larger than that of
c j. This makes NCC naturally issue set-valued classifications (i.e., classifications made by more
than one class) when faced with instances that are hard to classify, due to a combination of prior
ignorance and poor information about those specific instances in the learning set. The shift of
paradigm based on set-valued classifications allows NCC to deliver robust classifications in spite of
small learning sets. NCC has indeed shown excellent accuracy in real-world case studies (Zaffalon,
2005a; Zaffalon et al., 2003), thus demonstrating the usefulness, for classification purposes, of
modeling prior ignorance via a credal set. In the following, set-valued classifications are also called
indeterminate. Determinate classifications correspond instead to the set being a singleton, and hence
to the case usually considered by more traditional classifiers. Similarly, we say that a classifier is
determinate when it outputs a single class and indeterminate otherwise.

As for the ignorance arising from missing data, we can think of the missingness process (MP)
as a process that takes in input the complete data, which we cannot usually observe, and outputs
the incomplete data, which we do observe. If data are our only source of information, we are
ignorant about the MP because it is usually not possible to learn how it operates, from the observed,
incomplete data.

In common practice, missing values are often ignored; this entails the idea that the MP is non-
selective in producing them, or, in other words, that it is a missing at random (MAR) process (Little
and Rubin, 1987; Jaeger, 2005). However, if one is ignorant about the MP, assuming MAR cannot be
regarded as an objective-minded approach, as is well documented, for instance, by Manski (2003).

In its original formulation, NCC introduced also an initial attempt to deal with ignorance about
the MP. The idea was to model ignorance about it by using a set of likelihoods: a likelihood per each
complete learning set consistent with the incomplete one. A similar avenue was also implemented
by robust Bayes classifier (Ramoni and Sebastiani, 2001).3 These approaches are indeed valuable,
but have two problems: (i) they implicitly still assume MAR for the missing values in the instance
to classify, thus creating a peculiar asymmetry between learning and test set that is not of general
validity in applications; (ii) they may well be too conservative, because for some feature variables
one might know that the missingness is MAR, and they do not allow this information to be incor-
porated in the model. Furthermore, their treatment of missing values rests on intuitive arguments
rather than on a principled derivation.

2. Although we base our results on Walley’s theory, which is a subjective theory of probability, we sometimes use the
terminology “objective-minded.” We do so to stress that using (very) weak assumptions leads to results that are much
more determined by the data than by our prior beliefs (intended in a loose way, not only as prior probabilities), and in
this sense are more objective. Yet, in the paper we deliberately avoid using the word “objective” alone, just because
it is improper within the considered theory.

3. When used with the so-called strong dominance score.
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By this paper we extend NCC to a very general and flexible treatment of incomplete data, both
in learning and testing. We call the resulting classifier naive credal classifier 2 (NCC2), in order to
emphasize the advancement made to deal with incomplete data, while keeping the original benefits
of NCC on the front of prior ignorance.

By NCC2, it is possible to declare that some (possibly all or none) of the feature variables are
subject to a MAR process, and the remaining ones are automatically assumed to be subject to an
MP that is unknown to us. Remarkably, the set of feature variables subject to a MAR MP can be
chosen differently from the learning to the test set. This is a key characteristic of NCC2: in fact, if
the MP is unknown, it may well change its behavior from unit to unit for all we know (i.e., it may
not be identically distributed), and we should act accordingly.

The development of NCC2 is based on a recently derived so-called conservative inference rule
(CIR) to compute (imprecise) conditional expectations with incomplete data (Zaffalon, 2005b). Af-
ter giving some notation and briefly recalling CIR in Section 2, we derive NCC2 in Section 3 by
specializing CIR to the case of naive classification. In the end we obtain procedures to learn NCC2
and to do classifications with it that do not involve approximations and are computationally fast.
(The software which implements NCC2 is released as open source; more details are provided in
Section 3.5.)

Next, we concentrate on empirical evaluations: in Section 4 we analyze the behavior of NCC2
from a number of angles and on a number of publicly available data sets. The analysis turns out to
be particularly meaningful when we compare NCC2 with its precise-probability counterpart, that is,
naive Bayes. We do this by evaluating the accuracy of NBC on the instances of the test set where
NCC2 issues a determinate classification separately from those where it does not. In fact, NCC2
is indeterminate on an instance when it deems that there is not enough knowledge in the learning
set to make a determinate classification reliably; NBC, on the other hand, issues a determinate
classification on such an instance (as well as on any other). Therefore we expect NBC to have
different behaviors on the two kinds of instances isolated by NCC2. And this is indeed the case:
the experiments show that NBC undergoes a major drop in accuracy moving from the instances
classified in a determinate way by NCC2 to the indeterminate ones. The drop is observed on every
data set, with no exception.

It is important to realize that such a drop points out a key question: the usual way to measure the
performance of a classifier, that is, its predictive accuracy, which is an average over all the instances
of the test set, may not help uncover a possible bad performance of the classifier on a subset of the
test instances. These instances are precisely those that are hard to classify and that NCC2 isolates
by delivering set-valued classifications.

But set-valued classifications help NCC2 to do more than just isolating the hard instances, they
enable it to cope effectively with them: in fact, we show that set-valued classifications are often
informative, as they usually lead to drop some unlikely classes; and that the measured set-based
accuracy of NCC2 (i.e., the proportion of times the true class is contained in the output set) is often
similar to the accuracy obtained on the instances classified in a determinate way.

At this point we should say that the mentioned experiments have been carried out with a variety
of settings, obtained considering both MAR processes and non-MAR ones, and the mentioned out-
comes are been confirmed over all of them (although sometimes this is due more to prior ignorance
and some others more to the missing data).

To make our results stronger, we have also investigated whether NBC could take advantage of
the posterior probabilities it computes in order to deal more successfully with the hard instances.
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We have considered such posterior probabilities again by separating the cases where NCC2 is deter-
minate from the others, and by comparing those probabilities with the measured accuracy that NBC
actually achieves on the data. What we show is that the NBC probabilities are (also very) unreliable
on the instances that are hard to classify, as isolated by NCC2, and definitely more unreliable than
on the remaining instances. In other words, we observe another kind of drop that now is related to
the quality of the posterior probabilities computed by NBC.

Overall, we show that NBC may well be too optimistic in dealing with small data sets and
missing data, thus yielding unreliable predictions. It is useful to recall that NBC is known to be very
robust to missing data. Therefore, it is not unlikely that the optimism on the front of missing data is
even greater with more complex classifiers. This point appears to be worth of serious consideration
on its own.

At the same time, and in contrast with naive Bayes, our experiments show that NCC2 may
sometimes be too pessimistic (i.e., conservative) especially when dealing with missing data. This
happens because by construction NCC2 implicitly considers the worst possible MP to have acted on
the non-MAR part of the data, and in some cases this hypothesis may be too far from the MP that
has actually produced the missing values.

In most of our experiments, for instance, we have deliberately used very simple MPs, and this
has favored some excess of caution to show up. Yet, we have also considered an illustrative example
of a more elaborated MP, in Section 4.6. In this case we show that the indeterminacy of NCC2 is
fully justified, the NBC being completely unreliable in the area of indeterminacy. Even more impor-
tant, we show that such an unreliability cannot be uncovered by making empirical evaluations: de-
spite the predictive accuracy of NBC on a certain instance is measured properly by cross-validation,
the actual accuracy on new instances of the same type can be significantly worse. This highlights
the fact that modeling ignorance properly is important, even if there are data available for empirical
evaluations. Indeed, in such an experiment NCC2 does not decrease its performance, nor do its
empirical evaluations fail.

This is not to say that one should abuse assuming ignorance about the MP: when there are
many missing values, especially in the instance to classify, one would obtain conclusions much
too weak. This is shown in a setup where missingness increases in Section 4.5. Our view is that
information about the MP should be incorporated in a model when available. In fact, we regard as
an important research avenue the definition of classification models able to flexibly incorporate MP-
related knowledge, which is usually not conveyed by the data at hand. With NCC2, incorporating
knowledge is done by declaring that some variables are subject to a MAR MP, and we actually
recommend doing so whenever possible; this has the potential, shown also experimentally in the
above section, to yield strong enough conclusions in many cases. Eventually, in Section 4.7 we
analyze the results obtained on the eucalyptus data sets; in fact, such results are quite peculiar and
therefore worthy of a separate investigation. The conclusion we achieve in this case is that the
use of coarsened rather than missing observations is another very effective means to incorporate
knowledge, in case there is no support for declaring some variables as subject to a MAR MP.

2. Setup

In this paper, the variables that refer to complete data, which are in general not observable, are called
latent, while those referring to incomplete data, which are the ones to which we have usually access,
are called manifest. A given manifest value is identical to the corresponding latent one, unless the
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latent value has been turned into missing by the MP; in this case, the manifest value is actually the
symbol of missing value. Therefore, in a case where the data at hand are complete, the instances of
the latent and the manifest variables coincide.

c1 a11, . . . ,a1k
...

...
...

...
...

...
cN aN1, . . . ,aNk

d

â11, . . . , â1r
...
...
...

âN1, . . . , âNr

x̂

aM1, . . . ,aMk

xM

âM1, . . . , âMr

x̂M

c1 a11, . . . ,a1k
...

...
...

...
...

...
cN aN1, . . . ,aNk

cM aM1, . . . ,aMk

d−

â11, . . . , â1r
...
...
...

âN1, . . . , âNr

âM1, . . . , âMr

x̂+

Figure 1: Graphical representation of some vectors of latent variables. Rows 1, . . . ,N constitute the
training set, while the M-th unit is a new instance to be classified.

In the following, i indexes a given unit (i.e., a certain row) of the data set: the learning set (or
training set) is made up of the units for which 1 ≤ i ≤ N, while the unit to classify (not belonging
to the learning set) is indexed by M := N +1. A set of units to classify is referred to as test set.

In a classification problem there are typically class variables and attribute variables. We de-
note: (i) the latent class variable as Ci, and we assume that it is always observed; (ii) the latent
attribute variables affected by an unknown MP (i.e., to be conservatively modeled as non-MAR)
as Ai1,. . . ,Aik; (iii) the latent attributes affected by a MAR MP as Âi1, . . . , Âir. The two MPs are
assumed to be independent of each other and their coarsening behavior is allowed to vary with
different units, that is, they are not assumed to be identically distributed.4

For all i, Ci takes generic value ci in the finite set C, called set of latent classes, while Ai j (Âil)
take generic values a j (âl) in the finite sets A j (Âl), called sets of latent attributes.

We define the following groups of latent variables: Xi := (Ai1, . . . ,Aik), Di := (Ci,Xi), and X̂i :=
(Âi1, . . . , Âir). We then extend such grouped variables to span the whole training set, instead than

4. See Zaffalon (2005b), Section 5, for a discussion about this point.
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just the i-th unit, defining the vector C := (C1, . . . ,CN) and the matrices X := (X1, . . . ,XN), X̂ :=
(X̂1, . . . , X̂N), D := (D1, . . . ,DN). The same grouped variables but with a “+” superscript, include
also data of the M-th unit (i.e., the instance to be classified): C+ := (C1, . . . ,CM), X + := (X1, . . . ,XM),
X̂

+
:= (X̂1, . . . , X̂M),D+ := (D1, . . . ,DM). Let also define D- := (C,X +).5

Observe that realizations of the random matrix (D+, X̂
+
) represent the possible complete data

sets, which we cannot observe directly, and that realizations of (D, X̂) represent the possible com-
plete learning sets, while those of (XM, X̂M) represent the possible complete units to classify.

To complete the notation regarding latent variables, we assume that the generic latent unit
(d, x̂) ∈ D× X̂ is generated in independently and identically distributed (IID) way according to
the aleatory probability (or chance) ϑ(d,x̂). The vector of such chances is denoted by ϑ, which be-
longs to Θ, that is, a (non-empty) subset of the unitary |D× X̂|-dimensional simplex. Let θ denote
the random variable of which ϑ is a generic value. Knowledge about θ is expressed by p(θ), which
denotes an imprecise prior density for θ. This means that p(θ) is known to belong to a non-empty
set P(θ) of precise prior densities for θ. P(θ) is referred to as prior credal set.

As for the manifest variables, we assume that we either observe a precise value, or we do not
observe it at all. Manifest variables are denoted by the letter O followed by the latent variable
they refer to, written as a subscript. We define hence the following manifest variables: O := OD =
(O1, . . . ,ON), O+ := OD+ = (O1, . . . ,OM), O- := OD- = (O1, . . . ,ON ,XM), Ô := OX̂ = (Ô1, . . . , ÔN),
Ô

+
:= OX̂

+ = (Ô1, . . . , ÔM).

2.1 Classification With Imprecise Probabilities and Conservative Inference Rule

The goal of classification is to predict the class of the M-th unit, given the previous units (1, . . . ,N)
and the values of the M-th attribute variables.

To this extent, a traditional probabilistic classifier outputs what it deems to be the optimal pre-
diction: that is, the class with the highest probability (in the case of 0-1 loss function) on the basis
of a uniquely computed posterior density. In the imprecise setting, however, the optimality criterion
has to be extended to manage a set of posterior densities (derived from a set of priors and a set of
likelihoods), instead of a single posterior; in particular, according to Section 3.9.2 of Walley (1991),
the optimality criterion in the imprecise setting prescribes to return the non-dominated classes. The
definition of dominance is as follows: class ci dominates c j if for all the computed posteriors den-
sities, the posterior probability of ci is greater than that of c j; clearly, c j is non-dominated if no
class dominates c j. The second procedure of Figure 2, based on pairwise comparison of classes,
identifies the non-dominated classes. Observe that, as a result of the uncertainty arising from both
prior specification and non-MAR missing values, there can be several non-dominated classes; in
this case, the classifier returns an indeterminate (or set-valued) classification. Classifiers that issue
set-valued classifications are called credal classifiers by Zaffalon (2002).

A key point is that non-dominated classes are incomparable;6 this means that there is no in-
formation in the model that allows us to rank them. In other words, credal classifiers are models
that allow us to drop the dominated classes, as sub-optimal, and to express our indecision about the
optimal class by yielding the remaining set of non-dominated classes.

5. Since we assume the class variable to be always observed, C is a complete vector. Hence, it is possible to derive the
NCC2 algorithms also by grouping C with X̂ .

6. If we exclude the classes that are non-dominated due to indifference rather than incomparability, and that constitute
a very special case in the imprecise setting.
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In the setup of this paper, the test of dominance can be re-written as follows: c′′ is dominated
by c′ if and only if it holds that

1 < min
xM∈oM

min
d∈o

inf
p(θ)∈P(θ)

p(c′M|d-, x̂+ ∈ ô+)

p(c′′M|d-, x̂+ ∈ ô+)
. (1)

Actually, Equation (1) is the general form of the test of dominance for any classifier based on the
conservative inference rule presented in Zaffalon (2005b); CIR is a conditioning rule (i.e., a rule
for computing conditional expected values) that generalizes the traditional conditioning; it assumes
that prior beliefs are dealt with via a credal set P(θ) and it accounts for data sets in which the
missingness process is MAR for some variables (the term x̂+ ∈ ô+ refers indeed to the missing data of
MAR feature variables in the training set), and unknown for some others. Moreover, CIR is able to
manage variables whose MP is MAR in learning and unknown in testing, or vice versa. Equation (1)
follows almost immediately from Theorem 4 in Zaffalon (2005b) after considering that for c′M to
dominate c′′M, it must hold that p(c′M|d-, x̂+ ∈ ô+) > p(c′′M|d-, x̂+ ∈ ô+) for all the possible posteriors,
which we obtain considering any precise prior in the prior credal set, as well as any completion of
the non-MAR missing values both in the sample and in the unit to classify.

CIR can be regarded as unifying two rules (Zaffalon, 2005b): a conservative learning rule,
which prescribes how to learn the classifier from an incomplete training set, and a conservative
updating rule, which prescribes how to classify a novel instance that contains missing values. Such a
distinction is made clear by two distinct optimization loops of Equation (1); the middle optimization
loop (mind∈o) realizes the conservative learning rule, by prescribing to loop on the completions
of the non-MAR part of the learning set, that is, d ∈ o, while the outer minimum implements the
conservative updating rule, prescribing to loop on the replacements for the non-MAR missing values
of the unit to classify. The inner loop, which minimizes over the prior credal set, is common to both
learning and updating rules.

NCC2 specializes the test of Equation (1) to the case of naive classification. In the following, we
will move from the precise setting (corresponding in fact to naive Bayes) to NCC2 in four steps: in
Section 3.1 we describe the precise setting (assuming hence that there is a single prior, and that there
is a single likelihood as non-MAR data are complete); in Section 3.2 we extend the computation
to manage a set of priors; in Sections 3.3 and 3.4 we finally relax the assumptions of completeness
about non-MAR data in learning and testing respectively, thus managing a set of likelihoods and
instances to classify.

3. Introducing NCC2

In this section, we introduce the NCC2 framework. In particular, we derive an expression that
specializes the test of Equation (1) to the case of naive classification; such an expression realizes
both the minimizations over possible priors and over possible unobserved values by distributing
some pseudo-counts in a way that minimizes the ratio of the posterior probabilities of the two
competing classes c′M and c′′M.

Formal proofs of the findings derived in this section are provided in Appendix B.

3.1 Updating Precise Beliefs

In this section, we assume that a single prior is specified and that only the observations of the features
affected by the MAR MP contain some missing data; the observations of the feature affected by the
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unknown MP, instead, do not contain any missing data. In practice, this corresponds to the naive
Bayes setting, with the difference that we explicitly separate variables affected by the MAR MP and
the unknown MP. In our setting, the naive hypothesis (i.e, the assumption of mutual independence
of the latent attribute variables Ai1, . . . , Aik, Âi1, . . . , Âir conditional on the class variable Ci) can be
formalized as follows:

ϑ(di,x̂i) = ϑci

k

∏
j=1

ϑai j|ci

r

∏
l=1

ϑâil |ci
∀(di, x̂i) ∈ D× X̂, (2)

where ϑc denotes the chance of (Ci = ci); ϑai j|c and ϑâil |c denote the chances of (Ai j = a j|Ci = ci)

and (Âil = âl|Ci = ci), respectively.
We focus on the precise probability p(cM|d-, x̂+ ∈ ô+). Let us consider the probability p(cM,d-, x̂+ ∈

ô+), which is proportional to the previous one. Write p(cM,d-, x̂+ ∈ ô+) as
R

Θ p(ϑ)p(cM,d-, x̂+ ∈
ô+|ϑ)dϑ. Observe that p(cM,d-, x̂+ ∈ ô+|ϑ) is equal to p(d, x̂ ∈ ô|ϑ)p(cM,xM, x̂M ∈ ôM|ϑ) because
of the IID assumption about the data generation mechanism. We obtain that

p(cM|d-, x̂+ ∈ ô+) ∝
Z

Θ
p(ϑ)p(d, x̂ ∈ ô|ϑ)p(cM,xM, x̂M ∈ ôM|ϑ)dϑ. (3)

The term p(d, x̂ ∈ ô|ϑ) in (3) is called likelihood function.
By sticking to the naive hypothesis, the likelihood can be expressed as follows:

Lemma 1
p(d, x̂ ∈ ô|ϑ) = ∏c∈C{ϑn(c)

c [∏k
j=1 ∏a j∈A j

ϑn(a j,c)
a j|c

][∏r
l=1 ∏âl∈Âl

ϑn(âl ,c)
âl |c

]}.

Here n(c) resp. n(a j,c) denote the number of occurrences of c resp. of joint occurrences of (a j,c)
in d, and n(âl,c) denotes the number of joint occurrences of (âl,c) in the learning set after dropping
the units with missing values of Âl . Technically, the likelihood function of Lemma 1 has the same
functional form as a product of Dirichlet densities; in particular, the frequencies n(·) correspond to
the Dirichlet hyperparameters usually denoted as α(·)−1.

With similar arguments to those used with Lemma 1, and assuming that the MAR attribute
variables have been re-ordered so as to index the non-missing ones in the instance to classify from
1 to r′ ≤ r, we obtain:

Lemma 2 p(cM,xM, x̂M ∈ ôM|ϑ) = ϑcM ∏k
j=1 ϑaM j|cM ∏r′

l=1 ϑâMl |cM
.

Note that restricting the second product between l = 1 and l = r′ prevents the inclusion in the
expression of the attributes that are missing in the unit to classify.

3.1.1 IMPRECISE PRIOR (PRIOR CREDAL SET)

The remaining term in (3) is p(ϑ), that is, the prior. We define it so as to be conjugate to the
likelihood, according to the following expression:

p(ϑ|s, t)dϑ ∝ ∏
c∈C

{ϑst(c)−1
c dϑC[

k

∏
j=1

∏
a j∈A j

ϑst(a j,c)−1
a j|c

dϑA j|c] ·

·[
r

∏
l=1

∏
âl∈Âl

ϑst(âl ,c)−1
âl |c

dϑÂl |c
]}, (4)
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which is a product of Dirichlet densities. The density is named p(ϑ|s, t), so as to make it explicitly
the hyperparameters on which it depends (here t denotes the vector of t(·)-hyperparameters). In
other words, the prior is defined by an expression that is similar to the likelihood function except
that the frequencies n(·) are replaced everywhere by st(·)− 1. The real hyperparameter s can be
regarded as the size of the hypothetical sample, in the common interpretation of conjugate Bayesian
priors as additional sample units; Walley (1996) gives arguments to choose s in the interval [1,2],
and we will adopt s := 1 for the empirical experiments of Section 4. The real hyperparameter t(·)
can instead be regarded as the proportion of units in which the variables in question take certain
values (e.g., t(c) is the proportion of units where the class variable is equal to c) in the hypothetical
sample.

Now, remember that we want the prior to be imprecise, that is, to be a set of priors. We define
the set by imposing a system of constraints on the t-hyperparameters that resemble the structural
constraints of the observed frequencies n(·): in particular, ∑c∈C t(c) = 1, ∑a j∈A j

t(a j,c) = t(c),
∑âl∈Âl

t(âl,c) = t(c). We moreover impose the conditions t(a j,c) > 0, t(âl,c) > 0. The credal set
P(θ) is defined as the set of all the precise priors that satisfy these constraints. The construction of
P(θ) is similar to the approach implemented by Walleys’ imprecise Dirichlet model (Walley, 1996).

Informally, one could interpret P(θ) in the following way: say that any single, precise Dirichlet
prior, is a possible state of information about the process generating (latent) data. Then, our igno-
rance about this process is modeled by considering the set of all the states of information about the
process, that is, by considering that all of them are actually possible.7

3.1.2 PROBABILITY OF THE NEXT CLASS

The tools introduced so far lead us to the following result.

Theorem 3 Consider Expression (3). It holds that:

p(cM|d-, x̂+ ∈ ô+,s, t) = p(cM|d, x̂ ∈ ô,s, t)
k

∏
j=1

p(aM j|cM,d, x̂ ∈ ô,s, t) ·

·
r′

∏
l=1

p(âMl|cM,d, x̂ ∈ ô,s, t), (5)

where

• p(cM|d, x̂ ∈ ô,s, t) := [n(cM)+ st(cM)]/(N + s);

• p(aM j|cM,d, x̂ ∈ ô,s, t) := [n(aM j,cM)+ st(aM j,cM)]/[n(cM)+ st(cM)] ( j = 1, . . . ,k);

• p(âMl|cM,d, x̂ ∈ ô,s, t) := [n(âMl,cM)+ st(âMl,cM)]/[nl(cM)+ st(cM)] (l = 1, . . . ,r′);

• nl(cM) := ∑âl∈Âl
n(âl,cM).

Note that MAR attributes that are missing in the unit to be classified do not affect the posterior
probabilities of the class.

7. To be more precise, we do not consider all of them, only those with s fixed; this corresponds to fix the “strength” of
our prior ignorance.
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3.2 Credal Dominance Tests with an Imprecise Prior

Let us now address the computation of the inner optimization problem in (1), under the choice of
the imprecise prior made in Section 3.1.1.

Lemma 4 Consider the problem infp(θ)∈P(θ) p(c′M|d-, x̂+ ∈ ô+)/p(c′′M|d-, x̂+ ∈ ô+), with the set of
prior densities described in Section 3.1.1, and the probabilities in the function to optimize (also
called objective function in the following) defined as in (5). Such a problem is equivalent to the
following:

inf
0<t(cM′′ )<1

{[
n(c′′M)+ st(c′′M)

n(c′M)+ s− t(c′′M)
]k−1

k

∏
j=1

n(aM j,c′M)

n(aM j,c′′M)+ st(c′′M)

·
r′

∏
l=1

[
nl(c′′M)+ st(c′′M)

nl(c′M)+ s− t(c′′M)
·

n(âMl,c′M)

n(âMl ,c′′M)+ st(c′′M)
]}

=: inf
0<t(cM′′ )<1

h(t(cM′′)). (6)

The problem of finding the prior p(θ) ∈ P(θ) that minimizes the ratio of the posterior probabilities
p(c′M|d-, x̂+ ∈ ô+)/p(c′′M|d-, x̂+ ∈ ô+) can be hence be solved by finding the value 0 < t(cM′′) < 1 that
minimizes h(t(cM′′)), as follows.

Theorem 5 The infimum of h(t(cM′′)) over (0,1) is determined by the following procedure:

• if there is j such that n(aM j,c′M) = 0 or l such that n(âMl,c′M) = 0, infh(t(cM′′)) = 0;

• if k = 0 and r′ = 0, infh(t(cM′′)) = h(1);

• otherwise, h(t(cM′′)) can be shown to be convex over (0,1); hence, it can be minimized by a
convex optimization procedure (detailed in the proofs).

3.3 Credal Dominance Test with an Incomplete, Non-MAR, Learning Set

In case the learning data produced by the unknown MP are incomplete, the problem to be solved is

min
d∈o

inf
p(θ)∈P(θ)

p(c′M|d-, x̂+ ∈ ô+)/p(c′′M|d-, x̂+ ∈ ô+). (7)

Theorem 6 The procedure of Theorem 5 solves Problem (7) after renaming n(aM j,c′M) := n(aM j,c′M)
and n(aM j,c′′M) := n(aM j,c′′M), where n(aM j,c′M) := mind∈o n(aM j,c′M) and n(aM j,c′′M) :=
maxd∈o n(aM j,c′′M).

In other words, to solve Problem (7) we have to select the realization of the non-MAR part of
the learning set, among the possible realizations d ∈ o consistent with our observations, which
minimizes the probability ratio.

For a non-MAR feature variable A j, one can prove that:

• the probability of class c′M is minimized by assuming the value of A j to be different from a′M j
whenever A j is missing and the class of the instance is c′M; this is the meaning of the lower
counts n(aM j,c′M);8

8. Note that, despite the different meaning, the counts n(a j,c) for non-MAR feature variables are computed identically
to the counts nl(a j,c) for MAR ones.
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• the probability of class c′′M is maximized by assuming the value of A j to be aM j whenever A j is
missing and the class of the instance is c′′M; this is the meaning of the upper counts n(aM j,c′′M).

Once the realization of the non-MAR missing values is identified by upper and lower counts, the
most unfavorable complete realization of the learning set has been chosen (i.e., the minimization
over d ∈ o has been accomplished), and we are in the case of Problem (6).

3.4 Credal Dominance Test with an Incomplete, Non-MAR, Unit to Classify

Finally, we consider the case when the unit to classify is missing some of the attributes subject to
the unknown MP. We need to address the following problem:

min
xM∈oM

min
d∈o

inf
p(θ)∈P(θ)

p(c′M|d-, x̂+ ∈ ô+)

p(c′′M|d-, x̂+ ∈ ô+)
. (8)

Problem (8) can be trivially solved as follows: (i) considering all the possible realizations xM of the
non-MAR part of the instance (this is accomplished by considering all the possible replacements
for the missing values); (ii) for each xM ∈ oM, assuming xM to be the realization of the non-MAR
part of the unit to classify, and then solving Problem (7); (iii) if the computed solution is smaller
than or equal to 1, c′′M is not dominated by c′M (and the computation can be interrupted); instead, if
the solution is greater than 1 for each xM , c′′M is dominated by c′M.

Although this procedure leads to the exact solution, it takes exponential time due to the number
of the replacements of missing values in the instance to classify. A more efficient polynomial-
time procedure, which is still exact, can be designed to solve Problem (8) and is in fact given in
Appendix A.

The underlying idea of such a procedure is to split the outer minimum in (8) in many minima,
each one related to a different feature variable, and to distribute them at different places into the
objective function. This makes is clear that the function to optimize is the lower envelope of a
set of convex functions. In Appendix A we show that it is easy to compute the points where the
function that determines the envelope changes, thus in fact obtaining a partition of the envelope
function’s domain with the property that in each of its elements the envelope function is convex. At
that point, the function can be locally optimized efficiently on every element of the partition; and the
global optimum is then just the minimum of the local optima so computed. The fact that the overall
procedure is polynomial follows because the size of the partition is bounded by a polynomial.

A final remark is that, to make notation simpler, we refer to the possible realizations of the non-
MAR variables in the instance to be classified as oM; such a notation implies however that the non-
MAR variables of the test set are the same of the training set. If instead the non-MAR variables of
the test set are different from those of the training set, oM should contain all the possible realizations
of the variables which are non-MAR in the test set.

The NCC2 procedures are summarized in Fig. 2. Learning has linear complexity with respect
to the number of attributes, while testing has roughly quadratic complexity, if the procedure carried
out in Appendix A is adopted. Please refer to Appendix A also for the exact expression for the
complexity.

3.5 Software Availability

The software JNCC2, implemented by the authors of this paper, implements the naive credal clas-
sifier 2. JNCC2 is open source, released under the GNU GPL license; it is hence freely available
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LEARNING

• list the attributes affected by a MAR MP or by an unknown MP on the learning set;

• compute on the learning set the counts n(âl,c), nl(c) for MAR attributes and the counts
n(a j,c), n(a j,c), n(c) for non-MAR attributes.

CLASSIFICATION OF AN INSTANCE

1. set NonDominatedClasses := C;

2. for class c′ ∈ C

• for class c′′ ∈ C, c′′ 6= c′

– if c′′ is dominated by c′ (to be assessed via the below procedure), drop c′′ from
NonDominatedClasses;

– exit;

• exit

3. return NonDominatedClasses.

DOMINANCE TEST BETWEEN TWO CLASSES (c′, c′′)

• list the attributes affected by a MAR MP or by an unknown MP in the instance;

• for each xM ∈ oM (i.e., for each possible realizations of the non-MAR part of the unit to
classify):

– assume xM to be the realization of the non-MAR part of the instance;

– solve Problem (7) via Theorem 6;

– if the computed solution is smaller than 1, c′′ is not dominated by c′. STOP.

• if, after having tried every xM ∈ oM, no solution greater than 1 has been found, c′ dominates
c′′.

/*alternatively to the above exhaustive procedure (for each xM ∈ oM) , the minimum can be com-
puted more efficiently via the procedure presented in Appendix A.*/

Figure 2: Summary of NCC2 procedures.

together with user manual, sources and documentation. Being written in Java, it runs under any
operating system; it has a command-line interface.

JNCC2 loads data stored in the ARFF format, which is a textual format (designed for classifica-
tion problem), originally developed for WEKA (Witten and Frank, 2005), an open source software
for data mining. Hence, the large public repositories of ARFF files can be used to extensively test
NCC2.
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For downloads and further information about JNCC2, see www.idsia.ch/˜giorgio/jncc2.
html.

4. Experiments

We consider 18 data sets from the UCI repository, and available in the ARFF format from the
WEKA data sets page.9 All the data sets are complete, that is, they do not contain any missing data.

We discretized the numerical features via MDL-based discretization (Fayyad and Irani, 1993),
and then we split each data set into a training and a test set. Feature discretization is necessary, as
NCC2 is designed to work with categorical variables. Discretizing the features on the entire data
set introduces a slight optimistic bias in the evaluation of the classifiers accuracy (in principle, the
discretization intervals should be computed on the training set, and then applied unchanged in the
test set); yet, this is not a problem as our goal is to compare NBC and NCC2 in identical conditions,
rather than to compare our findings with previous results obtained on the same data sets.

Also, since our goal is to fairly compare NBC and NCC2, and not to finely tune them for max-
imum performance, we did not perform feature selection (although, in fact, we remove numerical
feature variables discretized into a single bin); yet, as both NBC and NCC2 are based on the naive
hypothesis, redundant or mutually dependent feature variables might significantly bias the learning
process; hence, in order to achieve maximum performance, one should consider selecting feature
variables.

In the experiments presented in the following we generate artificial missingness on the original,
complete data sets by using different MPs and then we compare NBC and NCC2 accuracy on the
incomplete data sets.

4.1 Missingness Generation

We consider two different artificial MPs: (i) a MAR one, and (ii) a non-MAR, non-identically dis-
tributed one (nonMAR). The MPs we consider do not affect the class variable, as the class variable
has been assumed to be always observed.

Note that we do not test mixed cases of MAR and non-MAR feature variables, which NCC2 is
actually designed to treat. In fact, such settings would simply lead to results intermediate between
those obtained under the MAR and the non-MAR settings. Yet, mixed settings are valuable and
should be considered whenever possible when operating the classifier, as they allow for finely tuning
the treatment of missing data to the characteristics of the MP.

The MAR MP turns into missing, with 5% probability, all the features of both the training and
test sets. Such a missingness process actually meets not only the definition of MAR, but also the
more restrictive definition called MCAR, that is, missing completely at random, see Little and Rubin
(1987). We have taken into consideration also a non-MCAR, MAR MP; however, the results do not
differ significantly from those obtained with the MAR MP (which satisfies also MCAR) described
above.

The non-MAR MP works as follows : (i) it splits the categorical values of each feature variable
into two halves; (ii) for each feature variable, it turns into missing, with probability 5%, the obser-
vations falling in the first half of values, on the training set; (ii) for each feature variable, it turns

9. The URL is http://www.cs.waikato.ac.nz/ml/weka/.
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into missing, with probability 5%, the observations falling in the second half of values, in the test
set. Such MP is not identically distributed, as it follows a different pattern from training to test set.

We split each data set into equally sized training and test subsets. Using this training/test split,
for each data set and for each MP we generate artificial missingness 100 times, producing hence
100 different training and test sets. The results we present are obtained as an average over 100 runs
for each data set-MP pair.

4.2 Performance Measures

The performance of NBC is measured by its accuracy, that is, the percentage of correct classifi-
cations, while the evaluation of NCC2 requires a larger number of indicators: determinacy, that
is, the percentage of classifications having as output a unique class; single accuracy, that is, ac-
curacy of NCC2 when it is determinate; indeterminate output size, that is, the average number of
classes returned when NCC2 is indeterminate; set-accuracy, that is, the percentage of indeterminate
classifications that contain the true class. Note that if a data set has two classes, the output size
is necessarily 2 and set-accuracy 100%; therefore, such two indicators are meaningful on data sets
with more than two classes only.

We consider three classifiers: (i) NBC (with standard Laplace prior); (ii) NCC2-MAR, that is,
NCC2 which assumes all missing values to be generated by a MAR MP; (iii) NCC2-nonMAR,
that is, NCC2 which assumes all missing values to be generated by an unknown MP. Indetermi-
nate classifications of NCC2-MAR are in fact due to prior uncertainty only, while indeterminate
classifications of NCC2-nonMAR are due to both the prior and the missing values.

We then consider an additional set of indicators, which refer to the NBC accuracy on specific
subsets of instances (note that such indicators, referring to subsets of instances, are written in italic):

• NCC2-MAR D and NCC2-MAR I, as the NBC accuracies on the instances classified respec-
tively in a determinate and indeterminate way by NCC2-MAR; such indicators point out the
effects of the prior specification on NBC;

• NCC2-nonMAR D and NCC2-nonMAR I, as the NBC accuracies on the instances classified re-
spectively in a determinate and indeterminate way by NCC2-nonMAR; such indicators point
out the joint effect of prior specification and missing values on NBC;

• ∆NCC2-nonMAR, as the NBC accuracies on the instances over which NCC2-nonMAR out-
puts a larger number of classes than NCC2-MAR; such an indicator points out the effect of
missing values on NBC.

It turns out however that NCC2-MAR D coincides with the single-accuracy of NCC2-MAR,
and that NCC2-nonMAR D coincides with the single-accuracy of NCC2-nonMAR: in fact, when
determinate, NCC2-MAR and NCC2-nonMAR return the same output as NBC.10 In the following
we will hence only mention NCC-MAR D and NCC-nonMAR D; it is understood that the single-
accuracy of respectively NCC2-MAR and NCC2-nonMAR coincides with such values.

10. Differences might arise only in case that the NBC prior is not included in the credal set, and that such a prior leads
to a classification which is different from the classification to which leads any single prior of the credal set. The
frequency of such an event is however negligible and therefore the above indicators can be considered to be the same.
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4.3 Overview of the Results

Table 1 reports the performance of NBC, NCC2-MAR and NCC2-nonMAR under the different
MPs, averaged over all the data sets. The average of set-accuracy and indeterminate output size
have been computed considering only data sets with more than two classes. The detailed results
data set by data set are instead shown in Tables 6 and 7, which refer respectively to the MAR and
non-MAR setting.

NBC achieves an average accuracy of about 80%; although its accuracy seems to be insensitive
to the MP, we show later however, through a deeper analysis, that this is not the case.

The average determinacy of NCC2-MAR is about 91%, that is, NCC2-MAR yields set-valued
classification in 9% of cases; this indicator is mainly influenced by the data set size and therefore
it does not show great differences between the different MP settings. The point here is that when
we declare all the feature variables to be MAR, imprecision in the probabilities is only originated
by the imprecise prior density, as it follows from (1). Such a kind of imprecision strictly decreases
with the size of the learning set because the prior, as in the precise Bayesian setting, counts less and
less with more data.

The results detailed data set by data set (Tables 6 and 7) show that NCC2-MAR has considerably
lower determinacy on the glass data set than on any other data set. This is a consequence of the low
number of training instances (about 100) and high number of output classes (i.e., 7). In these
conditions the prior has much weight and it originates more imprecision.

The determinacy of NCC2-nonMAR ranges from 33% under the MAR setting, to 50–55% under
the non-MAR settings. The higher indeterminacy under the MAR setting for NCC2-nonMAR is due
to the higher number of missing data: in fact, the MAR MP produces twice as many missing data
as the non-MAR MPs, because it turns all the values of the feature variables into missing, with
probability 5%, instead of half the values as the non-MAR MP does.

Looking at the results data set by data set, we can detect three factors that increase the indeter-
minacy of NCC2-nonMAR: (a) high prior uncertainty, that is, data sets over which NCC2-MAR is
already quite indeterminate, and to which the uncertainty coming from missing data adds up; this
is the case of glass; (b) high number of features variables (40–60), as in the case of kr-kp, optdig-
its, waveform, splice; in the case of the letter data set, the cause is instead (c) the high number of
categories (10 on average) in which feature variables are discretized. Factors (b) and (c) increase
the indeterminacy as they increase the number of complete data sets d ∈ o consistent with the in-
complete one. Increasing the number of the complete data sets makes it more likely to obtain lower
values of the optimum in (1), eventually yielding a larger number of non-dominated classes. It is
interesting to observe that the factors (a)–(c) above are the same that can lead NBC to overfitting.
Hence, we can conjecture that classifiers based on precise and imprecise probability, respectively
react in different ways to such critical characteristics of the data, the first ones by losing reliability,
the second ones by becoming excessively cautious.

Let us focus now on the the size of the indeterminate output, which is the average number of
classes in the set-valued classifications returned by NCC2 in a certain setting, and on set-accuracy,
which denotes the percentage of times when set-valued classifications contain the actual class (we
recall that the indeterminate output size and set-accuracy are measured only on data sets with more
than two classes). The size of the indeterminate output should be compared with the (average)
number of classes of the data sets under considerations, which is 8.8; hence, NCC2-MAR returns
on average less than half the classes, and NCC2-nonMAR slightly more than half the classes. This
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MAR non-MAR
NBC

Accuracy (%) 80.5 80.9
NCC2-MAR

Determinacy (%) 91.1 91.1
Set-Acc. (%) 84.0 84.3

Indeterminate Output Size 2.6 2.6
NCC2-nonMAR

Determinacy (%) 33.0 49.4
Set-Acc. (%) 97.9 96.6

Indeterminate Output Size 6.0 5.3
NBC accuracy (%) on subsets of instances

MAR non-MAR
NCC2-MAR D 83.2 83.5
NCC2-MAR I 48.4 48.0

NCC2-nonMAR D 92.2 90.4
NCC2-nonMAR I 74.2 71.3
∆NCC2-nonMAR 75.1 72.7

Table 1: Measured performance, averaged over all the 18 data sets. The average of set-accuracy
and indeterminate output size has been computed considering only the data sets with more
than two classes; the average number of classes of such data sets is 8.8.

shows that set-valued classifications are informative: they lead us to drop on average half of the
classes, as sub-optimal, for the more doubtful instances, thus preventing an over-confident use of
the issued judgment. Moreover, indeterminate classifications allow very high set-accuracy under
any MP setting; about 85% for NCC2-MAR and about 96% for NCC2-nonMAR. Set-valued clas-
sifications appear then as a very effective way to maintain reliability while conveying informative
content. This is especially appealing for contexts in which the classification outcome is very sensi-
tive, such as, for instance, the medical area.

Probably the most interesting part of our results concerns the analysis of the accuracy of NBC
made separately for the instances classified in a determinate way by NCC2 and for those whose
classification is set-valued. Here the intuition is that we expect NBC to perform worse in the latter
set of instances, as NCC2 deems that they are harder to classify. Indeed, by averaging over the
two different MPs, we obtain that the accuracy of NBC drops of 33 points from NCC2-MAR D
to NCC2-MAR I; of 20 points from NCC2-nonMAR D to NCC2-nonMAR I and of 19 points from
NCC2-nonMAR D to ∆NCC2-nonMAR.

The overall performance of NBC can hence be regarded as the average of a good accuracy on the
instances which are easier to classify, and a much lower accuracy on the instances which are harder,
due to the fact that the available information about them is reduced with respect to the former ones.
Such a reduction depends in part on the learning set, which in general contains different degrees
of information in relationship with different units to classify; and in part on the number and type
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of missing feature variables in those units, which contributes to determine the information that the
classifier can exploit to classify them.

We regard the alternate good-bad performance of NBC on different units as an important finding,
which should be brought to light and properly taken into account. In contrast, such a finding can
well remain hidden if we only measure the predictive accuracy, as it is common with traditional
classifiers, because it is an average over all the instances in the test set.11 NCC2, instead, recognizes
the more difficult instances and preserves its reliability by issuing indeterminate classifications.
(NCC2-MAR does the same, but not with respect to the hardness originated by missing data, both
in learning and test set.)

In fact, the following relationships hold on the average indicators, but also on every data set-MP
pair:

• NCC2-MAR D > NCC2-MAR I,

• NCC-nonMAR D > NCC2-nonMAR I,

• ∆NCC2-nonMAR > NCC2-nonMAR I.

The intuition behind these inequalities is, as before, that on the instances where NCC2 is indeter-
minate, there is a drop of accuracy of NBC compared to the remaining instances. This happens not
only on every data set but also under every experimental setup that we considered. This enforces
the idea that NCC2 truly isolates instances that are hard to classify and where, as a consequence,
NBC is less reliable.

Despite the inequalities remain the same in the different settings, one should not overlook the
fact that the amount of instances isolated by NCC2 may be also very different in the different cases.
In particular, looking at Table 1, we see that NCC2-nonMAR may produce even 5–6 times as much
indeterminacy as NCC2-MAR. This is not surprising as prior uncertainty tends to vanish with larger
samples whereas this does not need to be the case for the uncertainty originated by missing values.
We see then that the large majority of indeterminate classifications issued by NCC2-nonMAR are
due to missing data rather than prior uncertainty.12

It is useful to remark also that the indeterminacy generated by NCC2-nonMAR may sometimes
be greater than necessary, or, in other words, that NCC2-nonMAR may show an excess of caution.
This makes the drop in NBC accuracy be usually smaller from NCC2-MAR D to NCC2-MAR I,
than from NCC2-nonMAR D to ∆NCC2-nonMAR. The excess of caution appears because the MP
acting on the data is simpler than what NCC2-nonMAR expects. One reason is that for the MP
described in Section 4.1 only half the values contained in A j are actually possible replacements.
This information is not accessible to NCC2-nonMAR, which then considers all the values in A j as
possible replacement for the missing values of A j. The other, more important, reason is that we have

11. There are some reasons why computing in addition the standard deviation of the predictive accuracy would not be
very helpful either: (i) the standard deviation might be small simply because so is the subset of test-set instances
on which the classifier performs badly; (ii) the standard deviation cannot be reliably estimated in the case of small
samples; (iii) finally, even if computing the standard deviation might point to the problem, it would not help to isolate
the critical instances, nor to know what to do with them, as opposed to what NCC2 makes it possible to do.

12. With respect to the variability of the empirical measures collected, we can observe that NCC2-MAR I has usually
larger standard deviation than the others (see Tables 6 and 7); this is expected, as NCC2-MAR tends to generate
indeterminacy on relatively few instances. Anyway, the difference between NCC2-MAR D and NCC2-MAR I, and
between NCC2-NonMAR D and NCC2-NonMAR I, is much larger than the standard deviations of the estimate of then
indicators (actually, is it well above twice the standard deviation in most cases).
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deliberately designed the non-MAR MPs so as to make them act in quite a naive way. We have done
so to show that even those MPs can lead to appreciable problems for NBC, as confirmed by the fact
that for the large majority of data sets it holds that the NBC accuracy on the ∆NCC2-nonMAR area
decreases, moving from the MAR to the non-MAR setting. And, finally, when we consider MPs
that are not naive, as the one described in Sect. 4.6, we see that the caution of NCC2-nonMAR is
fully justified, NBC being totally unreliable on the area of indeterminacy.

4.4 NBC Probabilities Vs. Set-valued Classifications

We have shown that, thanks to imprecise probabilities, NCC2 delivers set-valued classifications on
hard-to-classify instances, over which the accuracy of NBC clearly drops. In the following, we
further compare the predictions of NBC and NCC2 by taking into consideration also the posterior
probabilities computed by NBC for the classes. To make things clearer we carry out the analysis in
two steps.

The first step, described in the next two sections, focuses on a simplified setup that allows us to
make a very detailed analysis: a single data set containing two classes, and subject only to a MAP
MP. The focus in this case is on prior ignorance, as the only possible source of indeterminacy for
NCC2; we can therefore understand how strong assumptions about the prior can affect the ability
of NBC to compute posterior probabilities. Thanks to the restriction to the binary case (i.e., two
classes), we can then also clearly see that there is a difference between the cases that are deemed
doubtful by NBC (i.e., with probability close to 50%) and those that are deemed so by NCC2 (i.e.,
that lead it to indeterminacy).

The second step extends the analysis to all the data sets and to ignorance originated by non-
MAR missing data. In this case there is necessarily less detail but we have the advantage of having
the full comparison between NBC probabilities and NCC2 indeterminacy, and where we observe
that the situation basically resembles the one observed in the first step. This is done in Section 4.4.3.

4.4.1 AN ILLUSTRATIVE EXAMPLE: THE SPECT DATA SET

We focus on the spect data set, which is made of 2 classes and 267 instances.

For the following analysis, we split the data set into training set of 67 instances and a test set of
200 instances. We choose a 25-75% split in this example because we want to clearly see the effect
of the prior, which is well known to decrease with increasing sizes of the learning set.

We run the experimental framework of Section 4.3 with the MAR MP; that is, we generate 100
pairs of training and test sets (made artificially incomplete by the MP) from the original training/test
split. The findings presented in the following are obtained by analyzing the predictions issued over
the 100 test sets.

In particular, we consider four pieces of information for each classified instance: the actual
class, the class returned by NBC and its associated probability, and whether or not the instance
has been classified by NCC2 in a determinate way. The instances are then partitioned into subsets,
according to the probability estimated by NBC for the returned class, that is, instances for which
NBC estimates a probability in the range 50–55%, 55–60%, and so on (i.e., we use a step of 5% in
probability to define the subsets). On each subset of instances, we measure: (a) the determinacy of
NCC2-MAR; (b) the accuracy achieved by NBC on the instances classified determinately and (c)
indeterminately by NCC2-MAR.
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Figure 3: Relationship between the posterior probabilities computed by NBC and the output of
NCC2-MAR on the spect data set.

The results are reported in Figure 3. The dashed line represents the percentage of instances in the
subset (related to a certain range of probabilities) under consideration that is classified determinately
by NCC2. We see then that there is a positive association between higher posterior probabilities
computed by NBC and higher determinacy. This is a natural effect but it needs some words to be
explained, and we postpone this task to the next section.

An interesting point is that the output of NCC2 is indeterminate for all the instances as long
as the probability estimated by NBC for the returned class is lower than 75%. In other words,
here NCC2 deems that there is very little information about those instances in the learning set and
suspends the judgment. Remarkably, such caution is justified as on those instances NBC is just
guessing (uniformly) at random, at is follows from the line for NCC2-MAR I. The point here is that
NBC believes to be quite confident on a number of instances (assigning probabilities that go as up
as 75%) but in practice it is not. Stated differently, it believes it knows but it does not. NCC2 simply
knows not to know from the very beginning and this enables it to avoid losing credibility.

Moving on to greater probabilities, we see that the determinacy of NCC2 rises substantially
when the probability estimated by NBC exceeds 80%; in this region NCC2 returns a mix of de-
terminate and indeterminate classifications, and the drop of accuracy between NCC2-MAR D and
NCC2-MAR I is large at any level of posterior probability. In fact, NCC2 returns indeterminate
classification also on a non-negligible number of instances classified very confidently (for instance,
with probability higher than 85%) by NBC, and over which the accuracy of NBC is bad indeed.

The last discussion points to an important question, which is useful to stress: that is, to the fact
that NCC2 does not suspend the judgment only on instances that are deemed doubtful by NBC,
that is, those whose probability is for instance less than 55%. Moreover, while on the spect data
set NCC2 is fully indeterminate on the instances on which NBC is doubtful, this is not always the
case. For instance, the same analysis performed on the spambase data set (2 classes, 1300 training
instances) shows that about 40% of instances in the range 50–55% of probability are classified
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Figure 4: A graphical view of the test of dominance in the binary case. The output of the classifier
is indeterminate if and only if the posterior probability interval for c′M contains 1

2 .

determinately by NCC2 (while the behavior on the remaining ranges of probabilities followed a
pattern similar to the one shown in Fig. 3).

4.4.2 ASSOCIATION BETWEEN NBC PROBABILITIES OF NCC2 DETERMINACY

In the following, we explain, with reference to a generic data set with two classes, why there is
a positive association between increasing posterior probabilities computed by NBC and increasing
determinacy of NCC2.

Re-consider the notation that we have introduced for the test of dominance in (1). Define the
posterior lower and upper probabilities of class c′M respectively as

p(c′M|x̂+ ∈ ô+) := inf
p(θ)∈P(θ)

p(c′M|x̂+ ∈ ô+)

and
p(c′M|x̂+ ∈ ô+) := sup

p(θ)∈P(θ)

p(c′M|x̂+ ∈ ô+).

Compared to (1), here we have removed the parts related to the non-MAR missingness process as
in this moment we prefer to keep things simple by focusing on the MAR case, as in the previous
section.

With the new definitions, the test of dominance (1) can be easily re-written in the case of a data
set with two classes as a simple test that checks the position of the interval [p(c′M|x̂+ ∈ ô+), p(c′M|x̂+ ∈

ô+)] relative to the probability value 1
2 . This is shown graphically in Fig. 4. Such a figure shows

three possible positions of the posterior intervals, which are represented as segments. When the
interval contains the value 1

2 , as in the middle case, then the output of the classifier is indeterminate:
both classes are returned. Here we have complete indeterminacy because it is not possible to know
if one of the two classes has posterior probability larger than the other (note that in this case the
interval for c′′M contains 1

2 as well). In the remaining two cases, the value 1
2 is either greater or less

than all the points in the interval and this allows the classifier to know that one of the two classes is
dominated, thus returning a determinate classification, as shown above the intervals. Now, assume
temporarily the width of the NCC2 interval to be constant across all the instances. By construction,
the posterior interval computed by NCC2 is typically “close” to the posterior probability given by
NBC.13 Hence, the NBC probability and the NCC2 interval tend to move together; if the NBC

13. In our experiments the posterior probability is actually very often in the interval, but we cannot say this is always the
case because the Laplace prior used for NBC is not contained in the prior credal set of NCC2.
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probability grows, then the NCC2 interval reaches a point that makes it exclude the value 1
2 , leading

to a determinate classification. This explains the basic mechanism behind the association between
NBC probabilities and NCC2 determinacy.

Let us now move on to the realistic scenario that involves dropping the simplifying assumption
about the width of the NCC2 interval to be constant.14 In fact, it practice it happens that the length
of the NCC2 interval varies from unit to unit, as it depends on the amount of information that the
learning set contains about the specific unit under consideration: the less the information the wider
the interval, and vice versa. The fact that the learning set contains different amounts of information
for different units to classify should not be surprising: a unit to classify can be put in correspondence
with the subset of the learning set characterized by the values taken by the feature variables for the
unit under consideration; and these subsets have (also very) different sizes (remember that we are
dealing only with the MAR case; in the non-MAR case, we should consider also the effect of
missing data and the interpretation would be slightly more complicated, but still of a similar kind).

Therefore, it may well happen that for a certain unit to classify to which NBC assigns a high
posterior probability, the width of the NCC2 interval dilates so much that 1

2 gets included in the
interval, leading to an indeterminate classification. In this case, NCC2 deems that there is little
information in the learning set about the unit under consideration, and expresses this by a large
width of the interval. NBC does not have such expressive means and, moreover, may generate
such a high probability mostly because of its prior density, drawing then conclusions that are not
supported by the data.

In any case, it is clear that increasing the NBC probability makes it less likely that the NCC2
interval is as large as to be able to contain the value 1

2 . This is the reason why we observe the,
very natural at this point, association between increasing NBC probabilities and increasing NCC2
determinacy.

4.4.3 RESULTS ON ALL THE DATA SETS

In this section we consider all the usual 18 data sets with the same training/test splits of Section 4,
that is, 50%-50%. We consider two settings: the first compares NBC and NCC2-MAR when the
MP is MAR, and the second compares NBC and NCC2-nonMAR when the MP is non-MAR. We
analyze jointly the predictions issued on all the data sets, respectively under the first (Figure 5a) and
second setting (Figure 5b).

One point to consider is that in data sets with two classes, one can spot the instances doubtful
for NBC looking at those with probability around 50% for the returned class. However, for data sets
with more than two classes, the instances that are doubtful for NBC are not as easy to recognize as
before; for instance, with four classes both the posterior mass functions [40%, 40.5%, 15%, 4.5%]
and [24.5%, 25.5%, 25%, 25%], lead to doubtful classifications for NBC. For this reason, we only
focus now on the case when NBC is confident, that is, on the instances with probability for the
returned class greater than or equal to 55%.

Looking at the figures we see that the determinacy is much higher in the MAR setup than in the
non-MAR; in fact, we have already seen that the non-MAR case leads in general to a much larger
amount of instances that are isolated as difficult ones. Nevertheless, both Figures 5a and 5b show a
clear drop of accuracy of NBC, for the same level of posterior probability of the predicted class, from

14. If it were really so, the behavior of NCC2 would be quite trivial, and could be reproduced by that of an NBC that
uses a threshold larger that 1

2 to decide when a class should be said to dominate the other.
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(a) NBC, NCC2-MAR and MAR MP
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(b) NBC, NCC2-nonMAR and non-MAR MP

Figure 5: Relationship between the posterior probabilities computed by NBC and the output of
NCC2.

the instances classified in a determinate way by NCC2 to the others. The drop is especially striking
on the instances classified confidently by NBC, when the computed probability is for instance larger
than 70%. This is more evident in Fig. 5a; on the other hand, the drop observed in Fig. 5b applies to
a much larger set of instances. In fact, NCC2-nonMAR suspends the judgment frequently also on
the instances classified by NBC with probability greater than 80%; the reason is that a replacement
for missing data especially unfavorable for the class predicted by NBC, can well change the outcome
of the classification with respect to the output of NBC, which instead marginalizes out the missing
feature variable.

The instances for which NBC returns a probability higher than 90% are of particular interest,
also because they constitute 62% of the total instances. On this area, NCC2-MAR returns 1.5% of
indeterminate classifications on which it achieves the following remarkable performance: NCC2-
MAR D: 94%; NCC2-MAR I: 54%. The performance of NCC2-nonMAR in this area is as follows:
determinacy 66%, NCC2-NonMAR D: 96%; NCC2-NonMAR I: 89%. The drop is in this case
significant, yet smaller than under MAR: in fact, as already pointed out NCC2-nonMAR is more
conservative than necessary under this setting.

Summing up, hence, uncertainty related to the choice of the prior manifest itself more evidently,
but not only, on the instances in which NBC is less confident; yet, only part of such doubtful
instances lead to indeterminate classifications. On the other hand, missing data treated as non-MAR
can lead to many indeterminate classifications even if the probability computed by NBC for the
returned class is high. This is clear by comparing the dashed lines in Figures 5a and 5b.

4.5 Results with Increasing Missingness

Next, we analyze how NCC2-nonMAR deals with very high levels of missingness. We adopt the
non-MAR MP, with missingness rate at 15% per feature variable; given how the MP works, it will
produce about 7.5% missing data on each feature. We focus on two data sets: segment-challenge
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segment 5 91.6 54.8 97.7 99.4 5.5/7 97.7 84.1
segment 15 91.4 18.3 99.4 99.9 6/7 99.4 89.6

segment-pruned 5 93.8 77.8 98.0 99.7 4.6/7 98.0 79.1
segment-pruned 15 93.0 48.8 99.1 99.5 5.1/7 99.1 87.7

Table 2: Segment-challenge data set: impact of feature selection on the performance of NBC and
NCC2-nonMAR. Standard deviation of the indicators is always smaller than 2%, that is,
all indicators ± (at maximum) 2 percentage points.

(classes: 7; feature variables: 19; average number of bins per discretized feature variable: 5.6)15

and waveform (classes: 3; feature variables: 40; average number of bins per feature variable: 8.4).16

Let us stress that in our intentions the results we present constitute a kind of worst-case analysis
in terms of achieved determinacy, since (a) the amount of missing data generated by the MP is far
higher than those usually found in real data sets; (b) NCC2-nonMAR treats all feature variables
as non-MAR, both in training and testing (while usually, the investigator is able to isolate some
MAR feature variables); (c) the considered data sets contain a high number of feature variables,
classes and bins per feature variable, and these characteristics work together towards rising the
indeterminacy of NCC2-nonMAR. Moreover, as already discussed, given how the non-MAR MP
works, NCC2-nonMAR is more conservative than necessary under this setting.

Tables 2 and 3 report the results, displaying also the outcomes previously obtained with miss-
ingness rate 5%. In fact, while the performance of NBC is substantially insensitive to the amount
of missing data, the determinacy of NCC2-nonMAR clearly decreases; with rate of missingness per
feature variable equal to 15%, the determinacy of NCC2-nonMAR drops to about 1% on waveform
and 18% on segment. As a side-effect, we see also that the indicator NCC2 I increases with the
level of missingness; this is due to the fact that the number of instances on which NCC2 I is com-
puted approaches the overall test set, so that NCC2 I approximates the average accuracy of NBC.
Remarkably, however, even in such a difficult setting, there is a clear drop of accuracy (some 15
points), on both data sets, between NCC2 D and NCC2 I.

Is there a way to reduce the indeterminacy of NCC2-nonMAR? A first way to improve the
situation is feature selection. On the one hand, feature selection is necessary if one wants to get
maximum performance from NBC and NCC2, since redundant feature variables, which violate the
naive assumption, might skew the learning process of both classifiers; on the other hand, reducing
the set of feature variables reduces the amount of missing data, which is beneficial for the deter-

15. Two feature variables, out of the 19, are discretized into a single bin; they are not considered when computing the
average number of bins.

16. Twenty feature variables, out of the 40, are discretized into a single bin; they are not considered when computing the
average number of bins.
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waveform 5 81.3 54.3 89.5 99.9 2.1/3 89.5 71.7
waveform 15 81.1 1.2 100 100 2.7/3 100 81.1

waveform-pruned 5 82.3 65.9 88.1 99.9 2.1/3 88.2 70.9
waveform-pruned 15 81.7 10.2 97.0 100 2.5/3 96.9 79.9

Table 3: Waveform data set: impact of feature selection on the performance of NBC and NCC2-
nonMAR. Standard deviation of the indicators is always smaller than 2%, that is, all indi-
cators ± (at maximum) 2 percentage points.

minacy of NCC2-nonMAR. We performed feature selection by cross-checking the suggestions of
different methods implemented in WEKA (Witten and Frank, 2005); eventually, we selected 6 fea-
ture variables for segment-challenge and 14 for waveform.

In Table 2 and 3, the data sets after feature selection are referred to as pruned. The effectiveness
of the feature selection we performed is demonstrated by a slight yet sensible improvement of NBC
accuracy; as for NCC2-nonMAR, it achieves a satisfactory 50% of determinate classifications on
segment-challenge, and a less satisfactory 10% on waveform. Still, it is remarkable that such a
10% of instances is naturally classified in a determinate way under such weak assumptions and with
such an amount of missing data; this should make us quite confident about the reliability of the
classification, and indeed the measured accuracy is 97%. The drop between NCC2 D and NCC2 I
after feature selection does not show major changes compared to before feature selection.

So far the analysis in the most conservative possible conditions. Let us recall at this point that
a strength of NCC2 is the possibility of declaring that some feature variables are MAR (possibly
changing this from learning to test set). This is likely to be often possible to do in practice if we
only consider that currently most classifiers take for granted that all the feature variables should be
MAR. We considered then a new setup for waveform-pruned obtained by declaring that only half
the feature variables are non-MAR both in training and testing; and the determinacy of NCC2 raised
up to 58.5%.

4.6 A More Sophisticated MP

So far, we have considered a very simple MP, which in particular works independently on each
feature variable. It is interesting at this point to consider a more complex MP, working for instance
on the joint values of the feature variables. We show that this can have much bigger effects: in fact,
it can lead not only to severe misclassifications, but also to erroneous empirical evaluations of the
accuracy of classifiers which assume MAR.

We consider now the vote data set, also taken from the UCI repository. The data set contains
information about the United States Congressional Voting; the classification task is to guess whether
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a certain congressman is republican or democrat, by looking at his/her votes about some critical
laws. The data set has 435 instances, 16 features variables and 2 classes; by feature selection, we
reduce to 3 the number of features variables. The pruned data set is complete, that is, it does not
contain any missing data. In the following, we denote by the symbol “*” a missing value generated
by the non-MAR MP. Let us name as “type A” the instances with values (n, y, n, class1) and as “type
B” the instances with values (y, n, n, class0). The data set contains about 26% type A and 26% type
B instances.

The malicious MP that we consider turns the type A instances of the training set into (*, *, n,
class1), and the type B instances of the test set into (*, *, n, class0); it hence affects about 26% of
the training set and 26% of the test set.

We measured the following on the test set:

• NBC accuracy 71.4%;

• NCC2-MAR: determinacy 100%; single accuracy 71.4%;

• NCC2-nonMAR: determinacy 55.3%, single accuracy 99.2%.

Remarkably, in this case NCC2-MAR is always determinate, and therefore it behaves identically to
NBC. With reference to the previous results on the same data set, obtained with a simpler MP, there
is a major drop of accuracy (some 25 points) for NBC (and consequently for NCC2-MAR, too); on
the other hand, NCC2-MAR becomes more indeterminate, but it preserves a high single-accuracy.

Going more deeply in the analysis, the accuracy of NBC and NCC2-MAR is 99.2% on the
instances NCC2-nonMAR D, and 37.1 only (lower than random guessing!) on the instances NCC2-
nonMAR I. Hence, this MP heavily deteriorates the reliability of the classifiers which assume MAR.
NCC2-nonMAR, being based on CIR, behaves instead robustly even against such a malicious MP.

However, there is a further point of interest, concerning the failure of the empirical evaluations
of classifiers that are always determinate, when data are made missing by a non-MAR MP. Let
us assume that the only available data are the instances of the training set. Evaluating by cross-
validation the classifiers on the instances of the training set, we measure:

• NBC accuracy 88.2%;

• NCC2-MAR: determinacy 89.9%; single accuracy 93.9%;

• NCC2-nonMAR: determinacy 49.5%, single accuracy 100%.

The evaluation of the accuracy of NBC and NCC2-MAR is hence heavily biased when compared
against their actual performance on the test set. This phenomenon is discussed at some length in
Section 6 of Zaffalon (2005b). On the other hand, NCC2-nonMAR is reliably evaluated.

Of course, this kind of “extreme” example heavily relies on the fact that the MP is not identically
distributed. Yet, note that if one is ignorant about the MP, such a behavior should be considered as
a possibility, which is just what NCC2 does. On the other hand, imposing the assumption that
the MP is identically distributed should be done on a case-by-case basis, as doing it in general
is questionable (unlike imposing the data generation process to be so, given that MPs are usually
processes of a very different kind). Alternative assumptions, between the two extremes of assuming
ignorance and assuming that the MP is identically distributed, are not so easy to envisage if we also
require that they are widely applicable as one would like them to be in the field of data mining.
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NBC - 62.4 ± 5.1 - -
NCC2-MAR 91.8 ± 3.3 64.2 ± 5.5 2.2 ± 0.2 83.9 ± 15.4

NCC2-nonMAR 65.1 ± 5.5 60.1 ± 7.7 3.3 ± 0.3 89.8 ± 5.7

Table 4: Results on the eucalyptus data set. Accuracy refers to determinate classifications only,
while output size to indeterminate classifications only.

Values of feature variable “vigour”
Output class 1 2 3 4 5 6 7
c1 (“none”) 24 10 14 1 6 1 0
c2 (“low”) 0 3 24 17 8 2 0
c3 (“average”) 0 0 2 17 31 14 1
c4 (“good”) 0 0 0 6 28 57 16
c5 (“best”) 0 0 0 0 8 21 23

Table 5: Counts n(a j,ck) for feature variable “vigour” in the eucalyptus data set.

In summary, we conclude that the conservative approach provided by NCC2 can be considered
as a valuable avenue to reliably cope with situations where we miss substantial information about
(part of) the MP. Such an approach might become even more effective by exploiting coarsened
observations, as a way to insert knowledge about the MP. This is discussed in the next section.

4.7 The Eucalyptus Data Set: A Difficult One For NCC2-nonMAR

The eucalyptus data set is available from the Weka (Witten and Frank, 2005) repository17 of public
data sets. It contains 736 instances; there are 19 feature variables and 5 classes. After feature
selection, there are 8 feature variables left; about 3% of the values in the data set are missing. NBC,
NCC2-MAR and NCC2-nonMAR have been validated via 10 runs of 10 folds cross-validation;
feature variables have been discretized via MDL-based discretization (Fayyad and Irani, 1993).
Results are reported in Table 4.

Strikingly, NCC2-MAR has higher single-accuracy than NCC2-nonMAR. To investigate this
issue, we split in a stratified way (i.e., keeping the proportion of the classes as close as possible
between training and test set) the data set into a training and a test set; this enables us to detect a set
of 35 critical instances, which are classified accurately and in a determinate way by NCC2-MAR,
and in a totally indeterminate way by NCC-nonMAR, which returns five classes out of five.

17. The URL is http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html.
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A key point is that all these instances lack the value of feature variable vigour. The frequen-
cies n(a j,ck), reported in Table 5, show that, for any class ck, there is at least a value ã j such that
n(ã j,ck)=0. This is due to different reasons, such as the high number of classes in which the fea-
ture variable is discretized; the skew of the distribution of the counts n(a j,ck), for any class ck,
towards certain values of the feature variable; the high number of output classes (i.e., 5), and also
the relatively small size of the data set.

In fact, if the value of vigour is missing and the MP is supposed to be non-MAR, for any
pair of classes (ci,c j) there exists a replacement ã j for the missing value such that n(ã j,ci) = 0,
and hence p(c′M|d-, x̂+ ∈ ô+)/p(c′′M|d-, x̂+ ∈ ô+) = 0, thus preventing the existence of any credal-
dominance relationship between any two classes. In this condition, hence, NCC2-nonMAR has to
output all the classes.

On the other hand, the conditional counts of the remaining feature variables, strongly skewed
towards class c1, allow NCC2-MAR (and NBC as well) for predicting all these instances accurately
and in a determinate way. This phenomenon is the reason why NCC2-MAR is both more accurate
and determinate than NCC2-nonMAR on the eucalyptus data set.

4.7.1 SOLUTION VIA COARSENING (OR SET-BASED OBSERVATIONS)

Yet, NCC2-nonMAR is processing correctly the eucalyptus instances: if the MP affecting the vigour
feature variable is non-MAR, by definition all the possible replacements for the missing values
should be taken into consideration. However, NCC2-nonMAR is unnecessarily cautious, as demon-
strated by both NCC2-MAR and NBC, which are able to classify the critical instances both accu-
rately and in a determinate way. It appears hence that some further knowledge should be put into the
classifier, to mitigate its unnecessary caution; yet, we try to avoid assuming MAR. A step forward
in this direction can be accomplished by introducing set-based (or coarsened) observations.

Up to now, we have assumed that manifest values are either equal to the latent ones, or set equal
to the symbol of missing data. In the former case, the value is known exactly; in the latter, it is known
in the most indeterminate way, that is, we only know that it belongs to the set of possible values
of the feature variable. Coarsened observations represent an intermediate situation of knowledge,
in which the observation, for instance referring to feature variable A j, is known to belong to a set
A

′

j ⊆ A j. The size and composition of A
′

j can vary between different set-based observations of the
same feature variable, thus allowing for a high degree of flexibility. Actually, the possible values of
A

′

j are all the possible non-empty subsets of A j.

If A j is assumed to be affected by a non-MAR MP, set-based observations restrict the set of
possible replacements from A j to A

′

j (we recall that A
′

j will generally be different for each set-based
observation). Therefore, set-based observations provide, without implying any strong assumption
about the MP, a higher degree of knowledge than missing data, and they tend to generate less
indeterminacy than missing data.

Remarkably, real MPs often produce set-based observations rather than missing data. For in-
stance, let us consider a doctor that recommends a patient to go through exam B only if exam A
is positive. In fact, the domain knowledge of the doctor makes it possible to conclude that if A is
negative, the outcome of B will range within a restricted set of values, not influential for the diag-
nosis. On the contrary, if A is positive, the value of B cannot be predicted. However, when B is not
performed because A is negative, we do have a set-based observation rather than a missing value.
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In many cases, it is possible to provide coarsening sets rather than missing values at the time data
are collected, by excluding unsuitable values from the set of the possible replacements.

Let us stress that using set-based observations and assuming MAR are two fundamentally dif-
ferent ways of inserting knowledge into the classifier. In fact, set-based observations incorporate
specific domain knowledge (obtained at data collection or data validation time) into the data set
and eventually into the classifier. On the other hand, MAR is an assumption typically done by the
modeler, whose tenability is only rarely checked with domain experts.

What happens using set-based observations on the eucalyptus data set? On the 35 critical in-
stances we tried to substitute the missing values of vigour with set-based observations, using a
coarsening set A

′

j = {1,2,3,4,5}, which contains 5 values out of the 7 possible. Using such set-
based observations, NCC-nonMAR classifies 32/35 critical instances correctly and in a determinate
way; on the remaining 3 instances, it outputs 4 classes, including the true one. In this way, the usual
inequalities (NCC-MAR D > NCC-MAR I, NCC-nonMAR D > NCC-nonMAR I, ∆NCC2-nonMAR
> NCC-nonMAR I) hold also on the eucalyptus data set.

In our example, set-based observations constitute an effective way to insert knowledge about
the MP into the classifier without assuming MAR; they appear hence as a promising approach for
credal classifiers. It is useful to observe that coarsened observations have received considerable
attention in the traditional literature of statistical inference from incomplete observations. A work
of paramount importance on this topic is the popular coarse-data model of Heitjan and Rubin (1991),
which generalizes the missing-data model of Rubin (1976). This appears to enforce the potential
of coarsening for classification in general, and to make it worth of further investigation. From
a practical viewpoint, the use of set-based observations would require some changes in the data
archiving formats, which are usually designed to store precise observations only.

5. Conclusions

There are usually different amounts of information in the data that a classifier can exploit to classify
different units. This depends in part of the fact that a learning set can be more informative about
some units than some others, and in part on the type and amount of missing values in the units to
classify. As a consequence, a classifier’s predictions may be more uncertain on some units than
on some others. But if we impose that the classifier is inferred using a single prior density and
that it considers all the missing data as ignorable, we lose much of the capability to distinguish
that some units are harder to classify than others: we cannot see anymore that some of the strong
conclusions that we obtain are determined by our strong assumptions rather than the supposedly
strong information in the data, and are hence actually fragile. Nor can help much in this respect
the experimental evaluations of the classifier as they are, somewhat necessarily, designed to yield
its average performance. And yet, we do care about distinguishing the hardness of different units
in many real-world applications: in the case of medical diagnosis, for instance, we do not want a
classifier to be good only on average; we want it to make reliable predictions on every single patient.

In this paper we have tried to pursue such a goal just by weakening the assumptions that are
traditionally made by classifiers. We have modified the naive Bayes classifier so as to model prior
ignorance in an objective-minded way by using a set of prior densities, and by giving the opportunity
to treat some of the missing values as originated by a missingness process that we do not know (and
the others by a MAR one). The resulting model, called naive credal classifier 2, departs from the
more traditional classifiers in a number of ways, the more substantial one being the fact that NCC2
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makes set-valued classifications in general: it issues a determinate classification (i.e., a singleton)
only when it deems that there it has enough information to do so.

Extensive empirical evaluations have shown that NCC2 has high accuracy when it issues deter-
minate classifications, and that when it is more cautious, it is very often justified: NBC is clearly
shown to considerably decrease its classification accuracy on the instances classified in a set-valued
way by NCC2, as well as its ability to compute predictive posterior probabilities. This indicates that
set-valued classifications do indeed isolate the instances of the test set that are hard to classify. And
they actually do more than just isolating them: they are in fact still informative, as unlikely classes
are dropped anyway, and invite the domain expert (for instance, a doctor that has to issue the ulti-
mate diagnosis) to avoid over-confident statements. We have also pointed out that in some extreme
cases of missingness processes, the empirical evaluations made for naive Bayes can be completely
biased, so that not even its average predictive accuracy can be evaluated reliably. In these cases,
NCC2 was instead still reliably evaluated.

Dealing effectively with the hard instances is not an easy task in general, and we have shown
that NBC fails on this a number of times by yielding unreliable classifications due to its inherent
optimism. The way NCC2 sometimes fails on this is different, as it leads to an excess of caution;
this is less critical although still not desirable. In these cases, the classifier is too pessimistic and
the information used to build it up should be strengthened in order to obtain stronger conclusions.
The more obvious way to do so with NCC2, and that—provided that one stays within the realm
of tenable assumptions—is also what we recommend, is to minimize the number of missing values
that are declared to be subject to an unknown missingness process. A less obvious but still very
important way to do so is to simplify the model as much as possible, for example by doing feature
selection. In fact we have conjectured that the same factors that can lead NBC to overfitting (e.g.,
high number of features or feature variables) can well result in excessive caution of NCC2. When
also this is not enough, another approach may prove to be very helpful: using coarsened rather
than missing values in data sets. Coarsened, or set-based, observations carry more information than
missing ones in general because they naturally exclude some values as possible replacement for the
missing information. Such extra information might be often available in real applications, and it
seems to have the potential to lead to strong enough conclusions in a number of cases. It is also
a kind of information that is typically provided by a domain expert rather than by the modeler (as
opposed to MAR, for example) and as such it is a good candidate to be tenable.

More generally speaking, we regard the problem of providing a classifier with knowledge about
the missingness process, which usually cannot be obtained from data, as a serious and an important
topic of research. This seems to have much to do with identifying general and tenable assumptions
about missingness processes of which classifiers could take advantage.

NCC2 can be regarded as the outcome of having made a first step in this direction. Doing such
a step has led to a classifier that offers us a range of new opportunities to deal robustly with predic-
tions in case of small or incomplete data sets: in particular, it allows us to check whether in very
weak states of prior information we can draw strong enough conclusions for our aims, thus avoid-
ing us to worry about doing mistaken assumptions; it lets us work incrementally towards stronger
assumptions and conclusions; it enables us to uncover situations that otherwise could not be, not
even experimentally. And it makes all of this possible by means of fast and exact computations.
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Appendix A. A Polynomial-time Procedure for Incompleteness in the Instance to
Classify

Although the procedure sketched in Section 3.4 solves Problem (8), a substantially more efficient
procedure can be designed to solve the same problem. However, to avoid adding further complexity
to the presentation of NCC2 carried out in the main body of the paper, we present it here, in Figure 6.
The correctness of the procedure is stated by the following theorem, whose proof is in Appendix B.

Theorem 7 The optimum of Problem (8) is obtained by the procedure in Figure 6.

1. Build the set U := {xe =
n(aMe′ ,c

′′
M)n(aMe′′ ,c

′
M)−n(aMe′ ,c

′
M)n(aMe′′ ,c

′′
M)

s[n(aMe′ ,c
′
M)−n(aMe′′ ,c

′
M)]

: e = 1, . . . ,k′,aMe′ ,aMe′′ ∈

Ae,n(aMe′ ,c′M) 6= n(aMe′′ ,c′M),xe ∈ (0,1)}, where the lower and upper counts are defined as
in Theorem 6.

2. Use the points in U to define a partition J of (0,1).

3. For each interval I∈ J, determine an associated tuple (aI
M1, . . . ,a

I
Mk′)∈A1×·· ·×Ak′ by se-

lecting, for each e = 1, . . . ,k′ an element among those yielded by argminaI
Me∈Ae

n(aI
Me,c

′
M)

n(aI
Me,c

′′
M)+xI

,

where xI denotes the middle point of the interval I.

4. For each of the intervals in J, minimize the function defined by the tuple associated with
the interval, by applying of Theorem 6 with suitable changes to adapt it to J.

5. Take the minimum of the values provided by the previous step.

Figure 6: The solution procedure for Problem (8).

The intuitive idea behind the procedure is presented in the following. Let us assume that among
the k attribute variables there are k′ (1 ≤ k′ ≤ k) that are not observed in the instance to classify.
Assume, without loss of generality, that they are indexed from 1 to k′. The objective function of the
problem can be re-written as (let x := st(c′′M)):

inf
0<x<s

{[
n(c′′M)+ x

n(c′M)+ s− x)
]k−1

k′

∏
e=1

[ min
aMe∈Ae

n(aMe,c′M)

n(aMe,c′′M)+ x
]·

·
k

∏
j=k′+1

n(aM j,c′M)

n(aM j,c′′M)+ x

r′

∏
l=1

[
nl(c′′M)+ x

nl(c′M)+ s− x
·

n(âMl,c′M)

n(âMl,c′′M)+ x
]}, (9)
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where the functions n(aMe,c′M)/[n(aMe,c′′M)+ x] can be minimized, given x, separately over each
aMe, as shown by the minima over aM1, · · · ,aMk′ .
For variable Ae, the functions of this type obtained for each different value aMe ∈ Ae are compared
over the interval [0,s]; when the value aMe, which minimizes them, changes, there is a so-called
partition point. Now, let us consider the set U, which collects the partition points of all the variables
A1, . . . ,Ak′ : the tuple {a1, · · ·ak′} which minimizes the first factor of Problem (9) changes over the
interval [0,s] at every point belonging to U. Since the function is convex on each sub-interval, we
can solve a minimization problem on each sub-interval; the global minimum is finally found by
comparing the local minima obtained over each sub-interval.

Let us analyze briefly the computational complexity of the procedure. The procedure is based
on the determination of the partition J, whose size is at most 1+∑k′

e=1(|Ae|
2−|Ae|)/2, which is also

the number of minimizations in the worst case. Each minimization is done according to Theorem 6.
This is based on the computation of the logarithmic derivatives of the function of interest. Each
evaluation of the logarithmic derivative is a task linear in k + r′, where we recall that r′ is the
number of non-missing MAR variables in the instance to classify. If we regard the complexity of
Newton-Raphson’s method as a constant, which is reasonable as it is an extremely fast algorithm,
we obtain that the procedure works in time O([1 + ∑k′

e=1(|Ae|
2 − |Ae|)/2](k + r′)). To obtain a

simpler expression, we can focus on an upper bound: O(A
2
(k + r′)2), where A := argmaxk′

e=1 |Ae|.
The complexity is then roughly quadratic in the number of attribute variables and quadratic also in
the worst-case number of attributes per variable.

Appendix B. Proofs

Proof [Lemma 1] The likelihood is easily re-written as ∏N
i=1 ϑ(di,x̂i∈ôi) thanks to the IID assumption,

where ϑ(di,x̂i∈ôi) := ∑x̂i∈ôi
ϑ(di,x̂i). By Assumption (2) we have that

p(d, x̂ ∈ ô|ϑ) =
N

∏
i=1

[ ∑
x̂i∈ôi

ϑ(di,x̂i)]

=
N

∏
i=1

( ∑
âi1∈ôi1

. . . ∑
âir∈ôir

ϑci

k

∏
j=1

ϑai j|ci

r

∏
l=1

ϑâil |ci
)

=
N

∏
i=1

{ϑci [
k

∏
j=1

ϑai j|ci
][

r

∏
l=1

∑
âil∈ôil

ϑâil |ci
]}.

Let us focus on ∏N
i=1 ϑci . By grouping the same chances over the N units, that expression can be

re-written as ∏c∈C ϑn(c)
c , where n(c) denotes the number of occurrences of c in d. In the same way,

we re-write ∏N
i=1 ϑai j|c for all j and a given c as ∏a j∈A j

ϑn(a j,c)
a j|c

, where n(a j,c) denotes the number

of joint occurrences (a j,c) in d. Now consider ∑âil∈ôil
ϑâil |c, for a given c. Whenever ôil coincides

with Âl , ∑âil∈ôil
ϑâil |c = 1; and in all the other cases the sum degenerates to a single term, as the

observation of the variable value has been precise. Indeed, as clarified in Section 2, according to the
definition of missing data we either observe a value exactly, or we do not observe it at all.

This means that we are allowed to drop the missing values from the learning set. In other words,

∏N
i=1(∑âil∈ôil

ϑâil |c) becomes, for all l, ∏âl∈Âl
ϑn(âl ,c)

âl |c
, where n(âl ,c) denotes the number of joint

occurrences (âl,c) in the learning set after dropping the units with missing values of Âl .
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We skip the proof of Lemma 2 as it follows a pattern analogous (and easier) to that of the previous
proof.
Proof [Theorem 3] Lemmas 1 and 2, together with the chosen prior in (4), allow us to re-write
p(cM|d-, x̂+ ∈ ô+) in Equation (3), that is, p(cM|d-, x̂+ ∈ ô+,s, t), as follows:

p(cM|d-, x̂+ ∈ ô+,s, t) ∝
Z

ΘC

ϑcM ∏
c∈C

ϑn(c)+st(c)−1
c dϑC

·
k

∏
j=1

Z

ΘA j |cM

ϑaM j|cM ∏
a j∈A j

ϑn(a j,cM)+st(a j,cM)−1
a j|cM

dϑA j|cM

·
r

∏
l=1

ôMl 6=Âl

Z

ΘÂl |cM

ϑâMl |cM ∏
âl∈Âl

ϑn(âl ,cM)+st(âl ,cM)−1
âl |cM

dϑÂl |cM
.

(10)

Expression (10) is obtained by the following steps: (i) substituting in (3) the expressions for the
prior, the likelihood and the probability of the next class obtained in Section 3.1; (ii) observing that
the Dirichlet densities involved in the integration are independent, so that they can be integrated
separately; (iii) dropping the integrals related to classes different from cM , as each of them equals
1 given that it is missing the term of which to take the expectation; and (iv), for similar reasons,
dropping the integrals related to missing attribute values in the unit to classify. Observe that in (10)
we have used the following notation: we have denoted by ϑC ∈ ΘC the vector of chances ϑc, c ∈ C.
Similarly, ϑA j|cM

∈ ΘA j|cM
(for all j = 1, . . . ,k) resp. ϑÂl |cM

∈ ΘÂl |cM
(for all l = 1, . . . ,r) denote the

vector of chances ϑa j|cM
, a j ∈ A j, resp. ϑâl |cM

, âl ∈ Âl .
Each integral in (10) represents the expectation of a chance with respect to a Dirichlet density.

It is well known that such a calculation can be solved exactly (Kotz et al., 2000, Chap. 49), leading
to the statement of the theorem.

Proof [Lemma 4] Using (5) we first re-write the function to optimize as follows:

[
n(c′′M)+ st(c′′M)

n(c′M)+ st(c′M)
]k−1

k

∏
j=1

n(aM j,c′M)+ st(aM j,c′M)

n(aM j,c′′M)+ st(aM j,c′′M)
·

·
r′

∏
l=1

[
nl(c′′M)+ st(c′′M)

nl(c′M)+ st(c′M)
·

n(âMl,c′M)+ st(âMl,c′M)

n(âMl,c′′M)+ st(âMl,c′′M)
].

Then we simplify the optimization problem according to the following considerations.

• The objective function is only concerned with the r′ non-missing MAR attribute variables.

• For each j ∈ {1, . . . ,k} and c ∈ C, the objective function contains only one term t(a j,c). We
can choose its value freely in the interval [0, t(c)], as the constraints of type ∑a j∈A j

t(a j,c) =
t(c) are always satisfied by assigning the value [t(c)− t(a j,c)] to any term t(a j′ ,c) ( j′ ∈
{1, . . . ,r}, j′ 6= j) that does not appear in the objective function, and zero to the others. It
follows that constraints of type ∑a j∈A j

t(a j,c) = t(c) can be re-written as t(a j,c)≤ t(c) for all
j ∈ {1, . . . ,k}, c ∈ C. Analogous considerations hold with constraints of type ∑âl∈Âl

t(âl,c) =
t(c).
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• The optimum of the problem is obtained when all the terms t(aM j,c′M) and t(âMl,c′M) go to
zero, and all the terms t(aM j,c′′M) and t(âMl,c′′M) go to t(c′′M). This follows from the preceding
observation and because the objective function is made of non-negative terms. Therefore, in
the objective function we can replace the mentioned terms with the corresponding values at
the optimum.

• Constraint ∑c∈C t(c) = 1 can be replaced by t(cM′)+ t(cM′′) = 1, because the objective func-
tion is only concerned with those two classes, as because such a constraint naturally holds at
a global optimum. Suppose the last statement is false, that is, that t(cM′)+ t(cM′′) < 1 at a
global optimum point. Then we might keep t(cM′′) fixed and increase t(cM′) up to 1− t(cM′′)
(making the t(·) terms of the remaining classes go to zero), so decreasing the optimum value.

These lead to the statement of the lemma once we also remove the variable t(c′M) from considera-
tion.

Proof [Theorem 5] To demonstrate Theorem 5, it is necessary first to introduce two lemmas, whose
proofs are given later.

Lemma 8 Consider Problem (6), assuming that the following two conditions hold: (i) there is no
j such that n(aM j,c′M) = 0 nor l such that n(âMl ,c′M) = 0; and (ii) k + r′ > 0. Then the objective
function h(t(cM′′)) is (strictly) convex over (0,1).

Lemma 9 Consider Problem (6), and the same assumption used in Lemma 8. Then the logarithmic
derivative of the objective function in t(c′′M) = 0 is −∞ if and only if any of the following cases hold:
n(c′′M) = 0; there is j ∈ {1, . . . ,k} s.t. n(aM j,c′′M) = 0; there is l ∈ {1, . . . ,r′} s.t. n(âMl,c′′M) = 0 and
nl(c′′M) 6= 0.

Having introduced Lemmas 8 and 9, we can now prove Theorem 5. The first two steps of
the procedure deal with special cases. The first step is justified since in the stated conditions the
objective function attains the value zero, and this is a global minimum because the function is non-
negative. The second step considers a degenerate problem of classification, in which there are no
attribute variables; in this case the minimum is at t(cM′′) = 1, as the objective function is strictly
decreasing, as it can be shown by differentiating.

Otherwise, the function is convex and the local minimum is also the global minimum. The
minimum is found by the following procedure:

1. If:

• n(c′′M) = 0 or

• there is j ∈ {1, . . . ,k} s.t. n(aM j,c′′M) = 0 or

• there is l ∈ {1, . . . ,r′} s.t. n(âMl,c′′M) = 0 and nl(c′′M) 6= 0,

then let (lnh(t(c′′M)))′|t(c′′M)=0 := −∞, else compute (lnh(t(c′′M)))′|t(c′′M)=0.

2. Compute (lnh(t(c′′M)))′|t(c′′M)=1.

3. If (lnh(t(c′′M)))′|t(c′′M)=0 ≥ 0, let inf0<t(c′′M)<1 h(t(c′′M)) := h(0). Stop.
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4. If (lnh(t(c′′M)))′|t(c′′M)=1 ≤ 0, let inf0<t(c′′M)<1 h(t(c′′M)) := h(1)). Stop.

5. If (lnh(t(c′′M)))′|t(c′′M)=0 < 0 and (lnh(t(c′′M)))′|t(c′′M)=1 > 0, approximate the minimum numer-
ically by Newton-Raphson’s algorithm as in p. 366 of Press et al. (1993).

The procedure is basically a test based on the values of the logarithmic derivative at the extremes
of the interval [0,1]. If the function were bounded, the last three points would obviously identify
the minimum. The preceding points allow the test to be extended to the case of h(0) being un-
bounded.18 This happens according to the conditions stated in Lemma 9. We account for these
cases by introducing the value −∞ for the derivative in the solution procedure, and treating it as one
of the possible values.

As far as Newton-Raphson’s method is concerned, it can be applied as the first and second
derivatives are available. Note that if the Newton-Raphson is combined with bracketing as in the
cited implementation, then its convergence is guaranteed.

Proof [Lemma 8] Consider the following definitions to simplify the notation: α j := n(aM j,c′M),
β j := n(aM j,c′′M), α̃ := n(c′M), β̃ := n(c′′M), γl := n(âMl ,c′M), δl := n(âMl,c′′M), γ̃l := nl(c′M), δ̃l :=
nl(c′′M), x := st(c′′M). Re-write Problem (6) accordingly as

inf
0<x<s

(
β̃+ x

α̃+ s− x
)k−1

k

∏
j=1

α j

β j + x

r′

∏
l=1

(
δ̃l + x

γ̃l + s− x
·

γl

δl + x
)

= inf
0<x<s

h(x).

The objective function is positive on the domain of definition, so we can compute the logarithmic
derivative of h(·):

d lnh(x)
dx

=

=
k−1

β̃+ x
+

k−1
α̃+ s− x

−
k

∑
j=1

1
β j + x

+
r′

∑
l=1

1

δ̃l + x
+

−
r′

∑
l=1

1
δl + x

+
r′

∑
l=1

1
γ̃l + s− x

. (11)

Another differentiation leads to the following expression:

d2 lnh(x)
dx2 =

= −
k−1

(β̃+ x)2
+

k−1
(α̃+ s− x)2 +

k

∑
j=1

1
(β j + x)2 +

−
r′

∑
l=1

1

(δ̃l + x)2
+

r′

∑
l=1

1
(δl + x)2 +

r′

∑
l=1

1
(γ̃l + s− x)2 .

(12)

18. Note that the function is always defined in t(cM′′) = 1 as the cases that arise when either n(c′M) = 0 or when there is l
such that nl(c′M) = 0, are ruled out by the initial assumption prescribing that there is neither j such that n(aM j,c′M) =
0, nor l such that n(âMl ,c′M) = 0.
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There are three possible cases.

1. k = 0 and r′ > 0. In Expression (12), the sum on j disappears, and the other terms are positive
except for two of them: − 1

(α̃+s−x)2 and −∑r′
l=1

1
(δ̃l+x)2 .

Consider the first one. By definition, γ̃l ≤ α̃ for each l, so that 1
(α̃+s−x)2 ≤ 1

(γ̃l+s−x)2 , whence

− 1
(α̃+s−x)2 +∑r′

l=1
1

(γ̃l+s−x)2 ≥ 0.

Now consider the second negative term in Expression (12). By definition, it holds that
δl ≤ δ̃l for each l, whence ∑r′

l=1
1

(δ̃l+x)2 ≤ ∑r′
l=1

1
(δl+x)2 , or, in other words, −∑r′

l=1
1

(δ̃l+x)2 +

∑r′
l=1

1
(δl+x)2 ≥ 0.

This shows that the negative terms in Expression (12) together with the considered positive
ones produce non-negative results. Since there are positive terms left in Expression (12), the
overall expression is positive. In other words, the function lnh(·) is (strictly) convex, and so
is h(·) (by applying the exponential function).

2. k > 0 and r′ = 0. In this case, there is only one negative term in Expression (12): − k−1
(β̃+x)2 .

By definition, β j ≤ β̃ for each j, so that − k−1
(β̃+x)2 + ∑k

j=1
1

(β j+x)2 ≥ 0. Since there are positive

terms left in Expression (12), the function h(·) is (strictly) convex.

3. k > 0 and r′ > 0. In this case there are two negative terms in Expression (12) (the others being
positive): − k−1

(β̃+x)2 and −∑r′
l=1

1
(δ̃l+x)2 . We have already shown in the two preceding cases that

−∑r′
l=1

1
(δ̃l+x)2 + ∑r′

l=1
1

(δl+x)2 ≥ 0 and that − k−1
(β̃+x)2 + ∑k

j=1
1

(β j+x)2 ≥ 0. As there are positive

terms left in Expression (12), the overall expression is positive. Also in this case, the function
h(·) is (strictly) convex.

Proof [Lemma 9] Consider Expression (11) for the logarithmic derivative, and the notation intro-
duced there. Let us focus on the expression obtained from Expression (11) by dropping the terms
that are bounded when x approaches zero:

k−1

β̃+ x
−

k

∑
j=1

1
β j + x

+
r′

∑
l=1

1

δ̃l + x
−

r′

∑
l=1

1
δl + x

. (13)

Of course Expression (11) goes to −∞ when x approaches zero if and only if Expression (13) does
the same, so that we can concentrate on the latter.

(⇐) Let us now show that if any of the conditions in the statement holds, Expression (13) goes
to −∞ with x approaching zero.

First, consider the case when β̃ = n(c′′M) = 0, and suppose that k = 0. The first term in (13)
becomes −1/x, the second disappears, and the last two terms sum up to zero. Indeed, when β̃ = 0,
δ̃l = δl = 0. The expression becomes −1/x, and the implication is verified. In the case when r ′ = 0,
it must be k > 0 and hence the first two terms in (13) yield −1/x as β j = 0 for all j when β̃ = 0; and
the last two terms disappear. Again, the expression becomes −1/x, and the implication is verified.
The case when both k > 0 and r′ > 0 is verified on the basis of the previous two cases.
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Second, consider the case when there is j ∈ {1, . . . ,k} s.t. β j = n(aM j,c′′M) = 0. If also β̃ = 0, we
would fall in the previous case and the implication would be true, so we can assume that β̃ > 0. In the
case when r′ = 0, the implication would follow immediately. Consider r′ > 0. The only possibility
for Expression (13) not to go to −∞ with x going to zero, is that there is l s.t. δ̃l = 0. In this way
the term −1/(β j + x) = −1/x would sum up to zero together with the term 1/(δ̃l + x) = 1/x. But
this is not possible: in fact, δ̃l = 0 implies δl = 0, so that 1/(δ̃l +x) = 1/x cancels out together with
−1/(δl + x) = −1/x. The implication is true also in this case.

Finally, consider the case when there is l ∈ {1, . . . ,r′} s.t. δl = n(âMl,c′′M) = 0 and δ̃l = nl(c′′M) 6=
0. Observe that the term −1/(δl +x) =−1/x cannot cancel out because of other terms: in fact, with
the l-th terms, we have that δ̃l > 0; if there is another l ′ s.t. δ̃l = 0, also δl = 0 and the related
two terms sum up to zero. The only remaining possibility to cancel −1/(δl + x) = −1/x out is that
β̃ = 0. But in this case we know that the implication must be true. It follows that also in this case
the implication is verified.

(⇒) Let us now consider the reverse implication. If Expression (13) goes to −∞ with x going
to zero, at least one of the terms in such an expression must do the same. By considering the terms
one by one, the implication is proved in a trivial way.

Proof [Theorem 6]
Problem

min
d∈o

inf
p(θ)∈P(θ)

p(c′M|d-, x̂+ ∈ ô+)/p(c′′M|d-, x̂+ ∈ ô+),

where the set of prior densities is defined according to Expression (4), the constraints are those
described in Section 3.1.1, and the probabilities in the function to optimize are defined as in (5), is
equivalent to the following:

min
d∈o

inf
0<t(c′′M)<1

{[
n(c′′M)+ st(c′′M)

n(c′M)+ s− st(c′′M)
]k−1

k

∏
j=1

n(aM j,c′M)

n(aM j,c′′M)+ st(c′′M)
·

·
r′

∏
l=1

[
nl(c′′M)+ st(c′′M)

nl(c′M)+ s− st(c′′M)
·

n(âMl ,c′M)

n(âMl,c′′M)+ st(c′′M)
]}.

The problem can be then re-written as follows:

inf
0<t(c′′M)<1

min
d∈o

{[
n(c′′M)+ st(c′′M)

n(c′M)+ s− st(c′′M)
]k−1

k

∏
j=1

n(aM j,c′M)

n(aM j,c′′M)+ st(c′′M)
·

·
r′

∏
l=1

[
nl(c′′M)+ st(c′′M)

nl(c′M)+ s− st(c′′M)
·

n(âMl ,c′M)

n(âMl,c′′M)+ st(c′′M)
]}. (14)

This is obtained by inverting the order of the optimizations and using Expression (6). Note that
the inner minimization only affects the product over j in the objective function. Moreover, the
counts in such a product attain the same value at the optimum for any choice of t(c′′M), leading
to the following product: ∏k

j=1 n(aM j,c′M)/[n(aM j,c′′M) + st(c′′M)]. Note that the pairwise counts
are optimized separately as they do not affect each other. These arguments enable us to reduce
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Problem (14) as:

inf
0<t(c′′M)<1

{

[

n(c′′M)+ st(c′′M)

n(c′M)+ s− st(c′′M)

]k−1 k

∏
j=1

n(aM j,c′M)

n(aM j,c′′M)+ st(c′′M)
· (15)

·
r′

∏
l=1

[

nl(c′′M)+ st(c′′M)

nl(c′M)+ s− st(c′′M)
·

n(âMl,c′M)

n(âMl,c′′M)+ st(c′′M)

]

},

with n(aM j,c′M) := mind∈o n(aM j,c′M) and n(aM j,c′M) := maxd∈o n(aM j,c′M). At this point, Prob-
lem (15) is an instance of Problem (6) obtained for a specific choice of a complete data set d in o.

Proof [Theorem 7] Let us focus the attention on the term minaMe∈Ae

n(aMe,c′M)
n(aMe,c′′M)+x . As a function of x,

this is the lower envelope of the set of functions { n(aMe,c′M)
n(aMe,c′′M)+x : aMe ∈ Ae} =: Fe. Consider a value

x such that the lower envelope coincides with two different functions in Fe before and after x. This
implies that the two functions must cross at x, because the function that was over the other before
x must be under it after x. In other words, the set of points where any two different functions in
Fe cross (let us call them partition points), contains the points where the function matched by the
lower envelope changes.

We can identify the partition points in the following way. Consider any two different functions
in Fe: n(aMe′ ,c′M)/[n(aMe′ ,c′′M)+ x] and n(aMe′′ ,c′M)/[n(aMe′′ ,c′′M)+ x]. Assume that n(aMe′ ,c′M) 6=
n(aMe′′ ,c′M): in the opposite case the only way for the two functions to cross would be that also
n(aMe′ ,c′′M) = n(aMe′′ ,c′′M), but the two functions would be the same, which is excluded a priori.
The two functions cross when n(aMe′ ,c′M)/[n(aMe′ ,c′′M)+ x] = n(aMe′′ ,c′M)/[n(aMe′′ ,c′′M)+ x], and
this happens if and only if

x =
n(aMe′ ,c′′M)n(aMe′′ ,c′M)−n(aMe′ ,c′M)n(aMe′′ ,c′′M)

n(aMe′ ,c′M)−n(aMe′′ ,c′M)
. (16)

In other words, there is at most one partition point for any two different functions,19 and we can
identify it easily by (16). The maximum number of partition points is also the number of distinct
pairs of different functions in Fe, which is at most (|Ae|

2 −|Ae|)/2.20

The crucial observation here is that the lower envelope matches a single function of Fe in any
sub-interval of (0,s) that does not contain partition points; and we are always able to select an
element of Ae that gives rise to the matched function. In other words, the partition points can be
used to define a partition of (0,s), in the sub-intervals of which the lower envelop matches a single
function that we are able to characterize by an element of Ae. This argument is easily extended to
the entire product over e in (9): we compute the set of partition points for each term of the product,
and take their union. The union defines a partition J of (0,s), in which every sub-interval I is
associated with a single tuple (aI

M1, . . . ,a
I
Mk′) ∈ A1 ×·· ·×Ak′ , so that

k′

∏
e=1

[ min
aMe∈Ae

n(aMe,c′M)

n(aMe,c′′M)+ x
] =

k′

∏
e=1

n(aI
Me,c

′
M)

n(aI
Me,c

′′
M)+ x

.

19. Note that it could be outside [0,s].
20. Note that some partition points may be such that the lower envelope does not change the matched function in Fe, and

so they could be discarded. As an example, assume that the value x identified by (16) is a partition point only for
the two mentioned functions, and that there is a third function below the other two at x. In this case the former two
functions are not involved in the determination of the lower envelope at x.
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Problem (9) then becomes the following:

min
I∈J

inf
x∈I

{[
n(c′′M)+ x

n(c′M)+ s− x)
]k−1

k′

∏
e=1

n(aI
Me,c

′
M)

n(aI
Me,c

′′
M)+ x

·

·
k

∏
j=k′+1

n(aM j,c′M)

n(aM j,c′′M)+ x
·

·
r′

∏
l=1

[
nl(c′′M)+ x

nl(c′M)+ s− x
·

n(âMl,c′M)

n(âMl,c′′M)+ x
]},

where the inner optimization can be solved by the procedure given in Section (3.2), applying it to
the interval I rather than (0,s).

Now it is easy to show that the procedure in Fig. 6 solves Problem (8). The first step of the
procedure builds the set of partition points for the functions in Fe, and the next one defines the
partition of (0,s). Since the function is convex on each sub-interval, the remaining steps solve a
minimization problem on each sub-interval; finally, the global minimum is selected.

Appendix C. Experimental Results Data Set by Data Set

Detailed results by data set are shown in Tables 6 and 7, which refer respectively to the MAR and
non-MAR setting.
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