A B C D F G I J K L M N O P R S T U V W

N

NaiveBayes - Class in jncc20
Implements the Naive Bayes Classifier (NBC) with Laplace prior
NaiveBayes(ArrayList<int[]>, ArrayList<String>, ArrayList<String>, ArrayList<Integer>) - Constructor for class jncc20.NaiveBayes
Initializes all features and output classes; trains the classifier on TrainingSet.
NaiveClassifier - Class in jncc20
Abstract super-class for Naive Classifiers
NaiveClassifier(ArrayList<int[]>, ArrayList<String>, ArrayList<String>, ArrayList<Integer>, int) - Constructor for class jncc20.NaiveClassifier
Initializes all features and output classes; computes all the relevant conditionalFreq on the training set, setting the specified prior (0:0; 1:laplace; 2:uniform)
NaiveClassifier.Feature - Class in jncc20
Helper class for Naive Classifiers, that implements Mar and NonMar features.
NaiveClassifier.Feature(String, double[][], int[]) - Constructor for class jncc20.NaiveClassifier.Feature
Constructor that copies the name and the conditionalFreq table, and computes the log-probabilities table
NaiveClassifier.OutputClass - Class in jncc20
Helper class for Naive Classifiers, that implements the output class of the classification problem.
NaiveClassifier.OutputClass(String, double, double) - Constructor for class jncc20.NaiveClassifier.OutputClass
 
NaiveCredalClassifier2 - Class in jncc20
Implementation of the Naive Credal Classifier 2 (NCC2).
The constructor build the object and learns the classifier.
The function classifyInstances() use the learned NCC2 to classify the supplied instances, while the issued predictions can be obtained via the function getPredictions().
NaiveCredalClassifier2(ArrayList<int[]>, ArrayList<String>, ArrayList<String>, ArrayList<Integer>, ArrayList<Integer>, ArrayList<Integer>, ArrayList<Integer>) - Constructor for class jncc20.NaiveCredalClassifier2
Builds feature and output class, and computes the relevant counts for MAR and NON-MAR features
NaiveCredalClassifier2.PartitionPoint - Class in jncc20
Helper class for NaiveCredal Classifier, used to store crossing points and minimizing tuples; it is used to deal with missing data in the NonMar part of the testing instances.
NaiveCredalClassifier2.PartitionPoint(double, int[], int[]) - Constructor for class jncc20.NaiveCredalClassifier2.PartitionPoint
 
NaiveCredalClassifier2.PartitionPoint(double, int) - Constructor for class jncc20.NaiveCredalClassifier2.PartitionPoint
 
name - Variable in class jncc20.NaiveClassifier.Feature
Name
name - Variable in class jncc20.NaiveClassifier.OutputClass
names of the output classes
nbc - Variable in class jncc20.Jncc
Naive Bayes classifier
nbcAccCurrentInst - Variable in class jncc20.Jncc.ResultsReporter
 
nbcAccNccImprecise - Variable in class jncc20.Jncc.ResultsReporter
 
nbcAccNccprecise - Variable in class jncc20.Jncc.ResultsReporter
 
nbcAccurate - Variable in class jncc20.Jncc.ResultsReporter
 
nbcConfMatrix - Variable in class jncc20.Jncc.ResultsReporter
 
ncc2 - Variable in class jncc20.Jncc
NCC2 classifier
nccConfMatrix - Variable in class jncc20.Jncc.ResultsReporter
 
nccImprecise - Variable in class jncc20.Jncc.ResultsReporter
 
nccImpreciseOutputSize - Variable in class jncc20.Jncc.ResultsReporter
 
nccPrecise - Variable in class jncc20.Jncc.ResultsReporter
 
nccPreciseAccurate - Variable in class jncc20.Jncc.ResultsReporter
 
nccSetAccurate - Variable in class jncc20.Jncc.ResultsReporter
 
nonMarFeatsTesting - Variable in class jncc20.Jncc
Names of NonMar features in testing
nonMarFeatsTraining - Variable in class jncc20.Jncc
Names of NonMar features in training
nonMarTesting - Variable in class jncc20.Jncc
Index of NonMar features positions in the current testing set (position might change during CV, as different variables can get discretized into a single bin)
nonMarTestingIdx - Variable in class jncc20.NaiveCredalClassifier2
Indexes of nonMarFeature in testing
nonMarTraining - Variable in class jncc20.Jncc
Index of NonMar features positions in the current training set (position might change during CV, as different variables can get discretized into a single bin)
nonMarTrainingIdx - Variable in class jncc20.NaiveCredalClassifier2
Indexes of nonMarFeature in training
notUsedFeatures - Variable in class jncc20.Jncc
Variables not used in the current experiment, because discretized in a single bin; indexes refer to rawDataset
numClasses - Variable in class jncc20.Jncc.ResultsReporter
 
numClasses - Variable in class jncc20.MdlDiscretizer
Total number of classes (immutable, hence final)
numClasses - Variable in class jncc20.NaiveClassifier
number of classes
numClassesNonMarTesting - Variable in class jncc20.Jncc
Number of classes of variables NonMar in the testing set.
numClassesNonMarTesting - Variable in class jncc20.NaiveCredalClassifier2
Number of classes of each NonMar variable in Testing
numClassForEachUsedFeature - Variable in class jncc20.Jncc
Number of classes for each used feature
numCvFolds - Variable in class jncc20.Jncc
Number of folds used by cross-validation
numCvRuns - Variable in class jncc20.Jncc
Number of Cross validation Runs
numFeatures - Variable in class jncc20.NaiveClassifier
number of features
numFlags - Variable in class jncc20.Jncc
Flags array, regarding wheter Features are numerical (1) or not (0)
numRuns - Variable in class jncc20.Jncc.ResultsReporter
how many training/testing experiments (1 for testing, num runs*num folds for CV) the predictions saved to file reg
numValues - Variable in class jncc20.NaiveClassifier
number of categories for categorical features and number of bins for numerical, then discretized, features .

A B C D F G I J K L M N O P R S T U V W