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Abstract

In ant societiesand, more in general, in insect societies, the activities of the individuals, aswell
asof the society asawhole, are not regulated by any explicit form of centralized control. On the
other hand, adaptive and robust behaviors transcending the behavioral repertoire of the single
individual canbe easily observed at society level. Thesecomplex global behaviors are the result
of self-organizing dynamics driven by local interactions and communications among a number
of relatively simple individuals. The simultaneous presenceof these and other fascinating and
unique characteristics have made ant societies an attractive and inspiring model for building
new algorithmsand new multi-agentsystemsin the last decade,ant societieshave beentaken asa
referencefor an ever growing body of scienti ¢ work, mostly in the elds of robotics, operations
reseach, and telecommunications.

Among the dif ferent works inspir ed by ant colonies, the Ant ColonyOptimizationmetaheuristic
(ACO) is probably the most successfuland popular one. The ACO metaheuristic is amulti-agent
framework for combinatorial optimization whose main components are: a set of ant-likeagents
the use of memoryand of stochastidecisionsand strategies of collectiveand distributedlearning
It nds its roots in the experimental observation of a specic foraging behavior of some ant
colonies that, under appropriate conditions, are able to selectthe shortestpathamong few possi-
ble paths connecting their nestto a food site. The phelomonea volatile chemical substancelaid
on the ground by the ants while walking and affecting in turn their moving decisions according
to its local intensity, is the mediator of this behavior. All the elements playing an essentialrole
in the ant colony foraging behavior were understood, thoroughly reverse-engineeed and put
to work to solve problems of combinatorial optimization by Marco Dorigo and his co-workers
at the beginning of the 1990's. From that moment on it has been a ourishing of new com-
binatorial optimization algorithms designed after the rst algorithms of Dorigo's etal., and of
related scienti c events. In 1999the ACO metaheuristic was de ned by Dorigo, Di Caro and
Gambardella with the purpose of providing acommon framework for describing and analyzing
all thesealgorithms inspir ed by the sameant colony behavior and by the samecommon process
of reverse-engineering of this behavior. Therefore, the ACO metaheuristic was de ned aposte-
riori, asthe result of a synthesis effort effectuated on the study of the characteristics of all these
ant-inspir ed algorithms and on the abstraction of their common traits. The ACO's synthesis
was also motivated by the usually good performance shown by the algorithms (e.g.,for several
important combinatorial problems like the quadratic assignment, vehicle routing and job shop
scheduling, ACO implementations have outperformed state-of-the-art algorithms).

The de nition and study of the ACO metaheuristic is one of the two fundamental goals of the
thesis. The other one, strictly related to this former one, consistsin the design, implementation,
and testing of ACO instancesfor problems of adaptiverouting in telecommunicatiometworks

This thesis is an in-depth journey through the ACO metaheuristic, during which we have
(re)de ned ACO and tried to get a clear understanding of its potentialities, limits, and relation-
ships with other frameworks and with its biological background. The thesis takesinto account
all the developments that have followed the original 1999'sde nition, and provides aformal and
comprehensive systematization of the subject,aswell asan up-to-date and quite comprehensive
review of current applications. We have also identied in dynamic problems in telecommuni-



cation networks the most appropriate domain of application for the ACO ideas. According to
this understanding, in the most applicative part of the thesis we have focused on problems of
adaptive routing in networks and we have developed and tested four new algorithms.

Adopting an original point of view with respectto the way ACO was rstly de ned (but
maintaining full conceptual and terminological consistency), ACO is here de ned and mainly
discussedin the terms of sequentiatiecisiorprocessesnd Monte Carlosamplingand learning More
precisely, ACO is characterized asa policy search strategy aimed at learning the distributed pa-
rameters (called phelomonevariablesn accordancewith the biological metaphor) of the stochastic
decision policy which is used by so-called ant agentsto generate solutions. Eachant represents
in practice an independent sequentiatiecisiorprocessimed at constructinga possibly feasible so-
lution for the optimization problem at hand by using only information localto the decision step.
Ants arerepeatedland concuriently generatedin order to sample the solution setaccording to the
current policy. The outcomes of the generated solutions are used to partially evaluatethe current
policy, spotthe most promising search areas,and updatethe policy parametersn order to possibly
focus the search in those promising areaswhile keeping a satisfactory level of overall exploration

This way of looking at ACO has facilitated to disclose the strict relationships between ACO
and other well-known frameworks, like dynamicprogramming Markov and non-Markovdecision
processeand reinfocementearning In turn, this hasfavored reasoningon the general properties
of ACO in terms of amount of complete stateinformationwhich is used by the ACO's antsto take
optimized decisions and to encode in pheromone variables memory of both the decisions that
belonged to the sampled solutions and their quality .

The ACO's biological context of inspiration is fully acknowledged in the thesis. We report
with extensive discussions on the shortest path behaviors of ant colonies and on the identi -
cation and analysis of the few nonlinear dynamics that are at the very core of self-organized
behaviors in both the ants and other societal organizations. We discuss these dynamics in the
general framework of stigmeigic modeling based on asynchronous environment-mediated com-
munication protocols, and (pheromone) variables priming coordinated responsesof a number
of “cheap” and concurrent agents.

The second half of the thesis is devoted to the study of the application of ACO to problems
of onlinerouting in telecommunicatiometworks This classof problems has beenidenti ed in the
thesis as the most appropriate for the application of the multi-agent, distributed, and adaptive
nature of the ACO architecture. Four novel ACO algorithms for problems of adaptive routing in
telecommunication networks are throughly described. The four algorithms cover a wide spec-
trum of possible types of network: two of them deliver best-effortraf ¢ in wiredIP networks one
is intended for quality-of-servicéQoS)traf ¢ in ATM networks and the fourth is for best-effortraf-
¢ in mobilead hocnetworks The two algorithms for wir ed IP networks have been extensively
tested by simulation studies and compared to state-of-the-art algorithms for a wide setof refer-
encescenarios. The algorithm for mobile ad hoc networks is still under development, but quite
extensive results and comparisons with a popular state-of-the-art algorithm are reported. No
results are reported for the algorithm for QoS,which hasnot beenfully tested. The observed ex-
perimental performance is excellent, especially for the caseof wir ed IP networks: our algorithms
always perform comparably or much better than the state-of-the-art competitors. In the thesis
we try to understand the rationale behind the brilliant performance obtained and the good level
of popularity reachedby our algorithms. Morein general, we discussthe reasonsof the general
efcacy of the ACO approach for network routing problems compared to the characteristics of
mor e classicalapproaches.Moving further, we alsoinformally de ne Ant ColonyRouting (ACR),
a multi-agent framework explicitly integrating learning components into the ACO's design in
order to de ne ageneral and in a sensefuturistic architecture for autonomic network control.

Most of the material of the thesis comesfrom a re-elaboration of material co-authored and
published in a number of books, journal papers, conferenceproceedings,and technical reports.
The detailed list of referencesis provided in the Intr oduction.
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CHAPTER 7

ACO algorithms for adaptive routing

This chapter intr oducesfour novel algorithms for routing in telecommunication networks (AntNet,
AntNet-FA, AntNet+SELA, and AntHocNet), a general framework for the design of routing algo-
rithms (Ant ColonyRouting), and reviews related work on ant-inspir ed routing algorithms.

AntNet [119, 125 121,122 118 115 and AntNet-FA [124] aretwo ACO algorithms for adap-
tive best-efort routing in wir ed datagram networks (extensive experimental resultsfor thesetwo
algorithms are presentedin the next chapter). On the other hand, Ant Colony Routing (ACR) is
ageneral framework of referencefor the design of autonomicrouting systemg250].1 ACR de nes
the generalities of a multi-agent society basedon the integration of the ACO's philosophy with
ideas from the domain of reinforcementlearning, with the aim of providing a meta-architecture
of referencefor the design and implementation of fully adaptive and distributed routing systems
for awide range of network scenarios(e.g., wir ed and wir eless,best-efort and QoS, static and
mobile). In the sameway ACO hasbeende ned asan ant-inspir ed meta-heuristic for generic
combinatorial problems, ACR can be seenasthe equivalent meta-architecture for network con-
trol problems basedon the use of ant-like and learning agents. In the following ACR will bealso
referred to asthe ant-basedetwork control/r outing framework. Both AntNet and AntNet-FA
can be seenas speci ¢ instances of ACR for the caseof best-efort routing in wir ed datagram
networks.In order to show how the general ACR's ideas can nd their application, aswell asin
order to intr oduce a new routing algorithm for eachone of the most important and popular net-
work scenarios,we briey describetwo additional routing algorithms, AntNet+SELA [130] and
AntHocNet [126, 154, 127]. AntNet+SELA is a model to deliver QoSrouting in ATM networks,
while AntHocNet is intended for routing in mobile ad hoc networks. 2

The author's work on ACO algorithms for routing tasks dates back to 1997, when he de-
veloped the rst versions of AntNet [116, 117, 115 114]. AntNet was speci cally designed to
addressthe problem of adaptive best-effort routing in wir ed datagram networks (e.g.,Internet).
Since then, AntNet's design has evolved, and impr oved/r evised versions of it have been de-
veloped by the author [119, 125 121, 122 118 12( and also by several other reseachers from
all over the world (these additional contributions are discussedin Section 7.4). In particular,
AntNet-F A [124, 113 hasbrought some major impr ovements into the AntNet design and made
it also suitable for a possible use in connection-oriented and QoS networks. Some models for
fair-share and generic QoS networks [123] have been also derived from the basic AntNet, but
are not going to be described in this thesis since similar ideas have contributed to the design
of AntNet+SELA [130], intended for QoS routing in ATM networks. In AntNet+SELA ACO's
ant-like agentsare complemented by the presenceof nodeagentseachimplementing a stochastic
learning automata exploiting the information gathered by the ants to adaptively learn an ef-

1 More in general, ACR can be considered as a framework for distributed control tasks in telecommunication net-
works (e.g., monitoring, admission control, maintenance, load balancing). However, in the following the focus will be
almost exclusively on routing tasks. For instance, a discussion on how ACO algorithms canbe applied to perform active
monitoring can be found in [129].

2 Hereafter, for notation convenience, we will also refer to the setof ACO routing algorithms that we are going to
describe, that is, AntNet, AntNet-FA, AntNet+SELA, and AntHocNet, in terms of ACR algorithms since they can all be
seenasinstancesof this more general ant-based framework.
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fective routing policy for QoS data. The de nition of ACR as a sort of general framework of
referencefor ant-basedrouting and control systemsis the result of a processof abstraction and
generalization from all these ACO algorithms developed during the years, aswell asfrom the
number of other ant-basedalgorithms that have appeared in the literatur e in the sametime, and
from results and ideas from the eld of reinforcementlearning. ACR nds its roots in the work
on AntNet ++, which was intr oduced in the author's DEA thesis[113]. ACR and AntNet ++ share
the basicarchitecture and several other ideas. However, we chooseto use here a dif ferent name
since AntNet ++ gives more the idea of an evolution over AntNet, rather than the de nition of a
general framework that nds its roots in ACO. The work on ACR hasto be considered as still
preliminary. More systematic and formal de nitions are necessary The author's most recent
ongoing work on routing is that on AntHocNet [126, 128 154, 127], which is an application to
the caseof mobile ad hoc networks. This work is co-authored with Frederick Ducatelle and Luca
Maria Gambardella, asexplained in Footnote 4.

As already discussedin the Summary section of Chapter 5, the application of the ACO frame-
work to routing tasksin telecommunication networks is rather natural and straightforwar d due
to the isomorphism between the pheromone graph and stigmergic architecture of ACO on one
side, and the structure and constraints of telecommunication networks on the other side. An
isomorphism that makes rather natural to map ACO's components onto a telecommunication
network in the following way:

REMARK 7.1 (ONE-TO-ONE RELATIONSHIP BETWEEN ACO'SCOMPONENTSAND ROUTING PROB-
LEMS): Ants aremobileagentghat migratefromonenodeto an adjacenbneseachingfor feasiblgaths
betweersourceanddestinationnodes ACQO's solutioncomponentgand phantasmatagorrespondo net-

work nodesand,accordinglyrouting tablescorrespondo pheomoneablesT ¥ in whicheactpheomone
variable X, holdsthe estimatedyoodnessfselecting's neighbom to forwarda datapacketowardd.

The immediate relationship between ACO and network routing is likely one of the main
reasonsbehind the popularity of the application of ACO to routing problems (seeSection7.4),as
well asbehind the usually good performance and the strong similarities showed by the dif ferent
implementations. In particular, the adopted pheomonemodelis in practice the samefor all the
implementations: a pheromone variable is always associatedto a pair of nodes, which are the
“natural” solution components for routing problems. Nevertheless, important differencesalso
exist among the algorithms, in particular concerning the heuristic variables, the way the paths
sampled by the ants are evaluated and reinforced, the modalities for the generation of the ants,
and so on. The relationship between ACO (aswell asits biological context of inspiration) and
networks is particularly evident for the caseof datagramprotocols In fact, in this caseeachnode
builds and holds its own routing table and an independent routing decision is taken for each
single data packet on the sole basisof the contents of the local routing table. On the other hand,
in avirtual-cir cuit model all the packets of the samesessionare routed along the samepath and
no independent per packet decisions are issued at the nodes. The dir ect relationship between
ACO and datagram models is likely one of the main reasonsbehind the fact that most of the
works on ant-based routing have focused so far on best-efort datagram networks, in spite of
the fact that the rst work in this domain by Schoonderwoerd et al. [382] was an application to
circuit-switched networks. Nevertheless, the application of the ACO ideas to both connection-
oriented and QoS networks is in a senseequally straightforwar d, asit will be also shown by the
description of AntNet+SELA.

In the Summary of the previous chapter a sort of “wish list” for the characteristics of novel
routing algorithms was compiled. The characteristics of the routing algorithms that are intr o-
duced in the following of the chapter well match the characteristicsindicated in the wish list.
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REMARK 7.2(GENERAL CHARACTERISTICSOF ACO ALGORITHMSFORROUTING): Thefollowing
setof core propertiecharacterize&CO instancedor routing problems:

providetraf c-adaptiveand multipath routing,

rely on bothpassiveandactiveinformationmonitoring andgathering,

makeuseof stochasticomponents,

donot allow localestimatedo haveglobalimpact,

setup pathsin alesssel shwaythanin pureshortesipathschemefavoringloadbalancing,
showlimited sensitivity to parametesettings.

These are all characteristics that directly result from the application of the ACO's design
guidelines, and in particular from the use of controlled randomexperimentgthe ants) that are
repeatedly generated in order to activelygather useful non-local information about the charac-
teristics of the solution set(i.e., the setof paths connecting all pairs of source-destination nodes,
in the routing case).In turn, this information is usedto setand continually update the decision
(routing) policies at the decision nodes in the form of pheromone tables. All the other prop-
erties derive in some sensefrom this basic behavior. Traf c-adaptivenessas well as automatic
loadbalancing come from the generalized policy iteration structure of ACO, which is expected
to repeatedly re ne and/or adapt the current decision policy to new sampled experiencesand,
therefore, to the changing traf ¢ patterns. The use of stochastic components is a fundamental
aspectof ACO, aswell asthe notion of locality of the information and the related use of Monte
Carlo (i.e., non-bootstrapping) updating. The availability of multiple pathsderives from two of
the most fundamental components of ACO, that is, the pheromone tables, which old estimates
for the goodness of eachfeasible local decision, and the use of a stochastic decision policy. In
fact, pheromone variables virtually assign a score to each possible path in the network, while
the use of a stochastic routing policy not only for the ants but also for data packets allows to
concurrently spread data along those paths that are currently estimated to be the bestones. That
is, a bundleof paths eachone with an associatedvalue of goodness, are made available for each
source-destination pair and can be used for either multipath or alternate path routing. The rela-
tive stability of performance with respectto awide range of parameter settings derives from the
locality of the estimates, such that “wr ong” settings do not have global impact, aswell asfrom
the fact that in ACO algorithms several dif ferent components contribute to the overall perfor-
mance such that there is not a single component which is extremely critical and that hasto be
nely and carefully tuned.

Organization of the chapter

The chapter is organized in four main sections. The rst three describe respectively AntNet,
AntNet-FA, and ACR (and also AntNet+SELA and AntHocNet, that are seenas examples of
ACR), the fourth is devoted to the discussion of related work on ant-inspir ed routing algorithms.

The intr oductory part of Section 7.1 discussesthe generalities of AntNet and reports a com-
pact and informal description of the overall algorithm behavior. The characteristicsof the model
of communication network that is assumedfor both AntNet and AntNet-FA (and which is used
for the experiments reported in the next chapter), are discussedin Subsection7.1.1,asa prelimi-
nary step before providing adetailed description of the algorithm. Subsection7.1.2describesthe
data structures (e.g.,routing and pheromone tables) that are maintained at the nodes. AntNet
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is nally described in detail in Subsection 7.1.3. This subsection is organized in several sub-
subsections, each describing a single component of the algorithm. A pseudo-code description

of the full behavior of an ant agentis provided in Subsection7.1.3.8.Subsection7.1.4discusses
the central and thorny issue of how to properly evaluate an ant path, and shows the difference
between using constant and adaptive evaluations.

Section 7.2 describes AntNet-F A, which is an impr ovement over AntNet, while Section7.3
describesACR, which is a preliminary characterization of a general multi-agent framework de-
rived from ACO for the design of fully adaptive and distributed network control systems. The
architecture of ACR, basedon the use of both learning agentsasnode managersand mobile ant-
like agents, is discussedin Subsection7.3.1and its subsections. In Subsection7.3.2two other
novel routing algorithms are briey described. They are intended to be examples of the gen-
eral ACR design concepts. AntNet+SELA, an algorithm for QoS routing in ATM networks is
described in Subsection7.3.2.1,while Subsection7.3.2.2reports the description of AntHocNet,
an algorithm for routing in mobile ad hoc networks.

The chapter is concluded by Section7.4,which reviews related work in the domain of routing
algorithms inspir ed by ant behaviors.

7.1 AntNet: traf c-adaptive multipath routing for best-effort IP
networks

AntNet is an ACO algorithm for distributed and traf c-adaptive multipath routing in wir ed best-
effort IP networks. AntNet's design is basedon ACO's general ideas aswell ason the work of
Schoonderwoerd et al. [382, 381], which was a rst application of algorithms inspired by the
foraging behavior of ant colonies to routing tasks (in telephone networks). AntNet behavior is
basedon the use of mobile agents,the ACO's ants, that realize a pheromone-driven Monte Carlo
sampling and updating of the paths connecting sourcesand destination nodes.®

Informally , the behavior of AntNet canbe summarized asfollows (adetailed description and
discussion of all AntNet's components is provided in the subsectionsthat follow).

From eachnetwork node s mobile agentsare launched towards speci ¢ destination nodes
d at regular intervals and concurrently with the data traf c. The agent generation pro-
cesseshappen concurrently and without any form of synchronization among the nodes.
Theseagentsmoving from their sourceto destination nodes are called forwardantsand are
indicated with F!, ,wherei isthe antidentier .

Each forwar d ant is a randomexperimentaimed at collecting and gathering at the nodes

non-local information about paths and traf ¢ patterns. Forward ants simulatedatapackets
moving hop-by-hop towards their destination. They make use of the samepriority queues

used by data packets. The characteristics of each experiment can be tuned by assigning

different values to the agent's parameters (e.g.,the destination node).

3 In ACO the notion of agent is more an abstraction than a practical issue. But in the general ACR caseants are
“tr ue” mobile agents. On the other hand, mobile agents are expected to carry their own code an executeit at the
nodes. However, these are genuine implementation issues. AntNet's ants can be precisely designed in such a way:
they could read the routing information at the nodes, make their own calculations, and communicate the results to the
routing component of the node that would in turn decide to acceptor not the proposed modi cations to the routing and
pheromone tables. However, in the following, evenif we will keep using the term “mobile agents”, we will more simply
assumethat our ants are routing control packets managed at the network layer and their contents are used to update
routing tables and related information.
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Ants, once generated, are fully autonomous agents. They act concurrently, independently
and asynchronously. They communicate in an indir ect, stigmergic way, through the infor -
mation they locally read from and write to the nodes.

The speci c task of eachforward ant is to search for a minimum delaypath connecting its
source and destination nodes.

The forwar d ant migrates from a node to an adjacentone towards its destination. At each
intermediate node, a stochastidecisionpolicyis applied to selectthe next node to move to.
The parameters of the local policy are: (i) the local pheromone variables, (ii) the status
of the local link queues (playing the role of heuristic variables), and (iii) the information

carried into the ant memory (to avoid cycles). The decision is the results of some tradeoff
among all thesecomponents.

While moving, the forward ant collectsinformation about the traveling time and the node
identi ers along the followed path.

Once arrived at destination, the forwar d ant becomesa backwardant B;, , and goesback
to its source node by moving along the samepath Pl, , = [s;vi;V2;:::;d] asbefore but in
the opposite dir ection. For its return trip the ant makes use of queues of priority higher
than those used by data packets, in order to quickly retracethe path.

At eachvisited node v 2 Pg 4 and arriving from neighbor vj; v; 2 N (vw)\ Pl , the
backward ant updates the local routing information related to each node v4 in the path
Pl | 4 followed by the forward ant from v to d, and related to the choice of v; as next
hop to reacheachvy. In particular, the following data structuresare updated: a statistical
modelM Y« of the expected end-to-end delays, the pheomonetableT Y« used by the ants,
and the datarouting tableRY« used to route data packets. Both the pheromone and the
routing tables are updated on the basis of the evaluationof the goodness of the path that
was followed by the forwar d ant from that node toward the destination. The evaluation
is done by comparing the experienced traveling time with the expected traveling time
estimated according to the local delay model.

Oncethey have returned to their source node, the agentis removedrom the network.

Data packetsare routed according to a stochasticdecision policy basedon the information

contained in the data-iouting tables Thesetables are derived from the pheromone tables
used to route the ants: only the bestnext hops are in practice retained in the data-routing

tables. In this way data traf ¢ is concurrently spread over the bestavailable multiple paths
possibly obtaining an optimized utilization of network resourcesand loadbalancing

The AntNet's general structure is quite simple and closely follows the ACO's guidelines.
During the forwar d phase eachmobile ant-like agent constructsa path by taking a sequenceof
decisions based on a stochastigolicy parametrized by local pheomoneand heuristicinformation
(the length of the local link queues). Once arrived at destination, the backward phase starts.
The ant retracesthe path and at each node it evaluateshe followed path with respectto the
destination (and to all the intermediate nodes) and updatesthe local routing information. Due
to the practical implementation of both the forwar d and backward phasesenvisaged by ACO,
the AntNet model is also often referred to asthe Forward-Backwardnodel For instance, in the
model adopted by Schoonderwoerd et al. [382] for cost-symmetric networks (the end-to-end
delay along a path connecting two nodesis the samein both dir ections) only the forwar d phase
is present. The needfor abackward phasecomesfrom the need of completing and evaluating the
path before carrying out any update. This is the caseof cost-asymmetric networks. Mor eover,
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in both cost-symmetric and cost-asymmetric networks, until the destination is reachedthere is
no guarantee that the agentis not being actually catchin aloop, suchthat carrying out updates
during the forwar d phasemight result in reinforcing aloop, which is clearly wrong.

The AntNet's ant-like agentsbehave similarly to data packets. However, an important con-
ceptual dif ferenceexists:

REMARK 7.3 (ANTS AND EXPLORATION): Ants simulate data packetswith the aim of performing
controllednetworkexploration(i.e.,discoveringandtesting of paths).Ants donot belongio userapplica-
tions, therefoe they canfreelyexploe the network. No userwill complainif an ant getslost or followsa
long-latencypath. On the otherhand,userswould possiblygetdisappointedf their packetsvould incur

in long delaysor getlost for the sakeof generalexplorationand/orinformationgathering.

In this sense AntNet and, morein general, all ACR algorithms, constitute aradical departure
from previous approachesto adaptive routing, in which exploration is either absentor marginal.
Classicalapproachesare mainly basedon the somehow passiveobservation of data traf c: nodes
observelocal data ows, build local costestimateson the basis of these observations, and prop-
agate the estimatesto other nodes. With this strategy path exploration becomesproblematic,
sinceit hasto be carried out dir ectly using users' data packets. On the other hand:

REMARK 7.4(PASSIVE AND ACTIVE INFORMATION GATHERING IN ANT-BASED ROUTING ALGO-
RITHMS): ACR algorithmscomplementhepassiveobservatiorofthelocaltraf ¢ streamswith anactive
exploratorycomponenbase@dnthe ACO's coreideaofrepeatedonte Carlosimulationby onlinegener-
atedant-likeagents.Routingtablesarebuilt andmaintainedonthebasisoftheobservatiorfthebehavior
of bothdatapacketgieneratedby traf ¢ sourcesandrouting agentggeneratedby the control systemitself.

The ants explore the network making use of their own ant-routing tables,while data packets
are routed making use of data-routing tables derived from the ant-routing tables such that only
the best paths discovered so far will be followed by data. In this way, pathexplorationand path
exploitationpolicies are conveniently kept separate. In the jargon of reinforcementlearning, this
is termed off-policycontrol [414, Chapter 5]: the policy usedto generatesamplesis dif ferent from
the target one which hasto be evaluated and possibly impr oved.

It is interesting to notice that the very possibility of executing realisticsimulationsconcurrently
with the normal activities of the system is a sort of unique property of telecommunication net-
works. While the usefulness of simulation for learning tasksis well understood (e.g.,[415, 27)),
building a faithful simulator (basedon either a mechanistic or phenomenological model) of the
systemunder study is usually a quite complex/expensive task. On the other hand, in the caseof
telecommunication networks, the network itself canbe used asa fully realistic online simulator.
With simulation packets running concurrently with data packets at a cost (i.e., the generated
overhead) under control and usually negligible with respectto the produced bene ts.

In spite of the fact that the AntNet's general architecture is rather simple, the design of each
single component (e.g.,evaluation of paths, use of heuristic information, pheromone updating,
etc.) had to be carefully engineered in order to obtain an algorithm which is not just a proof-
of-concept but rather an algorithm able to provide performance comparable or better than that
of state-of-the-art algorithms under realistic assumptions and for a wide set of scenarios. The
subsectionsthat follow discussone-by-one and in detail all the components of the algorithm.

7.1.1 The communication network model

Before diving into the detailed description of AntNet (and AntNet-FA), is customary to discuss
the characteristics of the model of IP wir ed networks that has been adopted. The IP datagram
model is rather general and scalable (and these are two of the major reasonsbehind its popu-
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larity), but does not tell anything about how packets are, for instance, queued and transmitted,
while atthe sametime it comeswith anumber of dif ferent possible choicesat the transport layer
(several TCP implementations exist) and in terms of classesof service and forwar ding. Morein
general, since we are not going to focus on a specic type of network and our experiments
are only basedon simulation, asis common practice to evaluate telecommunication protocols
(e.g.,[325)), is necessaryto rst make explicit the characteristics of the adopted network and,
accordingly, of the simulation model.

At the network layer we have adopted an IP-like datagram model, while we make use of
a very simple, UDP-like, protocol at the transport layer. The terms “IP-like” and "UDP-like”
stands for the fact that we did not implement full protocols (i.e., that could be used in real
networks) but rather oversimplied models that, however, conserve the core characteristics of
real implementations in terms of dynamics of packet processingand forwar ding.

Theassumednetwork topology isin generalirr egular, and both connection-lessand connection-
oriented forwar ding schemesare in principle admitted, evenif the basiclP model considersonly
the connection-lessone* In the following the discussion will mainly focus on the connection-
lesscase.We seethe connection-oriented caseasa quite straightforwar d modi cation of it, since,
generally speaking, it can be realized by keeping per-application, per ow , or per-destination
state information at the nodes, or by using sourcerouting.

The segment of considered networks is that of wide-aeanetworks(WAN), which usually
have point-to-point links. In these cases,hieraichical organization schemesare adopted. The
instance of the communication network is mapped on a dir ected weighted graph with N pro-
cessing/forwar ding nodes. All the links are viewed as bit pipescharacterized by a bandwidth
(bit/sec) and a end-to-end propagationdelay(sec),and are accessedfollowing a statisticalmulti-
plexingscheme. For this purpose, every node, which is of type store-and-forwarde.g., this is not
the caseof ATM networks), holds a buffer spacewhere the incoming and the outgoing packets
are stored. This buffer is a shared resource among all the queues associatedto every ongoing
and outgoing link attached to the node. Traveling packets are subdivided in two classes:data
and routing packets. All the packetsin the sameclasshave the samepriority , sothey are queued
and served on the basis of a rst-in- rst-out policy, but routing packets have a greaterpriority
than data packets. The workload is de ned in terms of applicationswhose arrival rate at each
node is dictated by a selectedprobabilistic model. By application (or traf ¢ session/connection,
in the following), we mean a stochastic processsending data packets from an origin node to a
destination node. The number of packetsto send, their sizesand the intervals between them are
assigned according to some de ned stochastic process. No distinction is made among nodes,
in the sensethat they act at the same time as hosts(session end-points) and gateways/outers
(forwar ding elements). The workload model incorporates a simple ow control mechanismm-
plemented by using a xed productionwindow for the session'spackets generation. The window
determines the maximum number of data packetswaiting to be sent. Once sent, a packet is con-
sidered to be acknowledged. This meansthat the transport layer neither manageserror control,
nor packet sequencing, nor acknowledgments and retransmissions®

For each incoming packet, the node routing layer make use of the information stored in
the local routing table to assign the output link to be used to forwar d the packet toward its
destination. When the link resourcesare available, they are reserved and the transfer is setup.
The time it takesto move a packet from one node to a neighbor one depends on the packet size
and on the transmission characteristics of the link. If, on a packet's arrival, there is not enough

4 Resourcesreservation schemes,that in principle would require connection-oriented architectures, can be possibly
managed in the Internet by using the proposed IntServ [58, 450], which is aimed at providing deterministic service
guaranteesin the Internet connection-lessarchitecture. IntServ is basedon the idea of using per ow reservations using
the soft-state protocol RSVP[450].

5 This choice is the same asin the SimpleTraf ¢ model in the MaRS network simulator [5]. It can be seenasa very
basicform of File Transfer Protocol (FTP)[93].
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buffer spaceto hold it, the packetis discardedOtherwise, a servicdimeis stochastically generated
for the newly arrived packet. This time representsthe delay between the packet arrival time
and the time when it will be put in the buffer queue of the outgoing link that the local routing
component has selectedfor it.

A packet-level networksimulatoraccording to the above characteristicshasbeendeveloped in
C++. It is adiscreteeventsimulatorusing asits main data structure a priority queue dynamically
holding the time-ordered list of futur e events. The simulation time is a continuous variable and
is setby the currently scheduled event. The design characteristic of the simulator is to closely
mirr or the essentialfeatures of the concurrent and distributed behavior of a generic queue net-
work without sacricing run-time efciency and exibility in code development.©

What is not in the model

Situations causing a temporary or steady alterationof the networktopologyor of its physical char-
acteristics are not taken into account (e.g., link or node failur e, addition or removal of network
components). In fact, theseare low probability eventsin real networks (which otherwise would
be quite unstable), whose proper management requires,at the sametime, to include in the rout-
ing protocol quite speci ¢ components of considerable complexity. We will briey discusshow
our algorithms can in a sensealready deal with the problem, though not in a way which is
expected to be efcient. An efcient solution has been devised in AntHocNet for the caseof
mobile ad hoc networks, in which topological dynamics is the norm, not the exception. While
this same solution could be applied to deal with online topological modi cations also in the
considered wir ed IP networks, it will not explicitly considered in this thesis and the whole issue
of topological modi cations is actually bypassed.

As it is clear from the model description, the implemented transportlayer, that is, the man-
agement of error, ow , and congestion control, is quite simple. This choice has been motivated
by two main concerns. First, as pointed out at Page 180, when multipath routing is used, as
is the caseof our algorithms, some problems can arise with packet reordering. Such that the
only reasonablechoice is to accodingly re-design the transport protocol in order to effectively
deal in practice with this thorny issue. Second,is a fact that eachadditional control component
(other than routing) hasaconsiderableimpact on the network performance suchthat it might re-
sult quite dif cult to evaluate and study the properties of eachimplemented control component
without taking into accountthe complex way it interacts with all the other control components
(and possibly mutually adapting the different components). The layered architecture of net-
works is an extremely good design feature from a software engineers point of view, it allows
to independently modify the algorithms used at each layer, but at the same time nothing can
be said about the global network dynamics resulting from intra- and inter-layers interactions.’
Therefore, our choice hasbeento testthe behavior of AntNet and AntNet-F A in conditions such
that the number of interacting components is minimal, aswell asthe complexity of components
other than routing. In this way the routing component can be in a senseevaluated in isola-
tion. This way of proceeding is expectedto allow a better understanding of the properties of the
proposed algorithms.

6 We are well aware of how critical is the choice of both the network model and of its practical implementation in a
simulation software (seealso the co-authored report [325 on general simulation issuesand on simulation/simulators
for mobile ad hoc networks in particular). However, realistic and arbitrarily complex situations for traf ¢ patterns can
hardly be studied by analytical models. Therefore, simulation is an inescapablechoice to carry out extensive analysis
and performance studies.

7 For instance, someworks [102] reported an impr ovement ranging from 2 to 30%in various measuresof performance
for realInternet traf ¢ changing from the Renoversion to the Vegasversion of the TCP [351]. Other authors even claimed
impr ovements ranging from 40to 70%[58].
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7.1.2 Data structures maintained atthe nodes

In any routing algorithm, the nal quality of the routing policy critically depends on the charac-
teristics of the information maintained at the network nodes. Figure 7.1graphically summarizes
the data structuresused by AntNet at eachnode k, that are asfollows:

Network Node

Pheromone Table

Network Nodes

11 12 | e N

21 22 | e 2N

Neighbor nodes

Data
Routing
Table

Parametric
Delay
Models

L1 L2 LN

Network Nodes

, \
/ ' [Ml M 2

Exponential Mean
Exponential Variancg
Window Best
Window Count

0 02 04 06 08 1
Ant-routing table

Figure 7.1: Nodedatastructuresusedtheantagentsn AntNet for thecasefanodewith L neighborandanetwork
with N nodes.For simplicity theidenti ers of the neighborsare supposedo bel; 2;::: L. Boththeant-routing and
data-iouting tablesare organizedasin distance-vectoalgorithms,but the entriesare not distancesut probabilities
indicating the goodnessfeacext hopchoice Thedata-outing tableis obtainedy the ant-routing tableby means
ofan exponentiatransformationasthe oneshowedn thegraphin thelower-leftpart of the gur e. Theentriesofthe
vectorof delaymodelsare datastructuresrepresentingparametricmodelsfor the expectedraveling timesto reach
eachpossiblalestinationfromthe currentnode.Also the current statusof thelink queuegin termsof bits waiting to
betransmitted)is usedby AntNet, andit is representedn theupperpart ofthenodediagram.

Pheromone matrix TX: is organized similarly to the routing tablesin distance-vector algorithms,
but its entries g are not distances or generic costs-to-go. The entries, in agreement with
the common meaning attributed to pheromone variables in ACO, are a measure, for each
one of the physically connected neighbor nodesn 2 Ny, of the goodnessof forwar ding to
such a neighbor a packet traveling toward destination d. The j values arein the interval
[0,1] and sum up to 1 along eachdestination column:

X
nd =1, d2[LN]; N = fneighbors(k: (7.1)

n2N g
Accordingly, the entries of the pheromone table can be seenas the probabilitiesof select-

ing one speci ¢ outgoing link for a specic nal destination according to what has been
learned so far through the ant agents® T* are parameters of the stochasticrouting policy

8 The matrix T is actually what is a generically called a stochastienatrix. If the nodes are seenasthe statesof a Markov
decision process,the pheromone stochasticmatrix precisely coincides with the process'transition matrix.
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currently adopted at node k by the ant agents. The T K's entries are the learning target of
the AntNet algorithm. Theidea here,asin all ACO algorithms, is to learn an effective local
decision policy by the continual updating of the pheromone values in order to obtain an
effective globalrouting policy. The pheromone table, in conjunction with information re-
lated to the status of the local link gqueues,is used by the ants to route themselves. In turn,
it is used to setthe values of the data-outing table used exclusively by data packets.

Data-routing table R¥: is the routing table used to forwar d datapackets. R¥ is a stochastic ma-

trix and has the same structure as TX. The entries of R¥ are obtained by an exponential
transformation and re-normalization to 1 of the corresponding entries of T*. Data pack-
ets are probabilistically spread over the neighbors according to a stochastic policy which
depends on the values of the stochasticmatrix R¥. The exponential transformation of the
values of the pheromone table is necessaryin order to avoid to forwar d data along really
bad paths. After exponentiation, only the next hop choicesexpectedto be the really good
ones are considered to route data packets. Exploration should not be carried out on data
packets. On the contrary, they have to be routed exploiting the best paths that have been
identied sofar by the ants.

Link queues L¥: are data structures independent from AntNet, since they are always present

in a node if the node has been designed with buffering capabilities. The AntNet routing
component at the node passively observeshe dynamics of datapacketdn addition to the
active generation and observation of the simulateddatapacketsthat is, the ants. The status
of the local link queuesare a snapshot of what is locally going on at the precisetime instant
the routing decision must be taken, while the T¥'s values provides what the ant agents
have learned so far about routing paths. T* locally holds information about the long-term
experience accumulated by the collectivity of the ants, while the status of the local link
gueues provides a sort of short-termmemory of the traf ¢ situation. It will be shown that
is very important for the performance of the algorithm to nd a proper trade-off between
thesetwo aspects.

Statistical parametric model M ¥: is a vector of N 1 data structures ( g; 7:Wy), where 4

and 3 representrespectively the sample mean and the variance of the traveling time to

reachdestination d from the current node, while Wy is the besttraveling time to d over the

window of the last w observations concerning destination d. All the statistics are basedon

the delays Tk, ¢ experienced by the ants traveling from their sourceto destination nodes
(and going backto destination). M ¥ representsthe local view of the currenttraf ¢ situation

on the paths that are used to reacheachdestination d. In asense,M ¥ is the localparametric
view of the globalnetworktraf ¢ .°

For eachdestination din the network, the sample mean 4 and its variance f, areassumed
to give a suf cient representation of the expectedtime-to-go and of its stability. The mean
and the variance have been estimated using dif ferent sample statistics: arithmetic, expo-
nential, and with moving window . Different estimation strategies have provided similar
results, but the bestresults have always beenobserved using the exponential model: 1°

d d+ (O a4 a);

; i+ (oama A F; (7.2)

9 In the following we will make use of superscripts to indicate the sub-part of M and T that refer to a particular
destination: M 'é and Tdk will refer to the information speci cally related to node d as destination contained in the M
and T structuresof node k.

10 This model is the same model used by the Jacobson/Karels algorithm to estimate retransmission timeouts of the
TCP on the Internet [351].
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where oy ¢ is the new observation, that is, the traveling time incurr ed by the reporting
agent for traveling from k to destination d.*

In addition to the exponential mean and variance, also the best (i.e., the lowest) value Wy
of the reported traveling times over an observation window of width w observations is
stored. The value Wy representsan estimate of the minimum time-to-go to node d from
the current node calculated accoding to a non-sliding window of w samples. That is, at
t = 0, Wy is initialized to 4(0) and is then updated according to the next w samples. If
the w + 1-th observation happens at time t,+; , then Wy is resetto the current value of

d(tw+1) and the counter w is set back to 1. The values of in 7.2 and of w can be set
such that the number of effective samplesfor the exponential averagesare dir ectly related
to those used to monitor the value of Wy. According to the expressionfor the number of
effective samplesasreported in Footnote 11,the value of w is setas:

w = 5(c=); c2(0;1] (7.3)

In this way, the relationship between the number of effective samples used for the expo-
nential averagesand those used for monitoring the best value is understood and under
control. In the experiments reported in the next chapter, c has beensetto 0.3. In this way
W is updated inside awindow slightly shorter than that used for the exponentials.

In principle, alsothe data packets, other than the ants, could have beenused to accumu-
late statistics. However, in order to update the statistics for going from k ! d using packet
traveling times, one should: (i) use the acknowledgments sent at the transport layer for
data packets going from d ! k, or (i) assumethat the network is cost-symmetric such
that Tx, ¢ = Tai «, such that the trip times of packets moving in both directions can be
exploited, or (iii) use either the ants ascarriers such that at d the packet statistics for Ty, ¢
are accumulated, and then are brought back to k when an ant to k passesby d (a sim-
ilar approach has been followed in [224]). Sincein our network model we do not send
acknowledgment packets and we do not quite unrealistically assumethat the network is
cost-symmetric, the options (i) and (ii) are automatically ruled out. On the other hand,
strategy (iii) could have beenimplemented but we did not nd it necessaryboth consid-
ering the additional overhead introduced by ant carriers and the fact that actually data
packetsdo not have atime stamp by default, such that this had to be added to eachpacket
payload, incurring in slightly increasedrequirements of bandwidth and processingtime
per packet. Mor eover, is our speci ¢ design choice to have an algorithm that do not inter-
fere with data packetsother than for what concernstheir forwar ding.

T and M canbe seenaslocallong-termmemoriesapturing dif ferent aspectsof the global net-
work dynamics. The models M maintain estimates of the time distance and of its variability , to
all the other nodes, while the pheromone table holds, for eachpossible destination, probabilistic
estimates of the relativegoodnessf choosing one speci ¢ next hop to reachthe destination. On
the other hand, the status of the link queuesL is a short-termmemoryof what is expected, in
terms of waiting time, to reacha neighbomode

In the terms of learning the routing policy, T and M can be seenas the components of an
actor-critic [15] architecture. M, which learns the model of the underlying traf ¢ process,is
the critic, which evaluates and reinforcesthe action policy of T, the actor. This situation is quite
dif ferent from those considered before of static combinatorial problems: here becomesnecessary

11 The factor weights the number of most recentsamples that will really affect the average. The weight of the t;-th
sample in the value of 4 after j samples,with j > i,is: (1 ) '. For example, for = 0:1 approximately only
the latest 50 observations will really in uence the estimate, while for = 0:05, they will be the latest 100, and so on.
Therefore, the number of effective observationsis  5(1=).
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to learn not only a decision policy, but also a (local) model of the current problem instance, that
is, of the current traf ¢ patterns. Theseaspectsare discussedmore in detail in the following.

In addition to the above node data structures, eachant has also its private memoryH, where
the personal history of the ant (e.g.,visited nodes, waiting times, etc.) is maintained and carried
along.

7.1.3 Description of the algorithm
7.1.3.1 Proactive ant generation

At regular intervals t from every network node s, aforward ant, Fg ¢ is proactivelylaunched
toward a destination node d with the objective of discovering a feasible, low-cost path from sto
d, and at the sametime, to investigate the load status of the network along the followed path.
Forward ants share the samequeuesasdata packets. In this way they experiencethe sametraf ¢
jams as data packets. In this sense,forwar d ants representa faithful simulation of data packets.
Being the forwar d ant an experimentaimed at collecting useful information, its characteristics
can be assignedaccordingly to the speci ¢ purposes of the experiment. It is in this sensethat the
destination node is assigned according to a probabilistic model biased toward the destinations
more requested by data packets. That is, then the destination of a forward ant is chosenasd
with a probability p,,
f

. (7.4)

pd:)("

sd 0
do=1

wheref g4 is the number of bits (or packets) bounded for d that sofar have passedby s.

REMARK 7.5(BIASED PROACTIVE SAMPLING): Ant experimentgredirectedat proactivelycollecting
datafor the destinationsof greaterinterest. The probabilisticcomponentensuesthat alsodestinations
seldomrequestedvill be scheduleds destinationsfor forward ants. If, by any reasonsa destination
seldonrequesteth the paststartsto beahit, the systemis somehoweadyto dealwith the newsituation
onthe basisof therouting informationaccumulatedn the pastin relationshipto that destination.When
adestinationstartsto berequestedhoreandmore,anincreasingnumberof antswill beheadedowardit.

Also other characteristics of the forwar d ant could be assigned on the basis of the specic
purposes of the experiment the ant is associatedto. In AntNet, all the generated forwar d ants
have the same characteristics, they possibly differ only for the assigned source and destination
nodes. On the contrary, in ACR forwar d ants are created with dif ferent characteristics also for
what concernstheir exploratory attitude, the way they communicate information, and so on.

The ant generationrate, 1= t determines the number of experiments carried out. A high
number of experiments is necessaryto reducethe variance in the estimates,but at the sametime
too many experiments might create a signi cant overhead in terms of routing traf ¢ that could
eventually have a negative impact on the overall network performance. It is very important to
nd agood trade-off between the need to keep collecting fresh data and reduce variance, and
the need to avoid to congestthe network with routing packets. In AntNet the ant generation
rate is a xed parameter of the algorithm, while ACR points out the need to adaptively change
the generation rate according to the traf ¢ characteristics.

On the assumption that the node identi ers are assumed to be known

the network are assumedto be known. Then, at time t = 0 the routing tables, each containing
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the N node identi ers, are instantiated and the algorithm can proceedby proactively collecting
routing information concerning the N network nodes. In practice, this scenario re ects a sit-
uation of topologicalstability that possibly follows a “topological transitory” during which, for
instance, a newly added node has advertised its presenceto the network through some form
of broadcasting/ ooding. The realization of topological updates in an ef cient way is really a
matter of protocol implementation details that we have chosento bypass since we are more in-
terestedin traf ¢ engineering9] for what concernsthe better exploitation of network resources
according to the traf ¢ patterns. For instance,instead of pragmatically passingto eachnode from
acon guration le the whole network description, we could have made the algorithm starting
with empty routing tables, and then let the nodes probing their neighbors in order to know
both the identi ers and characteristics (bandwidth and propagation delay) of the attached links,
and have an initial phase of IP addressesbroadcasting such that each could have automatically
and independently built the routing table asa dynamic list structure. However, although more
realistic, this would have just resulted in additional and quite uninter esting lines of software.

Someauthors [274] have also argued that the AntNet strategy of keeping in the routing tables
entries for all the network node identi ers might beunfeasible in large networks. However, since
this is what precisely other Internet algorithms do (in particular OSPF which maintains a full
topological map), this argument canberuled out onceeither a hierarchical network organization
is assumedasin the Internet, or is assumedthat router will becomemorethan “switching boxes”
with few kilobytes of memory as still happens today, but rather sort of specialized network
computers with on-board possibly gigabytes of memory, as any cheap desktop can nowadays
have.

The assumption of topological stability, aswell asthe fact that it is perfectly reasonablein
wir ed IP networks to hold the list of all nodes on the same hierarchical level, result in the fact
that AntNet is basedon a purely proactive approach. In a sense,given theseassumptions, there
is no real need to make use of reactivestrategies. On the other hand, it is rather natural to extend
the AntNet's basic design with the inclusion of also reactive components. For instance, let the
routing tableshold routing information only for those destinations that the node hassofar heard
about (i.e., the destinations of the data packets that have passedthrough the node). Therefore,
when a new, previously unknown, destination is asked for by a local traf ¢ session,the rout-
ing path hasto be built on-demandrom scratch. In this caseit is clearly necessaryto use also
a reactive(or, on-demand) approach: before the sessioncan start, agents must be sentin order
to nd arouting path for the new destination. This is the common situation in mobile ad hoc
networks, for instance, sincein those networks the normal status of operations consistsin a con-
tinual topological reshaping of the network due to both mobility and nodes entering/leaving
the network (seethe description of AntHocNet in Subsection7.3.2.2).Seaching for a previously
unknown destination has to necessarily rely on some form of broadcasting/ ooding: all the
nodes are tried out until either the searched destination is found or some nodes holding infor -
mation about how to reachthe destinations are found (e.g.,AntHocNet, AODV [349, 103). It is
a sort of blind search, that can be possibly made more ef cient by rst searching, for instance,
on some logical overlay network of nodes that, according to some heuristics, are expected to
hold useful information about the searched destination. On the other hand, the sametopology
ooding of OSPFcan be seenin these terms, with the signaling happening directing from the
edge of the node that has newly entered the network. Again, this issue has not been explicitly
considered in AntNet, sinceit can be seenas of minor importance in wir ed IP networks where
some complete topological view of the network can be ef ciently maintained and topology at
the hierarchical levels of router/gateways doesnot changeso often and quickly. The problem of
setting up initial routing dir ections for all the network nodes is “solved” by allowing an initial
unloaded phase during which ants are simply ooded into the network and build up shortest
paths routing tablesfor all pairs of network nodes (seealso Section8.3). In rather general terms:
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REMARK 7.6 (REACTIVE VS. PROACTIVE SAMPLING): Reactivesamplingcanbeseenasthe process
of discovery on-demand routing directions(usually for destinationdor which no routing information
is heldat the node),while proactivesamplingcanbeseenasthe proces®f eitherdiscoveringrouting di-
rectionsfor destinationghat might beaddessedn thefutureand/ormaintaining andadapt previously
establishegpaths.

We will discuss again in general terms this issue about reactive/pr oactive behaviors when
considering the casesof QoS (AntNet+SELA) and mobile ad hoc networks (AntHocNet).

7.1.3.2 Storing information during the forward phase

While traveling toward their destination nodes, the forwar d ants keep memory of their paths
and of the traf ¢ conditions encountered. The identi er of every visited node k and the step-
by-step time elapsedsincethe launching time are savedin appropriate list structurescontained

in the ant's private memory H. The list Vi, v, = [Vo;V1;:::;vm] maintains the ordered set of
the nodes visited so far, where v; is the identi er of the node visited at the i-th step of the ant
journey. Analogously, the list T, = [Tyor viiTust vaiii5 Tum 11 va ] hOlds the values of the

traveling times experiencedwhile moving from one node to the other (i.e., the time elapsedfrom
the moment the ant arrived at node v; to the moment node v;.; was reached).

W
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Figure 7.2: Forwardantskeepmemoryof eachvisitednodeand of thevisiting time.

7.1.3.3 Routing decision policy adopted by forward ants

At eachintermediate node k, the forward ant Fs; 4 headed to its destination d must selectthe
neighbor node n 2 Ny to move to.

If n2 Vg «; 8n 2 N, that is, all the neighbors have already beenvisited by the forwar d ant,
then the ant choosesthe next hop by picking up at random one of the neighbors, without any
preference but excluding the node from which the ant arrived in k. That is, in this case,if the
current node k is being visited at the i-th step, the probability p,q assignedto eachneighbor n of
being selectedasnext hop is:

1 . .
2pnd:f 8N2 Nk » (n6v; 1 _ jNyj=1)
INkj 1 (7-5)

>
" Pa =0 otherwise
On the other hand, in the most common casein which some of the neighbors have not been
visited yet, the forwar d ant applies a stochastidecisiompolicy , which, asusual, is parametrized
by:
Localpheomonevariables the values .4 of the pheromone's stochastic matrix Ty corre-
sponding to the estimated goodnessof choosing n asnext hop for destination d.
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Localheuristicvariables the values |,, basedon the status of the local link queuesLX:

(7.6)

In is a[0,1] normalized value proportional to the length q,, in terms of bits waiting to be
sent, of the queue of the link connecting the node k to its neighbor n.

Mor eover, decisions depend also on the contents of the ant privatememoryH (k), that contains the
list Vg1 « of the nodes visited so far, and which is used in order to build feasiblesolutions in the
senseof avoidingloops Therefore, taking into account all thesecomponents, the policy  selects
neighbor n asnext hop node with a probability P,g preciselyde ned asfollows:

8
|
pg=—™T " gn2 N A n6,
Prd = 15 N 1 n ok T NPk 77
>
" Pra =0 otherwise

— .

Memory

Figure 7.3: Thestochastidecisionpolicy  of the forward ants is parametrizedy the entriesin the pheomone
table,the statusof thelocallink queuegheuristicvalues),and depend®n the memoryof the alreadyvisited nodes
(loopsavoidance).

The probability assignedto eachneighbor is a measure of the relativegoodnesswith respect
to all the other neighbors, of using such a neighbor asa next hop for d as nal destination. The
value of 2 [0;1] weighs the relative importance of the heuristic correction with respectto
the pheromone values stored in the pheromone matrix. Since both the values of the heuristic
corrections and those of the pheromones are normalized to the samescalein [0,1] no additional
scalefactors are needed. Mor eover, the use of normalized values allows for a computationally
ef cient calculation of the p values since the normalizing denominator can be computed once
for all and in a straightforwar d way. In this casethe ant-routing table entries takes the form
and = nd + In. Thisis an additive combination of the pheromone and heuristic values, similar
to that adopted in the ANTS sub-classof ACO algorithms (seeSubsection5.1.2),in which the
heuristic term is also adaptively computed and given an importance comparable to that of the
pheromone term.

The |, values re ect the instantaneous state of the node queues, and, assuming that the
gqueues' consuming processis almost stationary or slowly varying, I, gives a quantitative mea-
sure of the expectedvaiting time for a new packet added to the queue. As already pointed out,
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this measure is a snapshot on the current local traf ¢ situation. The values of the pheromone

variables, on the other hand, are the outcome of a continual learning processcarried out by the

collectivity of the agents. Their values try to capture both the current and the recentpast status

of the whole network asseenby the local node. Pheromone is the collectivelong-term memory
maintained at the local node, while the link queuesare the expressionof the short-termprocesses
that are locally happening.

REMARK 7.7 (LONG-TERM MEMORY VS. SHORT-TERM LOCAL PREDICTION): Assigningthe prob-
ability valuesaccordingto the weightedsum of Equation7.7 tells that the routing decisiondor the ants
are takenon the basisof a chosertrade-off, thevalueof , betweerestimatecomingfroma long-term
procesf collectivelearning, and estimatescomingfrom a sort of instantaneous heuristic prediction
basednacompleteljocalview.

A value of closeto 1 dumps the contribution of the ants collective learning, with the sys-
tem closely following the local traf ¢ uctuations, and possibly resulting in large oscillations in
performance. On the contrary, an closeto 0 makesthe decision completely dependent on the
long-term ant learning process,and it canresult unable to quickly follow variations in the traf ¢
patterns. In both casesthe system is not expected to behave in areally satisfactory way. The
number of ants, that is, the ant generation rate at eachnode, is expectedto play a really critical
role in both thesecases.A large number of ants cangreatly help to overcomethe negative effects
of an closeto 0, while the samelarge amount of ants can create an over-reactive behavior in
the caseof an closeto 1. In all the ran experiments it was observed that the good balancing
between the values of and | is very important to get good performance. Clearly, depending
on the characteristics of the network scenario at hand, the best value to assign to the weight
can vary, but from the experiments that we have carried out it seemsthat a robust and good
choice is to assign in the range between 0.2 and 0.5. Performance for this range of values is
good and does not change greatly inside the range itself. For < 0:2 the effect of | is vanishing,
while for > 0:5the resulting routing tables oscillate and, in both cases performance degrades
appreciably.

7.1.3.4 Avoiding loops

The role of the ant-privatememoryH in Equation 7.7is to avoid loops when possible. A cycle for
an ant agent is in practice a waste of time and resources. Although, according to the fact that
both a stochastic policy and an adaptive updating of the routing tables are adopted, loops are
expectedto be short-lived (seealso [72] for a general discussion on loops in ant-based routing
systems). However, it is clear that loops should be avoided asmuch as possible, especially con-
cerning data packets, sincein this casethe user will incur in much longer and highly undesired
packet latencies.

When ACO is applied to problems of combinatorial optimization, the private memory of the
ant is used as a practical tool to guarantee the step-by-step feasibility of the building solution.
On the contrary, in the routing casefeasibility basically means loop-fr ee, that is, the ability to
reachin nite (possibly short) time the target destination. Feasibility becomesa major issuein
the caseof route setup for QoStraf ¢, however AntNet is thought for best-efort traf c.

If acycleis detected, that is, if an ant is forced to return to an already visited node, the nodes
composing the cycle are taken out from the ant's internal memory, and all information about
them is destroyed. If the ant moved on acycle for atime interval which is greaterthan half of its
ageat the end of the cycle, the ant is destroyed. In fact, in this casethe agentwasted alot of time
in the cycle, therefore, for what concernsthe nodesvisited before entering the cycle, it is carrying
a possibly out-of-date pictur e of the the network state. In this case,it can be counterproductive
to still usethe agentto update the routing tables on those nodes.
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Figure 7.4: Cyclesareremovedromtheant memory

Related to cyclesis the issue maximumtime-to-live(TTL) of an ant. If a forwar d ant does not
reachits destination before of an assigned maximal value for its life time, the ant is destroyed.
In all the experiments the maximum time-to-live has been setto 15 seconds, both for forward
ants and data packets, similarly to the TTL values normally adopted in the Internet.

7.1.3.5 Forward ants change into backward ants and retrace the path

When the destination node d is reached, the forward agent Fg ¢ is virtually transformed into
another agent By, s called backwardant, which inherits all its memory.

Forward Ant
Destination Node

————= e

Memory

Backward Ant

Figure 7.5: Arrived at the destinationnodethe forwar d ant is transformednto a backward ant, which inherits
fromtheformerall its memory

REMARK 7.8(THE UPDATING PHASE): Whenthedestinationnodeis reachedherandomexperiment
realizedby theforwardant is concludedWith thebackwardant startstheupdating phasethat, accord-
ing to thedistributed nature of the network,requiresphysically retracing the pathfollowedduring the
forwardjourney.

The outcome of the experiment, that is, the “discover ed” path, hasto be evaluatedsuch that
a measure of goodnesgan be assignedto it. In turn, this measure of goodness can be used to
update the statistical estimates (the local models of the network traf ¢, and the pheromone and
data-routing tables) maintained at the nodes along the discovered path. The estimatesat each
node are updated independently from those carried out at other nodes: there is neither boot-
strapping nor global propagation of local estimates. The updates are executed in plain Monte
Carlo fashion, in the sensepreviously discussed!?

12 The AntNet strategy made of realizing a “path experiment” and then retracing and evaluating the steps of the
experiment, in order to update some estimates,in a generic sensebeliefsassociatedto the situations observed during the
experiment, is well captured by the following phrase of the great Danish philosopher Soren Kierkegaard: Life canonly be
understoodyoingbackwardsbut it mustbelived goingforwards.
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The backward ant takes the same path as the one followed by the corresponding forward
ant, but in the opposite dir ection.*® At eachnode k along the path the backward ant knows to
which node it hasto move to next by consulting the ordered list Vs, ¢ of the nodesvisited by the
forwar d ant.

REMARK 7.9 (BACKWARD ANTS MOVE OVER HIGH-PRIORITY QUEUES): Backwardants do not
shae the samelink queuesas data packetsthey usehigher priority queues, because¢heir taskis to
quickly propagateo the nodesthe information accumulatedy the forward ants during their journey
fromstod.

*. Forward Ant

Source .4> Source .<7
4>. Destination <7. Destina

Backward Ant O&

Figure 7.6: Forwardandbackwardantsvisit thesamesequencefnodeshut in theoppositedirection. Thebackward
ant tracesbackthe pathfollowedby the forwardant.

7.1.3.6 Updating of routing tables and statistical traf ¢ models

Arriving at a node k from a neighbor node f, the backward ant updates all the data structures
at the node. Using the information contained in the memory inherited from the forwar d ant, the
backward ant By s executesthe following sequenceof operations: (i) updateof the local models
M K of the networks traf ¢ for what concernsthe traveling times from k to d, (i) evaluationof the
path k! din terms of the value of the travelingtime Ty, 4 experienced by the forwar d ant with
respectto the expected traveling time according to the local model M {: smaller is Ty, 4 with
respectto the previously observed traveling times, higher will be the score assignedto the path,
(iii) use of the assignedscoreto locally reinfoicethe path followed by the forwar d ant, that is, to
reinfor ce the choice of f asnext hop node when the destination is d in both the pheromone and
the data-routing tables T* and RK.

UPDATING OF THE LOCAL MODELS OF THE NETWORK TRAFFIC PROCESSES

M K is updated consulting the list T,?! 4 and considering the value Ty, ¢4 of the traveling time
experienced by the forward ant while traveling from k to d. After setting oxy ¢ = T« 4, the
Equations 7.2are used to update the valuesfor 4 and 3. 1f ox ¢ < Wg, then Wy = 0 ¢.2*
The values of the parameters of the statistical models M ¢ can show important variations,
depending on the variable traf ¢ conditions. The statistical model hasto be able to capture this
variability and to follow it in arobust way, without unnecessaryoscillations. The robustnessof
the local model of the network-wide traf ¢ plays animportant role for the correctfunctioning of

13 This assumption requiresthat all the links in the network are bi-dir ectional. In modern networks this is areasonable
assumption.

14 A correctuse of traveling times requiresthe ability to actually calculate such times. The are two main possibilities:
(i) if all the nodes have a “practically” synchronized clock (this is quite common nowadays), it will suf ce to read the
node's clock on arrival and calculate a trivial difference, (i) if the clocks cannot be assumed as synchronized, then the
time to hop from one node to another is the sum of the time spent at the node sincethe arrival and of the time necessary
for the packet propagation along the link, which can be easily calculated with suf cient approximation once the link
propagation characteristics are known.
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Figure 7.7: At eachvisited nodethe backwardant B4 o makesuseof the information containedin the memory
inheritedfromtheforwardantin orderto: (i) update thelocalparametrionodeldV for whatconcernghetraveling
timesto node4, (ii) evaluate thepathk ! 4, wherek 2 fO0; 1; 2; 3g is the current node,on the basisof the values
holdin M ¥, and (iii) usethe assignedscoeto locally reinfor ce the path followedby the forward ant, that is, when
the current nodeis for instancenodel, the choiceof 2 asnext hopfor 4 asa destinationis reinforcedin T* and,
consequentlyin R,

the algorithm sinceit provides the referencevalues to evaluate the followed path. The following
example can help to clarify this point.

EXAMPLE 7.1: |IMPORTANCE OF THE STATISTICAL MODELSM FOR PATH EVALUATION

LetM 5 containingthe currentvalues: 4 = 1 sec; g = 0:01sed:; Wy = 0:9 sec Moreoveret us
assumehat theinput traf ¢ is stationarysofar. Thequestionis: how goodis a new reportedraveling
time equal for exampleto 1.5 secondsAccordingto thevaluesin the parametricmodelthat, assuming

= 0:3, becomey = L:15and 2 = 0:073 the answeris that the newtrip time is a rather badone.
Accordingly, the associategath, let us call it P;.5, is a badoneand shouldnot bereally usedfor data
routing, but datashouldberoutedinsteadto the next hopsalongthe path(s)Pg.9. If, after someshort
time, there is a suddenincreasen theinput traf ¢ on the nodesalongthe pathsPg.9, a new backward
ant traveling alongthesepathswill reportnow atrip time of, for instance,2 secondsSincethesepaths
were perceivedasthe goodones et us assumehat actually not onebut two ants comebackalongthese
paths,bothreportinga trip time of 2 seconds.The models valuesthen become: 4 = 1:583 secand

g = 0:354sec. Now, athird ant comingbackiromP1.5 will actually nd thatits pathhasnowbecome
a goodone,since,fﬂr instance,its distancefrom the averagen standarddeviationunits hasbecome

= (1:5 1583 0:354= 0:15, while befoeit was+5. Therefoe,thepathP.s, if stationaryfor
what concerndraveling time, shouldbenow preferedto Po.g  P». This simpleexamplevantsto show
that, dueto the non-stationarityoftheinput traf c, it is alwaysnecessarto makerelativecomparisonsf
thetravelingtimes.Theend-to-endlelayof1.5secondsfpathP;.5 is rstly judgedasbadbut eventually
it becomea goodoneasa consequenai theincreasafthetraf ¢ loadon otherpartsofthenetwork.The
adaptivemodelM is preciselyaimedat maintaining track of changesn the traveling timesin orderto
scoethe pathsin ameaningfulway.

Clearly, an adaptive model able to track the traf ¢ uctuations with extreme robustnessis
rather hard to design, and likely also computationally expensive. We have chosena parametric
model with moving windows in order to optimize at the sametime efciency and robustness.
While all the three updated parameters are important, W plays a more prominent role since it
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provides an unbiased estimate of the optimal traveling performance obtainable at the current
moment. On the contrary, for instance, the worst trip time is not similarly recorded, because,
in principle, this value time is not bounded (in reality, is bounded by the maximum time-to-live

associatedto an ant, but this bound is not really of practical interest).

EVALUATION OF THE PATH AND GENERATION OF A REINFORCEMENT SIGNAL

After updating the local traf ¢ model M ¢, the path that was followed by the forwar d ant from
k ! d must be evaluated. Evaluation is done on the basis of the experienced traveling time
Tk ¢ only. The simple Example 7.1 of the previous paragraph has pointed out the critical role
of a proper evaluation, as well as, the involved dif culties and the strong dependence on the
robustness, of the traf ¢ model. The purpose of the evaluationphasds the generation of a rein-
forcemensignalr to be used to update the pheromone and data-routing tables.

The relationship between: (i) the learning of the characteristics of the input traf ¢ processes
(M), and (ii) the learning of the routing policy (T), is in the form of an actor-critic[15] architec-
ture. Learning by the critic about the input networks-wide traf ¢ processess necessaryin order
to evaluate in aproper way the effectsof the routing policy de ned by T, the actor. The outcome
of an ant experiment is evaluated on the basis of the model M , and then the current policy T,
which generatedthe outcome, is reinforced accordingly to this evaluation. Given the centrality,

‘ Local
Routing Policy

Routing actions

Local Models of the
| Global Traffic Processes| Reinforcements

3

Traveling Times

Network
Local information

Figure 7.8: Theactor-critic schemémplementedn AntNet by the two learningcomponent$/ , thecritic, locally

learningthecharacteristic®fthe network-wideinput traf ¢, andT , theactor, learningthelocalrouting policy. The

travelingtimesT reportedby theantsusing therouting policy de nedby theactor arefedinto the critic component
and usedto learn the main characteristicof the input traf ¢ processesln turn, the learnedmodelis usedby the

critic to evaluateandreinforcethe policyimplementedy the actor Thesignal“local information” summarizeall the

additionallocally availablenformation,whichis a sort ofimperfect'state” signal.

aswell as, the complexity of the issue related to the de nition of an effective evaluation and
de nition of a proper reinforcementsignal r given the intrinsic variability of the traf ¢ patterns
and the characteristics of spatial distribution, the next Subsection7.1.4is completely devoted to
discussthis issue. Here, it is suf cient to saythat r, according to the actor-critic schemeabove, is
afunction of both Ty, g and M E:r r(Tk: q; M 'c‘,); r 2 (0;1]. r isadimensionless value which
is used by the current node k asa positive reinforcementfor the node f the backward ant By, s
comesfrom. r is assignedtaking into account the so far observed traveling times such that the
smaller Ty, ¢ is, the higher r is.
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UPDATING OF THE PHEROMONE TABLE

Assumed that a score and, accoringly, a reinforcement value r, has been attributed to the ant
path with associatedtraveling time Ty 4, the question is now how to use this value to update
the ant-routing and data-routing tables.

The pheromone table T ¥ is changed by incrementing the probability 1 4 (i.e., the probability
of choosing neighbor f when destination is d) and decrementing, by normalization, the other
probabilities 4. The amount of the variation depends on the value of the assigned reinforce-
ment r in the following way:

fd fa*tr(l  fq): (7.8)

In this way, the probability 4 will beincreasedby avalue proportional to the reinforcementre-
ceived and to the previous value of the probability. That is, given the samereinforcement, small
probability values are increasedproportionally more than large probability values, favoring in
this way a quick exploitation of new, and good discovered paths.

The probabilities g associatedto the selection of the other neighbor nodesn 2 Ny implicitly
all receiveanegative reinforcementby normalization. That is, their values are decreasedin order
to make all the probabilities for the samedestination d still summing up to 1:

nd nd r g; 8n2 Ng; né6 f: (7.9)
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Figure 7.9: Updating of the pheomonetableat nodek. The path using neighborf to goto d is reinforced: the
selectiorprobability 4 is increasedwhile the probabilities ng and n¢ associatetb the othertwo neighborsm
andn, aredeceasedy normalization.

REMARK 7.10(PHEROMONE VALUES INCREASED BY BOTH EXPLICIT AND IMPLICIT REINFORCE-

MENTS): Accordingto Equation7.8, every discovered path receivesa positive reinforcementin

its selectionprobability In this way, not only the (explicit) assignedvaluer playsa role, but alsothe
(implicit ) ant's arrival rate does. This strategyis basedn trusting the pathsthat receivesitherhigh

reinfocementsjndependentlyffrom the frequencyof the reinfocementghemselvespr low but frequent
reinfocements.

Under any conditions of traf ¢ load, a path can receive high-valued reinforcementsif and
only if it is much better than the paths followed in the recent past, as indicated by the model
estimates M . On the other hand, during a sudden increasein traf ¢ load, most of the paths
have high traveling times with respectto the traveling times expectedaccording to M , which is
somehow still “remembering” the previous situation of low congestion. Therefore, none of the
paths will be ableto receivean high reinforcementdue to the current misalignment between the
estimatesof the local models and the current traf ¢ load. In this case,evenif good paths cannot
be reinforced adequately by the single ant, the effect of the high number of antsthat choosethem
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(likely becauseof the link queue factor in the decision rule) will resultin cumulative high-valued
reinforcements. Exploiting the frequency of agent arrivals due to shorter time paths is closely
reminiscent of what happensin real ants and that allow them to discover shortest paths by using
distributed pheromone trails (Section2.1).

From Equations 7.8 and 7.9, it results that a single probability value .4 canin practice be-
come equal to 1. Accordingly, all the other entries becomeequal to 0. Anyhow , this situation is
not “harmful” because,according to Equations 7.5and 7.7 a neighbor can still be chosenasnext
hop, due to either the situation of already all visited neighbors of Equation 7.5, or to a favorable
status of the link queuesgiven > 0in the Equation 7.7. Once a neighbor has been selected
as next hop, it will consequently receive a reinforcementr > 0, therefore, according to Equa-
tion 7.8,alsoits probability value in the ant-routing table will changefrom 0to r. However, in
order to keep a good level of exploration even, for instance, in the caseof low traf ¢ (such that
the link queuesdo not get appreciably long), we have adopted the arti ce of putting somelimits
on pheromone values. That is, avalue nax is assigned such that if after updating pheromone
becomeslarger than max , it is just setto max . The corresponding min clearly depends on the
number of neighbors at each node. For instance, we have set nax = 0:01L It can be easily
recognized that this is the samestrategy adopted in MM AS, for example.

Also, the AntNet pheromone updating rule sharesstrong similarities with that characteriz-
ing the so-called ACO hypecubeframework[44]. In fact, pheromone values are constrained in
the interval [0; 1] and the r is alsoin [0; 1]. However, it differs from the hypercube rule
in the fact that at eachincreasecorresponds also a decreaseof the related alternatives. Most of
the ACO implementations for static problems make use of pheromone variables whose values
can have a possibly unbounded (or softly-bounded by de ning min and max limits) increase,
with pheromone evaporation at work in order to avoid stagnation. In AntNet, given the non-
stationary nature of the problem at hand, such a strategy is not expected to work properly. In
particular, the pheromone decreasefrequency should strictly depend on the (unknown) vari-
ability in the traf ¢ patterns to be effective and to allow to adapt to the changing conditions.

UPDATING OF THE DATA-ROUTING TABLE

The data-routing table R is updated after every update in the pheromone table. As explained
at Page 206, where the characteristics of the data-routing table were discussed, data packets are
routed according to a stochastic policy, whose parameters are the entries of the data-routing ta-
ble. The probability of eachpossible routing decision is obtained from the corresponding entry
R g . Differently from the ant rule of Equation 7.7,no additional components are taken into ac-
count. The R's entries are supposed to already summarize all the necessaryinformation about
learned pheromone values and local queues. They are de ned as the result of an exponential
transformation of those of the pheromone table. The purpose of the transformation consistsin
favoring more the alternatives with high probability at the expensesof those with low probabil-

ity:

Rﬁd =( nd)";
k 7.10
Ria = pno K- (720
i2N Rid
In the experiments reported in the next chapter we have used " = 1:4. Figure 7.10shows the

effect of such a transformation. We have also tried out other values for the exponent in the
transformation function. Although, the value " = 1:4looked asa good compromise between the
need to reduce the risk of forwar ding data packets along bad dir ections, and the possibility of
spreading the data over multiple paths.
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Figure 7.10: Transformationof the entriesof the pheomoneableinto thoseof the data-outing tablefor" = 1:4in
Equation7.10. Theidenticaltransformationis alsoevidencedh orderto appreciatehedifference.

REMARK 7.11(IMPORTANCE OF STOCHASTIC DATA ROUTING): Theuseof stochasticouting is an
importantaspecofAntNet, it allowsto takefull advantageftheintrinsic multipath natureoftherouting
tablesbuilt by the ant agents. Stochastiaouting allowsto spreadthe data packetsover multiple paths
proportionallyto their estimatedjuality, providing an effectivdoadbalancing.Moreoveyit allowsto deal
in robustandef cient way with theissueof choosinghe precisenumberof different pathsthat shouldbe
actuallyused.Fromtheran experimentsit hasbeerobserve@nincreasen performancelp to 30%-40%
whenusing stochastiénsteadof purely deterministicrouting.

7.1.3.7 Updates of all the sub-paths composing the forward path

In principle, at each node k, the same sequenceof updates performed in relationship to the
destination d, can be executed considering all the intermediate nodes between k and d as “des-
tination” nodes. If Vy, ¢ is the list of the nodes visited by the forwar d ant traveling from k to d,
then, every node k°2 Vi, 4:k°6 d, on the sub-pathdollowed by forward ant Fs, 4 after visiting
the current node k, can bevirtually seenasa “destination” from the k's point of view. The pos-
sibility of updating all the sub-paths composing a same path meansthat, if there are m nodeson
the path, it is possible to update along the path atotal of m(m  1)=2 sub-paths.

Unfortunately , the forwar d ant F5, 4 was bounded for node d and not for any of the interme-
diate nodes. This meansthat all the ant routing decisions has beentaken having d as a target.
An example can help to show why, in somespeci ¢ but rather common situations, is better to be
cautious when considering intermediate nodes asdestination nodes.

EXAMPLE 7.2: POTENTIAL PROBLEMSWHEN UPDATING INTERMEDIATE SUB-PATHS

Referringto Figure 7.11, let us considera forward ant originating in A with destinationB. Let us
assumethat nodesl; 2; 3; 4 are experiencinga suddenincreaseof the traf ¢ directedtoward nodeB.
Beingthesenodedlirectly connectedo B, mostofthis traf ¢ is forwardedonthelink directly connected
to B. Dueto thefactthat theincreaseftraf ¢ from1;2; 3; 4 to B happeneduddenly nodeA is not yet
completelyaware of the newtraf ¢ situation. Theforward ant is therefoe routedto nodel, consideed
that the quickesknown pathfrom A to B wasthetwo-hoppathpassingthroughl. Unfortunately, once
in 1, thelength of thelink queueL { forcesthe ant to moveto 2, alsoconsideedthat the path through
2 shouldhavea traveling time comparabléo that through1. Again, the congestioron thelink directly
connectedo B moveghe ant to node3, andthenfurther to node4. Here,the two possiblalternatives
are: the threehops,congesteghath h10; 11; Bi, and the path throughC. The ant movesto C, which
hada competitivetraveling time to B, befoethe congestiorat 1; 2; 3; 4 dueto the directconnectiorof C
with 1 and2. Oncein C the ant, to avoidthe cyclesmust moveto 5. At this point the path of the ant
is constrainedalongthe very long path 5; 6; 7; 8; 9; Bi. Therefor,in theend,theant'slist Va, g will
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contain[A; 1;2; 3;4;C;5; 6; 7; 8;9; B]. Theconsideedsituation is expectedo happemuite oftenunder
non-stationarityin theinput traf ¢ processes.

Let us considerthe possibleupdateactionsof the backwardant in A. In principle, the backwardant
canupdatethe estimatesoncerningall the sub-pathsfrom A to any of thenodesin Va, g nfAg. For
instance using the experiencedtalueof Ta; ¢, the backwardant couldupdatein A the estimatesM §

for thethetravelingtimesto C, and,accordinglythevalue ;¢ ofthegoodnessfchoosingl asnexthop
for C asdestination. ThevalueTa, ¢ correspondgo the long, jammedpath hA; 1; 2; 3; 4; Ci. But this
pathis “wr ong”, in thesensehat if the destinationwasC, the next hopdecisionin A, or eitherin 1 or
2, would havebeendifferent. Likely, the path followedwould havebeeneitherbA; Ci, or MA; 1; Ci, or
hA; 1; 2; Ci. In this sensetheuseoftheexperiencedalueTa; ¢ toupdatein A theestimatesoncerning
C is substantiallyincorrect.

B

[ ) In—

11

Figure 7.11: Potentialproblemavhenupdatingall the sub-pathsomposindhe pathof a forwardant. The gur eis
explainedn thetext of Example7.2.

In the example, the followed path hA; 1;2; 3; 4; Ci correspondsto arareevent under the cur-
rent routing policy, when the ant is bounded for C. If a signi cant number of situations like the
onejust described happen (e.g.,becauseB is frequently requestedby packets passing by A), and
all the sub-path are used to update the local models of the input traf ¢, the statistics of the rare
eventsis completely distorted and, accordingly, all the statistical estimators result distorted.

REMARK 7.12(SUB-PATH UPDATING IS SAFE UNDER STATIONARY TRAFFIC PATTERNS): Using a
pathandall its sub-pathss a consistenfprocedue only in the caseof stationarity in thetraf ¢ patterns.
Theissueconcerningthe exploitationof the sub-pathss strictly relatedto the validity of the Bellmans
optimality principle (De nition 3.27). Under conditionsof imperfectstateinformation and/or quickly
time-varyingtraf ¢ loads,the conditionsfor the applicability of the principle to not hold anymoe, and,
accordinglyit might benot correctto usesub-pathinformation.

According to these reasonings, in AntNet the sub-paths composing the path followed by
forwar d ants are Iter edout before being selectedfor statistics updating. The Itering strategy is
asfollows: the traveling time Ty, 4o associatedto a sub-path k ! d°is used for updates only if
its value seemsto be good, that is, if it is lessthan the sup of an estimated con dence interval
I( a40; %) around . In fact, if the traveling time indicates that the sub-path is good with
respectto what observed so far, then it can be conveniently used: a new good path has been
discovered “for free”. On the contrary, if the sub-path seemsto be bad, it it better not to risk
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to use it to update the statistical estimates. In practice, from the ran experiments it has been
observed that only 10-20%of the sub-paths are actually rejectedfor updating.

7.1.3.8 A complete example and pseudo-code description

A complete c-like pseudo-code description of the actions of forward and backward ants is re-
ported in Algorithm 7.1,while an example of the forwar d-backward behavior of AntNet antsis
illustrated by meansof Figure7.12.The forwar d ant, F1; 4, movesalongthepath1! 2! 3! 4
and, arrived at node 4, it is transformed in the backward ant B4 ; that will travel in the opposite
direction. At eachnode k; k = 3;2; 1, the backward ant usesthe contents of the lists V1, 4(k) and
T9 4(K) to update the values for M ( 4; 2;W,), and, in caseof good sub-paths, to update also

by normalization the value of the probabilities for the other neighbors (here not shown). The
increment is a function of the traveling time experienced by the forwar d ant going from node k
to destination node i. As it happens for M , the pheromone table is also always updated for the

in consideration asdestination nodes only if the traveling time associatedto the corresponding
sub-path of the forwar d ant is good in statistical sense.

Forward Ant (1—4)
— T T
ONRO ©

- (1< 4) Backward Ant

Figure 7.12: A completeexampledescribedh thetext, of theforward-backwardehavioin AntNet.

7.1.4 A critical issue: how to measure the relative goodness of a path?

The traveling time (or end-to-enddelay Ty, ¢ experienced by the forwar d ant is the metric used
in AntNet to measure the goodnessof the followed path Py, 4. Tk 4 iS agood indicator of the
absolute quality of Py, 4 becauseis a sort of aggregate measure that depends on both physical
characteristics (number of hops, transmission capacity of the used links, processingspeed of the
crossednodes) and traf ¢ conditions (the forwar d ants share the same queues as data packets).

EXAMPLE 7.3: ALTERNATIVESTO THE USE OF TRAVELING TIME FOR PATH EVALUATION

In principle,othermetricscouldhavebeenusedto scoethe path (this couldbea futureissueto exploe).
Forinstancethe number of hops couldhavebeenalsoused.A routing strategyprefeentially choosing
the pathswith minimal numberof hopstendsto minimizeresoucesutilization in termsofnodesnvolved
in routing datatraf ¢ for the samesource-destinatiorpair. On the otherhand,pathswith low numberof
hopsare expectedo bemorerobustto failuresand easyto control/monitor.

In AntHocNet we makeuse,for mobilead hocnetworks,of a compositanetric taking into accountboth
traveling time and numberof hops:J(Px: ¢) = Tkr ¢ + Th Hki 4, Where Ty is thetime for onehop
underunloadectonditions,andHy; 4 is thenumberofhopsin the path. In this way, the numberofhops
is convenientlyconvertedo atime. If thetime Ty cannotbeassumedsthe samefor all links it should
becalculatedink by link (andpossiblyin this casetheant trip time shouldnot includethe propagation
time, that would beautomaticallyincludedin the Ty values).
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procedure AntNet _ForwardAnt (sourcenode;destination _node)
k  source.node;

hopsfw O;
V[hopsfw]  k; = V = LISTOFVISITED NODES =
T9hopsfw]  ©; = TO=LIST OF NODE-TO-NODE TRAVELING TIMES =

while (k 6 destination _node)
tarvar  get current _time ();
n select _next _hope _node (V; destination _node; T Lk); = LXK =LINK QUEUES =
wait _on_data _link _queue (k; n);
cross _the _link (k; n);
Tk n get current _time () tarival;
k n;
if (k2V) = CHECKIFTHEANTISIN ALOOPAND REMOVEIT =
hops_cycle get cycle _ength (k;V);
hopsfw hopsfw hopscycle;

else
hopsfw hopsfw+ 1;
V[hopsfw]  k;
T%hopsfw]  Tki n;
end if
end while

become_a_backward _ant (V; T9;
end procedure

procedure AntNet _BackwardAnt (V; T = INHERITSTHEMEMORY FROM THE FORWARD ANT =
k  destination _node;
hops_b hops_f w;
T 0
while (k 6 source._node)
hops.bw hopsbw 1;
n  V[hopsbw];
wait _on_high _priority  _link _queue (k; n);
cross _the _link (k; n);

k n;
for i hopsbw+ 1;i hopsfw;i i+ 1) = UPDATESFORALL SUB-PATHS =
VIl
Tk T+ TYi]; = INCREMENTAL SUM OF THE TRAVELING TIMES EXPERIENCED BY FWANt g, ¢ =
T T
if (Tw: lswp (5 ) _ d = Ty ISAGOOD TIME, ORISTHE DESTINATION NODE =

MY  update _traffic  _model (k; ; Tw: ; M¥);
r get _reinforcement (k; ; T« ; MK);
T* update _pheromone _table (TX; r);
RY update _data _routing _table (R*;T);
end if
end for
end while
end procedure

Algorithm  7.1: C-like pseudo-codgescriptionof theforwardandbackwardant actionsin AntNet. Theactionsofthe
wholesetof forward and backwardants activeon the networkhappenin a totally concurent and distributed way.
Eachantis afully autonomousgent.



7.1 ANTNET : TRAFFIC-ADAPTIVE MULTIPATH ROUTING FORBESTFEFFORT IP NETWORKS 223

Thedifferentrolebetweemueuingtime andpropagationiimeis actuallywell capturedby Weddeetal. [443]:
in their bee-inspiedalgorithmtheyassignthecostofalink accordingo aformulathat separatethecon-
tribution dueto propagatiortime fromthat dueto queuingtime. Therationalebehindthis choiceconsists
in the factthat, whenthe networkis experiencinga heavyload,queuingdelayplaysthe primary rolein
de ning thecostofalink, whilein caseoflow load,is the propagatiordelaythat playsa majorrole.

The main problem with the use of end-to-end delays consistsin the fact that their absolute
value T cannot be scored with respectto any preciserefeencevalue That is, it is not possible
to know exactly how good or how bad is the experienced time becausethe “optimal” traveling
times, conditionally to the currenttraf c patterns, are unknown. In the jargon of machine learn-
ing: it is not possible to learn the routing policy through a processof supervised learning. A set
of pairs of the type: (networktraf ¢ condition Ty, 4) for all k;d 2 f1;2;:::; N gand for most of the
possible network traf ¢ situations, is not available under any realistic assumption. Mor eover, as
shown with Example 7.1, a samevalue of a Ty, 4 can be judged good or bad according to the
changing traf ¢ load.

Therefore, eachvalue of T canonly be associatedto a reinfocementadvisory, signal, not to a
precise,known, error measure. This gives rise to the same credit assignment problem encoun-
teredin eld of reinforcementlearning. This is the reasonwhy in the previous sectionswe have
used the term reinforemento indicate  , the value r which is used to increasethe pheromone
variables, that is, the goodnessof a path according to the experiencedtraveling time. This is also
the reasonwhy an actor-critic architecture was used for the assignment of the reinforcementval-
ues. Actor-critic architectures have been developed in the eld of reinforcement learning, and
have shown asparticularly effective in the casesin which the explicit learning of a stochasticpol-
icy turns out to be useful, asit happensin the routing case,and, morein general, in non-Markov
cases.

It is evident that it is quite hard to de ne robust reinforcement values. At the sametime, it
is also evident that the overall performance of the algorithm can critically depend on the way
thesevalues are de ned.

The value of r should be assigned according to the following facts: (i) paths have to receive
anincrementin their selectionprobability proportionalto their goodness,(ii) goodnessis arelative
measue, depends on the traf ¢ conditions, and can be estimated by meansof the models M , (iii)
models must be robustwith respectto small traf ¢ uctuations. Uncontrolled oscillations in the
routing tables are one of the main problems in adaptive routing [441]. It is customary to de ne
an appropriate trade-off between stability and adaptivity in order to obtain good performance.

The following two subsectionsdiscussestwo major ways of assigning the values of r in the
perspective of the facts (i-iii).

7.1.4.1 Constant reinforcements

The simplest strategy is to setthe value of r asa constant:
r=C; C2(0;1] (7.12)

that is, independently from the experienced trip time: every path followed by a forward ant is
rewarded in the sameway. In this case,what is at work is the implicit reinforcement mechanism
due to the differentiation in the ant arrival ratesdiscussedin Remark 7.10.Ants traveling along
faster paths will arrive at a higher rate than other ants, hence their paths will both receive a
higher cumulative reward and have the capacity to attract new generated ants.

The obvious problem with this approachis the fact that, although the single ant following a
longer path arrives with some delay, neverthelessit hasthe sameeffect on the routing tables as
the single ant which followed a shorter path. The frequencyof ant generationin this caseplays a
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critical role to allow the effective discrimination between good and bad paths. If the frequencyis
low with respectthe traf ¢ variations the use of constant reinforcementsis not expectedto give
god results.

In the experiments that we have ran, using the a frequency of more than 3 ants per second
at eachnode, the algorithm showed moderately good performance. Theseresults suggestthat
the implicit component of the algorithm based on the ant arrival rate plays a signi cant role.
However, to competewith state-of-the-art algorithms, the available information about path costs
hasto be used (seealsothe discussionin Subsection4.3.3about the use of the implicit component
in both distributed and non-distributed problems).

7.1.4.2 Adaptive reinforcements

In its general form r is a function of the ant's trip time T, and of the parameters of the local
statistical model M , that is, r = r(T; M ). We have tested several possible combinations of the
values of T and M . In the following the discussion is restricted to the functional form that has
given the bestexperimental results and that hasbeenused in all the experiments reported in the
next chapter:

W I sup inf
r=¢ — +0¢ ; 7.12
T (Isup Iinf )+ (T Iinf ) ( )
where,asusual, W is the besttraveling time experienced by the ants traveling toward the desti-
nation d under consideration over the last observation window of size w samples. On the other
hand, Isyp and s are estimatesof the limits of an appioximatecon denceinterval for

lint = W
p_ . p_— (7.13)
lsup = +2z( = w); withz=1= (1 );

where is the con dence coefcient. The expressionin Equation 7.13is obtained by using the
Tchebycheff inequality that allows the de nition of a con dence interval for arandom variable
following a whatever distribution [345]. Usually, for specic probability densities the Tcheby-
cheff bound is too high, but here it is used because: (i) no speci c assumptions on the charac-
teristics of the distribution of can be easily made, (ii) only araw estimate of the con dence
interval is actually requested. There is somelevel of arbitrariness in the computation of the con-
dence interval, becauseit is de ned in an asymmetric way and both and are not arithmetic
estimates. The asymmetry of the interval is due to the fact that, in principle, the trip time is not
superiorly bounded (in reality, it is bounded by the maximum time-to-live associatedto an ant,
but this bound is not of practical interest), while it is inferiorly bounded (by the traveling time
corresponding to the path which is the shortestin conditions of absenceof traf c).

The rst term in Equation 7.12evaluatesthe how good is the currently experiencedtraveling
time T with respectto the besttraveling time observed over the current observation window .
This term is correctedby the second one, that evaluates how far the value T is from I in
relation to the extension of the con dence interval, that is, considering the stability in the latest
trip times. The coefcients c¢; and c; weight the importance of eachterm. The rst term is
the most important one, while the second term plays the role of a correction. In the current
implementation of the algorithm c¢; = 0:7 and ¢; = 0:3. It has experimentally observed that
¢, should not be too large (0.35is a reasonableupper limit), otherwise performance starts to
degrade appreciably, also considering the approximate nature of the terms it weights in 7.13.
The behavior of the algorithm is quite stable for ¢, values in the range 0.15to 0.35,but setting
¢, below 0.15slightly degrades performance. The algorithm seemsto be very robust to changes
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in , which de nes the con dence level. The bestresults have been obtained for values of the
con dence coefcient in the range 0.6 0.81°

The denominator of the secondterm in Equation 7.12canbecomeequal to zero, in the rather
pathological casesin which lsyp, = linr = T and T = 2l Isup. In these casesthe term
weighted by ¢, is simply not taken into account.

In order to prevent the pheromone values going to 1, or to make too large jumps, r is actually
saturated at the value 0.9. Finally, the value of r is squashethy meansof a function s(x):

o

s(x)= 1+ exp . x2 (0;1], a2R*; (7.14)

XjN ]

s(r)
= —~: 7.15
By squashing the value of r, the upper scaleof the r values is expanded, such that the sen-
sitivity of the system in the caseof good (high) values of r is increased. On the contrary, the
lower scaleis compressed,bad (near to 0) r values are saturated around 0. In such away more
emphasisis put on good results. The coefcient a5N j determines a parametric dependence of
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Figure 7.13: SquasHunctionswith adifferenta=jN yj.

the squashedreinforcementvalue on the number jN ij of neighbors of the node k: the greaterthe
number of neighbors, the higher the reinforcement (seeFigure 7.13). The rationale behind this
choice is the need to have similar effectsindependently of the number of neighbor nodes. The
number of neighbors has, in fact, an effect at the moment of the normalization of the probabilistic
entries of the routing table. A more uniform distribution of the probability values is expected,
in general, with an higher number of neighbors, due to the fact that several alternative paths
might result similar. To contrast this tendency, the coefcient a5jN ] tries to slightly amplify the
possible dif ferences.

REMARK 7.13 (ROBUSTNESS TO PARAMETER SETTING): In spite of the fact that many parameters
are involved, the algorithm hasexperimentallyprovedto bevery robustto parametersettings. All the
different experimentpresentedn the nextchaptethavebeerrealizedusing the samesetof valuesfor the

15 For larger con dence levels, the con dence interval becomesin some sensetoo wide, given the characteristics of
the Tchebycheff bound. In order to understand this fact, let us admit that the trip times within eachtime window are
normally distributed. In this case,an expression for the con dence interval similar to the Tchebycheff one, but more
preciseand with aslightly different meaning for the term z, can be written. In particular, setting up a con dence level
of 0.95implies z 2. The same value of z for the more general, non Gaussian, caseexpressedby the Tchebycheff
inequality, implies a con dence level of the 65%,which is also the sameused in the experiments reported in Chapter 8.
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parametersin spiteofthesigni cant differenceamongthe different problemscenariosClearly, the per-
formancecouldhavebeenmprovedby meanofa ne tuning ofthe parametersgchoosinglifferent values
for the different probleminstances.This tuning proces$aspurposelynot beencarriedout. Thetarget
was,in fact,thedesignofan algorithmableto showarobustbehaviounderavariety of completelydiffer-
ent characteristicgor traf ¢ and networks.Sucha robustnesgannotbeclearlyobtainedf an algorithm
is toosensitiveto the valuesassignedo its internal parameters.

7.2 AntNet-F A: improving AntNet using faster ants

In AntNet, forward ants make use of the same queues that are used by data packets. In this
way they behave like data packets and experience the same traveling time that a data packet
would experience. In this sense,forward ants faithfully simulatedata packets. The problem
with this approach is that, in caseof congestion along the path that is being followed, it will
take a signi cantly long time to the forward ant to reachits destination. This fact will have
two major consequences:the value of the reinforcement will be quite small, and the ant will
be delayed in reinforcing its path. On the contrary, ants which have followed less congested
paths will update earlier and with higher reinforcement values the routing tables along their
paths, strongly biasing in this way the choices of subsequent ants and data packets towards
these paths. What is wrong in this pictur e? Let us consider the following scenario: a forward
ant has beenmoving so far on a very good path, but at the current node it meetsa sudden and
temporary traf c-jam situation. The forwar d ant is then forcedto wait for someappreciably long
time. When the ant can nally leavethe jammed node, the causeof the sudden traf c-jam (e.g.,a
short-lived bursty session)might be over, but the ant has beenhopelessly slowed down and the
whole path will not receivethe reward it might actually deserve. In an even worse scenario, a
path getscongested“behind” the ant. The ant arrives quickly but its pictur e of the path in terms
of traveling time is not anymore conformal to the reality. This can happen with a probability
which is somehow increasingwith the increaseof the number of hops in the path.

Therefore, the strategy of making the forwar d ants wait in the same, low priority , queues
as data packets, can be such that the previously acquired view of the traf ¢ status becomes
completely out-of-date at the time the routing tables are updated by backward ants. Mor eover,
the effect of the implicit path evaluation plays in a sensea quite important role with respect
to the explicit evaluation. To avoid these problems we modi ed AntNet's design and de ned
AntNet-FA [124, 113, a new algorithm basedon the following property:

DEFINITION 7.1 (MAIN CHARACTERISTICS OF ANTNET-FA): Forward ants makeuse of high-
priority queuesasbackwardantsdo,while backwardantsupdatetherouting tablesat thevisitednodes
usinglocalestimatesoftheant travelingtime,andnot anymoethevalueofthetime directlyexperienced
by theforwardant.

According to these modi cations, forward ants do not simulate anymore data packets in
a mechanistic way. The traveling time they experience does not realistically re ect a possible
traveling time for a data packet. In order to have at hand a value of T which is a realistic
estimate of the traveling time that a data packet following that path would experience,a model
for the depletion dynamics of link queuesis used:

DEFINITION 7.2(MODEL D FOR THE DEPLETION DYNAMIC OF LINK QUEUES): Thedepletiondy-
namicsofthelink queuess modeledn thetermsofauniform andconstantproces® whichdependsnly
onthelink bandwidthb . Thatis, boththe sendeprocesandthe consumingprocesst the othersideof
thelink do not slow down the depletionof the queue.Accordingto theseassumptionsthe transmission
of the packetsvaiting on thelink queuel | to the connectedheighborl is completedfteratime interval
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de nedby:

Di'(a; bid) = di+ (7.16)
where g is thetotal numberof bits containedn the packetsvaiting in thequeuel ¥, whilely andd, are
respectivelyhelink bandwidth(bits/secandpropagatiordelay(sec).

According to this depletion model, the estimate of the time Ty, | that it would take to a data
packet of the same size s, of the forwar d ant to reachthe neighbor | from which the backward
ant is coming from, is computed as:

Tk 1 = DF(g + Sa; h;d) (7.17)

The value of Ty, m for anode m on the ant path V is computed, asthe sum of the time for for
eachhop:

X
Tkt m = Tiouis VG150 5Vm Vim0 = Vi m (7.18)

i=fVm Vm 15V k+1 O

Compared to the previous model, where the ants were slowly “walking” over the available,
often jammed, “r oads”, here the forwar d ants can be pictorially thought as ying over the data
queuesto quickly reachthe target destination. Becauseof this visual metaphor, the new algo-
rithm is called AntNet-FA, where the acronym FA standsfor ying antd

<AntNet Forward Ant

»- OO —

Low-Priority Link Queue

AntNet-FA Forward Ant

-
.

,%H

Figure 7.14: Forwardantsin AntNet vs. forward(ying) antsin AntNet-FA

High-Priority Link Queue

REMARK 7.14 (ANTNET-FA vs. ANTNET): As it will be shownfrom the experimentalresults,
AntNet-FA outperformsAntNet. The differencein performancéecomesore and more evidentwith

theincreasefthe numberof nodesn the network,that is, with theincreasen the averagéhoplength of
thepaths.

An additional advantage when using AntNet-FA consistsin the fact that forward ants are
lighter agentswith respectto the AntNet agents,sincethey do not needto carry in their memory
information about the experienced hopping delays. This fact might result particularly effective
when either the number of nodes in the network grows signi cantly or the link bandwidth is
quite limited. A further positive aspectof AntNet-FA consistsin the fact that, since the time
interval between the moment the ant is launched and it comes back is possibly very short (it
depends only on the number of hops of the path and not really on the congestion on it), AntNet-
FA canbeusedin aconnection-orientedrchitecture to effectively setup virtual circuits on-demand
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This is not really feasible in AntNet since setup times would be not a priori bounded.® On the
other hand, a sort of negative aspectconsistsin the fact that the effectivenessof the mechanism
of the implicit reinforcementdue to the ant arrival rate is much reduced.

Clearly, the reliability of the link depletion model LK is important for the proper functioning
of AntNet-FA. The model adopted hereis at the sametime very simple and light from computa-
tional and memory point of view. According to the excellent experimental results obtained with
such a simple mode, the de nition of a more robust but necessarily more complex model does
not seemasreally necessaryat leastfor the considered caseof wir ed networks. ’

7.3 Ant Colony Routing (ACR): ant-like and learning agents for
an autonomic network routing framework

The routing algorithms described so far have a at organization and uniform structure: all the
ants have the same characteristics and are at the same hierarchical level, while nodes are just
seenas the repository of the data structures used by the ants. Moreover, ants are only gener-
ated in a proactive way following a periodic scheduling regulated by a xed frequency. While
these characteristics might match quite well the considered caseof wir ed best-effort networks,
it is clear that effective implementations of ACO algorithms in the caseof more complex and
highly dynamic network scenarios,in which several classesof events must be dealt with, re-
quir e higher levels of adaptivity and heterogeneity. This is for instance the caseof networks
provisioning QoS, and networks with frequent topological modi cations and limited and con-
strained bandwidth (i.e., mobile ad hoc networks).

Thesefactsare taken into accountin the Ant ColonyRouting (ACR) framework, which extends
and generalizes the ideas that have guided the design of AntNet and AntNet-FA accoring to
the ACO' speci cations.

ACR de nes ahigh-level distributed control architecture that specializesthe general ACO's
ideas to the caseof network routing and at the sametime provides a generalization of these
sameideas in the direction of integrating explicit learning and adaptive components into the
design of ACO algorithms. ACR is a collection of ideas aimed at de ning a general framework
of referencefor the design of fully distributed and adaptive systemsfor network control tasks.
In the sameway ACO hasbeende ned asan ant-inspir ed meta-heuristic for generic combina-
torial problems, ACR canbe seenasthe equivalent ACO-inspir ed meta-architecture for network
routing problems (and, morein general, for distributed control problems).

ACR answersto the question: “Which arethe ingredients of afully adaptive network routing
(control) algorithm based on the use of ant-like agentsin the senseindicated by ACO?” ACR,
inherits all the essential characteristics of AntNet-FA (and of ACO in general), but at the same
time intr oduces new basic types of agents, de nes their hierarchical relationships, and points
out the general characteristicsand strategiesthat are expectedto be part of a distributed control
architecture that makes use of the ACO's ant-like agents aswell aslearning agents. Instances
of ant-based algorithms for speci ¢ network scenariosare expectedto include a subset of the
general ACR components, aswell asto instantiate them according to the speci ¢ characteristics
of the scenarioat hand.

16 precisely according to this possibility of using AntNet-FA in a connection-oriented (and/or QoS)architecture, in its
original de nition given in [124] AntNet-FA is actually called AntNet-CO, while AntNet is called AntNet-CL, where CO
and CL stand respectively for connection-oriented and connection-less.

17 For instance, AntHocNet adopts a similar schemefor the caseof mobile ad hoc networks. However, the depletion
model is more complex and adaptive, sinceit hasto take into accountthe transmission collision happening at the MAC
layer due to the fact that for these networks there is only one shared wir elesschannel. Therefore, the model is basedon
an adaptive estimate of the time to accesshe channel, which depends, in turn, on the number of neighbors and on their
transmission requests.
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procedure AntNet-FA _ForwardAnt (sourcenode;destination _node)
k  sourcenode;

hopsfw O;
V[hopsfw]  k; = V = LISTOFVISITED NODES =
while (k 6 destination _node)
n select _next _hope _node (k; destination _node; Tk Lk); = LK =LINK QUEUES =

wait _on_high _priority  _link _queue (k; n);

cross _the _link (k; n);

k n;

if (k2V) = CHECKIFTHEANTISIN A LOOPAND REMOVEIT =
hops_cycle get cycle _length (k;V);
hopsfw  hopsfw hops_cycle;

else
hopsfw  hopsfw+ 1;
V[hopsfw]  k;
end if
end while

become_a_backward _ant (V);
end procedure

procedure AntNet-FA _BackwardAnt (V) = INHERITSTHE MEMORY FROM THE FORWARD ANT =
k  destination _node;
hops.bw  hops.f w;
T 0
while (k 6 source.node)
hops.bw  hopsbw 1;
n  V[hopsbw];
wait _on_high _priority  _link _queue (k; n);
cross _the _link (k; n);

T9%hopsbw+ 1]  di + (i%sa); = TIME TO TRAVEL FROM n TO k ESTIMATED FROM DK =
k n
for i hopsbw+ 1;i hopsfw;i i+ 1) = UPDATESFORALL SUB-PATHS =
VIil;
Tur T+ T
if (T lsup (7 ) _ d) = T« ISAGOOD TIME, ORISTHE DESTINATION NODE =

M¥  update _traffic _model (k; ; T«r ; M¥);
r get _reinforcement (ki ;T ;M k);
T update _ant _routing _table (TX;r);
RY update _data _routing _table (R*;T*);
end if
T Tk
end for
end while
end procedure

Algorithm  7.2: C-like pseudo-coddescriptionof the forward and backwardantsin AntNet-FA. Theactionsof the
wholesetof forward and backwardants activeon the networkhappenin atotally concurent and distributed way.
Everyant is autonomousacting independentlffromall the otherants. This pseudo-codghouldbecompaedto that
of Algorithm 7.1.
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The ACR framework intr oducesa hierarchicalorganizationinto the previous schemes.The mo-
bile ant-like agentsare now seenas ancillary to and under the dir ect control of nodeagentsthat
are the true controllers of the network. Their tasks consistsin the adaptivelearning of phelomone
tables such that thesetablescanbein turn used by the local stochasticontrol policy. The genera-
tion of the ant agentsis expectedto be adaptiveand to follow both proactiveand reactivestrategies.
Mor eover, the ant agentsdo not need anymore to have all the same characteristics. On the con-
trary, diversity at the level of both the value of their parameters and of their actions can play and
important role to cope with the intrinsic non-stationarity and stochasticity of network environ-
ments.

REMARK 7.15(GENERAL CHARACTERISTICS OF ACR): ACR de nestherouting systemasa dis-
tributed societyof both static and mobile agents. Thestatic agents,callednode managers, are con-
nectedo thenodesandareinvolvedin a continual proces®f adaptive learning of pheromone tables,
that is, of arraysof variablesholding statistical estimatef the goodnessf the different control actions
locallyavailable Thecontrol actionsare expectedo beissuedonthe basisof theapplicationof stochastic
decision policies relying on thelocalpheomonevalues. Themobile,ant-like agents play the roleof ei-
ther active perceptions or effectors for the staticagents andare generategroactivelyand on-demand.
Nodemanagersare expectedo self-tune their internal parametersn orderto adaptivelyregulatethe
generatiorandthe characteristicef theseancillary agents.In this way theyareinvolvedin two levelsof
learning activities. Theactiveperceptionscarry out exploratory tasks acrossthe network andgather
the collectechon-localinformation backto the nodemanagers.The effectorsarry out ad hoctasks,and
baseheir actionson pre-compiledieterministicplans(oppositeéo theactiveperceptionsthat makeuseof
stochastidecisiong&ndadaptto localconditions).

Using thelanguageoftheant metapharpassingromAntNet to ACR equalgo movingfromacolony
of antsto a society of multiple ant colonies, with eachcolonybeingan autonomicelementdevotedo
manageheactivitiesof a singlenetworknodein socialagreementvith all the othercolonies.

The ACR's societyof hetengeneousgentswell matches forthcoming scenarios,in which net-
works will belikely populated by node agentsand mobile agents. With theselasts carrying their
own code and speci cations, moving acrossthe networks, acting and interacting with other mo-
bile or node agents. They will be able to adapt themselvesto new situations, possibly learn from
past experience, replicate if necessaryor remove themselves if not useful anymore, cooperate
and/or compete with other agents,and so on.'® This pictur e will be likely closer and closer to
reality with the networks becoming more and more active(e.g.,[420, 438). That is, such that
packetswill be able to carry their own execution or description code and all the network nodes
will be able to perform, asnormal statusof operationscustomized computations on the packets
passing through them. Nowadays networks are more like a collection of high speed switching
boxes, but in the futur e those boxes will be replaced by “network computers” and the whole
network will likely appear asahugemultiprocessosystem

The organization envisaged by ACR is in accordance with the recent vision of autonomic
computing[250], that is, of computing systemsthat can manage themselves given high-level ob-
jectives from the administrators. ACR de nes the generalities of a multi-agent society basedon
the integration of the ACQO's philosophy with ideas from the domain of reinforcementlearning,
with the aim of providing a meta-architecture of referencefor the design and implementation of
fully autonomicrouting systemsIn fact, the node managers are expectedto proactively monitor,
experiment with, and tune their own parametersin order to learn to issue effective decisionsin

18 pAgent technology is receiving an ever increasing attention from telecommunication system engineers, reseachers
and practitioners. Agent modeling accountin a straightforwar d way for the modularity of network components and,
more importantly , they overcome the typical client-server model of communication since they can carry their own exe-
cution code and they can be used asautonomous component of a global distributed and fault-tolerant system (among a
number of ever increasingworks, seefor example [220, 259,206,424,265, 432).
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responseto the different possible events and traf ¢ scenarios. Each node manager is equipped
with a repertoire of basic strategies for control and monitoring actions. Adaptively and au-
tonomously the node manager optimizes the parameters of thesestrategiesacting in accordance
to social agreementswith the other node managers. Eachnode manager is a fully autonomic el-
ement active in self-tuning and optimization by learning. On the other hand, the whole system
of node managers give raise to a fully autonomic routing system aimed at providing a traf c-
adaptive routing policy which is optimized at the network level.

7.3.1 The architecture

In the ACR framework the network is under the control of a system of distributed and adaptive
agents y, one for eachnode k of the network. Eachcontroller , also called a nodemanageris
static (i.e., non-mobile) and its internal statusis de ned by the local values of pheomonetables
T « (and also of heuristicarrayg, as well as by other additional data structures ad hoc for the
problem at hand. Eachentry in the pheromone array is associatedto a dif ferent control action
locally available to the controller, and representsa statistical estimate of the goodness(e.qg., util-
ity, prot, cost-to-go, etc.) of taking that action. The controller adopts a stochastiadecisionpolicy
which is parametrized by the pheromone and heuristic variables. The target of each controller
is to locally, and in some senseindependently, learn a decision policy in terms of pheromone
variables such that the distributed society of controllers can jointly learn a decision policy opti-
mizing some globalperformanceEach controller is expectedto learn good pheromone values by
observinghe network environment, aswell asthe effect of its decisions on it, and making use of
theseobservations to adaptivelychangethe pheromone values aswell asother parameters regu-
lating its monitoring and control actions. Observations can be both local and non-local. Ant-like
agentsareresponsiblefor carrying out non-local observations and bringing back useful informa-
tion to the node managers. At eachtime the node manager must decide which kind of “action”
(local observation, remote perception, data routing, etc.) looks more appropriate according to
current status, requirements, and estimated costs/bene ts. ° The local decision must be issued
taking into account the fact that the set of all node managers act concurrently and without any
form of global coordination. That s, the node managersmust actsocially and possibly cooperate
in order to obtain positive synergy.

Mor e speci cally , the control architecture de ned by the ACR framework is designed in the
terms of a hierarchical society composed of the following classesof agents:

Node managers: adaptive learning agents statically bounded to the nodes (one for eachnode).
They are all situated at the same hierarchical level. Each node manager autonomously
control the node activities (e.g., data routing and performance monitoring) on the ba-
sis of stochastic decision policies whose parameters, in the form of locally maintained
pheromone variables, are the main object of learning.

Active perceptions: mobile ant-like agentsthat are explicitly generated by the node managers
to collect non-local information (e.g., discovery of new routing paths). They have char-
acteristics of local adaptivity , might learn at individual level, and make use of stochastic
decision policies.

Effectors: mobile ant-like agents generated by the node managers to carry out pre-compiled
and highly specialized tasks (e.g.,reserveand free network resources). They are expected
to adopt deterministic policies.

19 geefor instance [219] for general discussions on decision systemsthat have to repeatedly decide between control
and observation actions.
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The dynamics of the whole network control systemis driven by the node managers, while
both active perceptions and effector agents are generated in order to support node managers
activities. Generation dynamics can be basedon both proactiveand on-demandtrategiesin order
to deal effectively with the characteristics of the network at hand.

The terms “per ceptions” and “effectors” suggest the interpr etation of the node managers
as static roboticagentsacting in the physically constrained network environment. On the other
hand, using the language of the ant metaphor, eachnode manager can be seenin the terms of a
single colony of ant-like agents. Learning processeshappen as usual at the level of the colony
but are now concentrated on a node, while the ant agents,the active perceptions, are adaptively
generated in order to collect speci ¢ information or to reserve/fr ee resources for the colony.
The ensemble of all the colonies constitutes a societyof coloniesthat must nd the right level of
cooperation in order to obtain effective synergistic behaviors. Under this new point of view, a
greateremphasisis put on the activities at the nodes, which becomethe main actors of the whole
system, with learning happening at two levels, both at the level of the single nodes (the colonies)
and at the level of the ensembleof all the nodes (the colonies' society). In the following we will
useinterchangeably the terms node manager and colony manager. Also the terms ant-like agent,
perception ant (effector ant), and active perception (effector agent), will be used interchangeably.

7.3.1.1 Node managers

The rst task of anode manager consistsin gathering data for building and continually updating
pheromone variables. Node managers can passivelyobserve the local dynamics of traf ¢ ows
and packet queues. However, this information might be in general insuf cient to effectively
accomplish the node activities becauseof its intrinsic incompleteness. Therefore, node man-
agersneed alsoto expand their “sensory eld” with the adaptive generation of activepeiceptions
agents k(t), that is, ant-like mobile agentsthat leave the node at time t, carry out some network
exploration activities, and gather back to the colony manager the information it requires after
some possibly short time delay. The term “active perception” is referred to both the facts that
a non-local perceptual actis explicitly issued and that eachof these perceptual acts are actually
generated with a possibly dif ferent setof parametersin order to precisely getinformation about
a speci ¢ areaof the network by using speci ¢ parameters concerning the path-following strat-
egy. Thatis, in general, (t;) 6 «(t,),for t; 6 t,. This meansthat anode manager hasa high
degree of control over the type of information that must be collected by its remote sensors,the
ant-like agents.

The design of node managersinvolves three main general aspects. That is, the de nition of
the strategies for: (i) the scheduling of the active perceptions, (ii) the de nition of the internal
characteristicsfor the generated perceptions, and (iii) the use of the gathered information in or-
der to learn effective decision policies and tune other internal parametersregulating for instance
the proactive scheduling of active perceptions. It is clear that awide range of possible strategies
exists, depending on the speci ¢ characteristicsof the problem at hand. Nevertheless, somegen-
eral strategies can be readily identi ed. Each of the three subsectionsthat follow considers one
of the aspects(i-iii) and discussesin very general terms possible problems and solutions.

Scheduling of active perceptions

Theset = f 1; 2;:::; ngof all node managers virtually constitutes an agentsociety in the
sensethat node managers must behave socially sinceall of them equally contribute to the global
network performance. That is, generation of the perceptions must happen in order to safe-
guard the overall social welfare: eachnode must nd the right tradeoff between gathering large
amounts of information and not creating congestion that in turn would either have a negative
impact on data routing or not allow the other node managersto gather the information that they
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might need. It is apparent that the issue of the schedulingpftheant-likeagentds central in ACR, as
it isin all ACO algorithms sincethey are all basedon repeated agent generation for information
sampling.

REMARK 7.16(REACTIVE AND PROACTIVE INFORMATION GATHERING): In ACR theant-likemo-
bile agentscanbegeneratedy the nodemanagersiccordingto bothreactive(on-demandand proactive
strategiesln particular, theproactivestrategiesare not necessarilppasedna xed frequencyscheméut
onthecontraryare expectedo beadaptivein orderto nd agoodtradeoffbetweernnformationgathering
andcongestiorinducedby control packets.

Somegeneral strategiesfor both the reactive and proactive generation of ant-like agentscan
be identied. The list that follows is aimed at clarifying in which general situations ant-like
agents are “expected” to be generated and the general modalities of these generations. That
is, we point out some common problems/situations and we suggest some general solutions.
Mor e concrete examples of mixing on-demand and proactive generation are provided by the
descriptions of AntNet+SELA and AntHocNet.

On-demand generation of active perceptions. Four classesof events can automatically trigger
the generation of new perception ants:

1. Setupof a newapplication:In the caseof a best-effort connection-less network, at the
start-up of a new application Ag 4 aburst of m/ jN (s)j new perception agentscan
be generated toward d by s to collect up-to-date information about the paths d. In
practice, active perceptions can be broadcastto the local set of neighbors, and then
move toward d using pheromone information.

In the caseof connection-oriented and/or QoSnetworks, thesesetupantsplay a more
critical role. In fact, they have to actually nd (and possibly reserve)the path(s) to
allocate the application ow . A possible behavior of the perception agentsin this
caseis described morein detail in the following referring to the solution envisagedin
AntNet+SELA.

2. Major changein the traf ¢ patterns: If the information associatedto some newly ac-
quired data seemsto strongly disagree with previously learned information, new
perceptions can be fruitfully generated in order to conrm or not the changes. For
instance, if the traveling time T, 4 reported by an ant agent indicates a value much
larger than the one estimated up to that moment going through the same next hop,
then it might be worth to get a clearer understanding of the traf ¢ situation along the
path. In fact, the unexpected value could have beencausedeither by “wr ong” choices
made by the perception agentdue to a high level of stochasticity in its decision policy,
or by some new congestion along the path. If the involved next hop was among the
bestonessofar for d, then before either keeping trusting it or reducing its goodness, it
can be worth to generate further perception agentswith destination d through some
of the other outgoing links in order to gather more extensive information.

This behavior can be effectively seenin the terms of a local feedback loop between
monitoring of the network performance and issuing of control actions according to the
fact that the monitor ed performance is either poor or hassigni cantly changed.

3. Requesftor or noti cation from a new destinationnode: According to the discussion in
Subsection 7.1.3.1and in particular in the Remark 7.6 of the same subsection, it is
clear that in some casesa destination which is not yet presentin the node routing
table might be requested (or, equivalently, a new node entering the network might
advertise its presence). In these casesperception agents need to be generated to
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gather information about the new destination. This might be a rather common sit-
uation in mobile ad hoc networks. For instance, in AntHocNet, so-called reactive
setup ants search for a new destination by following pheromone information when
this is presentat the current node, or being radio broadcastwhen no information is
available.

4. Topologicafailure: After the failur e of a local link, or, equivalently, the disappearing
of a neighbor node, it might be necessaryto generate perception agentsin order to
gather fresh information about those destinations that were reached through that
link/node. This situation is quite common in networks with frequent topological
alterations, like the mobile ad hoc ones. However, since ACR instances make use of
multipath routing (becauseof the use of a stochastic decisions based on pheromone
values), several equally good alternatives are expectedto be always available. Such
that it might be not strictly necessaryto “recover” from the failur e event since good
“backup” paths are likely made available. Again, in AntHocNet, ants are generated
only if the broken link was the choice of election to reach some of the used network
destinations, and/or no other equally good alternatives seemto be locally available.
When alternatives are available, some (effector) ant agents are however radio broad-
castin order to notify neighbors about major changesin the routing table due to the
broken link.

Proactive generation of active perceptions. A background ow ! ¢ of active perception agents

is continually and independently generated by eachnode manager  to proactively keep
an updated view of the overall network status, and for the purpose of maintenancef the
paths used to route current traf ¢ sessions. That is, proactive perceptions serve to be
ready for futur e traf ¢ requestsand to maintain and/or improve the quality of the cur-
rent ones. For what concernsrouting in particular, proactive perceptions allow to main-
tain for each destination a bundle of paths with an associated measure of quality in the
form of pheromone value. Eachpath canbe used either for multipath data spreading or as
alternate path in caseof failur esor sudden congestion.

The frequency of the proactive background ow is in general expected to be adaptivein
ACR instances, whereasit was heuristically assigned as a constant value in AntNet and
AntNet-F A. While the experimental resultsreported in Figure 8.17in Subsection8.3.6sug-
gestthat AntNet is quite robust with respectto the choice of the background frequency;
they also show that, with an appropriate tuning that depends on the overall network sce-
nario, performance can be appreciably impr oved. In general, answering the question “At

which rate control/r outing agents should be generated ?” is at the sametime extremely
dif cult and of fundamental importance for any adaptive and social scheme. As pointed

out before, it is necessaryto nd a good tradeoff between frequency in information gath-
ering and generated congestion.

In principle, more control packets mean more preciseand up-to-date information but also
control-induced congestion. However, control overhead should not be measured on an
absolute scale (asit is often done) but rather in relationship to the network performance
that it allows to obtain. A control algorithm that makes use of more control packets has
not to be seenin a negative way if those extra packetsallow to obtain much better perfor-
mance, and at the sametime performance scaleswell with network size and transmission
characteristics 2 The use of adaptive generation schemesprecisely addressthis problem,

20 For instance, the generation of 3-4 control agents per second (more or lessthe samefrequency used in the AntNet
experiments) at eachnode of a backbone network with transmission links of more than 1 Gbits/sec cannot not be con-
sidered asa signi cant overhead. On the other hand, the same overhead might be not negligible in the caseof networks
with link bandwidths lessthan of 1 Mbits/sec or with shared wir elesslinks.
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in principle allowing to optimize over the time the generation of control packetsversusthe
obtained performance.

Focusing on routing, a few major aspectshave to be taken into account in the adaptive
de nition of ! ¢: (i) the local transmission bandwidth, (ii) the minimal transmission band-
width acrossthe network, (iii) the input traf ¢ prole, (iv) the relative load generated by
routing traf ¢ with respectto data traf c, (v) the current congestion prole. The value of
the local transmission capacity, as well asthat of the minimal transmission capacity over
the network is a useful starting point for the de nition of initial values and upper limits
for ! . On the other hand, all the other aspectsneed to be estimated online through local
and possibly also non-local measures.

In Algorithm 7.3 we report asan example a rather simple and generic rule-based scheme
that could be used the adaptive setting of the local ! ¢ in arouting task. The procedure is
based on measures (over an assignedtime window) of the status of the local buffers and
the behavior of the local throughput for both data and routing packets. That is, thr oughput
and buffer lengths are seenasgood local indicators of the relative impact of routing pack-
ets on data traf c. When some limit values for these indicators are reached(e.qg., buffers
too full, data throughput considerably slowed down by routing throughput, etc.) signif-
icant changesin !  are triggered. For non-limit values, or, more in general, for all those
situations that are hard to understand in the senseof getting a clear pictur e of the causes,
a conservative strategy is adopted: ! ( is either left unchanged or is slightly decreased.
The general idea consists in adaptively changing the local generation frequency of ant-
like agentsaccording to the estimated impact that they have on data traf c. Theselocal
measurescan be integrated with non-local onescarried by the mobile agents. For instance,
active perceptions canalso carry a measure of the maximal level of congestion encountered
along the followed path. If several ants brings the indication of congested paths, then is
clear that the local !  should be promptly decreased.

Algorithm 7.3makesuse of a certain number of constantsthat de nes relative percentages.
The values assignedto these percentagescorrespond to the amount of risk accepteda pri-

ori: for example, Cy, expressesthe maximum ratio between routing and data throughput

that can be tolerated. The procedure of Algorithm 7.3 hasbeenpartially testedin AntNet.

Resultsseempromising but further tuning and analysis are required. The main purpose of
reporting it here consistsin showing what we concretely think it might a good dir ection to
follow for the adaptive de nition of ! . Unfortunately , none of the number of AntNet im-

plementations/modi cations (seeSection7.4)have considered yet this fundamental issue.
A much simpler but still adaptive schemeis adopted for instancein AntHocNet: proactive
ant-like agentsare generated according to the frequency of data packets. Every 1=!  pack-
etsgenerated by application Ay a proactive ant is generated bounded for A's destination.
In this way, the algorithm designer hasonly to decide which will bethe fraction1=! \ of the
overall traf ¢ which will due to control packets. The problem with this approach is that
for bursty traf ¢ sessionsa number of routing packets are generated in a short time, and
this can determine some unnecessarycongestion.

Diversity in the internal characteristics of the active perceptions

While in AntNet and AntNet-FA all the ant-like agentsare createdwith the samecharacteristics
(apart for the destination), in ACR node managers are expectedto generate eachactive percep-
tion with a set of parameters ad hoc for the task the mobile agent has been created for. For a
routing task, considering an instance of ACR in which active perceptions are very similar to the
AntNet-F A's ants, parameters that need to be setare, for example, the weight , (Equation 7.7)
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procedure ACRLocalFrequencyOfProactiveAgentGeneration M)
if (routing _thr oughput  Cy data_thr oughput)  LOCAL ROUTING THROUGHPUT SEEMSTOO HIGH. ..

if (waiting _data_bits  C,, total size_of _local_buff ers) ...AND TOO MANY DATA PACKETS...

C, total size_of local_buffers
- - ) ...DECREASE THE FREQUENCY
waiting _data_bits

elseif (waiting _routing _bits > C, waiting _data_bits) ...TOO MANY ROUTING PACKETS...
Cw waiting _data_bits
— - —; ...DECREASE THE FREQUENCY
waiting _routing _bits

elseif (waiting _data_bits < C,, total _size_of _local_buff er) »

(waiting _data_bits > C,, waiting _routing _bits) _

(waiting _routing _bits < C;, total _size_of _local_buff ers) ...QUEUESALMOST EMPTY...
waiting _data_bits

1+ T " , ...INCREASE THE FREQUENCY
C,, total _size_of local_buff er
else ...THE SITUATION ISHARD TO EVALUATE...
1; ...CONSERVATIVE STRATEGY. DO NOT CHANGE
end if

elseif ((waiting _data_bits C,, total _size_of local_buff ers) »

(waiting _routing _bits > C,, waiting _data_bits)) ...ROUTING QUEUES OK BUT BUFFERS ARE FULL...
C, Wwaiting _data_bits
— - —; ...DECREASE FREQUENCY
waiting _routing _bits

else ...BOTH THROUGHPUT AND BUFFERS ARE OK....
1+ ...INCREASE FREQUENCY

end if

| |

end procedure

Algorithm 7.3: Pseudo-codi®r the exampleof adaptivesetting of the frequencyor the proactivegeneratiorof active
perceptionsby anodemanagerCi ; Cy ;C;uf ;Cw;Cw;Cw:; areassigneconstantsForinstanceareasonable

assignmenbfvaluesmight beasfollows:Cy = 0:2; C, = 0:1, C;uf =000 C, =02, Cy = 112, Cyy =
0:0001; = 0:00L

that de nes the tradeoff at decision time between pheromone and current queue status, and the
the coefcients ¢; and ¢, (formula 7.12)that at evaluation time regulate the weight of the win-
dow bestwith respectto that of the exponential averages. More in general, ACR perceptions
are expected to make use of a parameter " that de nes the level of stochasticity in the routing
decisions (seealso, Section3.3and formula 7.10). According to this value, routing decisions are
taken following arandom proportional schemeor strategies more greedy toward the best next
hop(s). For instance, at the setup time of a new application in a QoS network, on-demand per-
ceptions searching for a QoS-feasiblepath are expectedto behave more greedily than proactive
perceptions exploring the network (seealso the description of AntNet+SELA).

The probabilistic selection of (some of) the agent characteristicsdetermines in the agent pop-
ulation a high level of diversity, which is in general seenas an effective feature in a multi-agent
systemoperating in non-stationary environments, sinceit is expectedto provide robustness,and
favor global adaptability and task distribution. 2! The assignment of parameter values accord-
ing to some sampling procedure avoids the assignment of critical crisp values to the algorithm
parameters. On the contrary, it might be necessaryto de ne only the parametric characteristics
of statistical distributions (e.g., Gaussian) from which the parameter values are sampled from
during the algorithm execution. In principle, also the characteristics of centrality and disper-

21 At leastthis is what is commonly observedin Natur e's systems(e.g.,see[168, 3]). Somegeneral studies on arti cial
multi-agent systems[10, 240, 239 further support this view.
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sion of the sampling distributions can be in turn adapted online according to the monitor ed
performance.

Learning strategies

Node managers can make use of any appropriate strategy to learn effective decision policies
concerning data routing, monitoring, agent generation, parameters setting, etc. The pheromone
variables are the main object of learning, since they play the role of parameters of the stochastic
decisionpolicies Generally speaking, stochastic decision policies appears as more appropriate
than deterministic onesto deal with the intrinsic characteristicsof non-stationarity and distribu-
tion (i.e., hidden global state) of network environments. Moreover, in the caseof routing tasks,
the adoption for data routing of a stochastic policy based on pheromone values likely results
in spreading data over multiple pathsand automatically providing loadbalancing that we seeas
positive features.

In the caseof AntNet and AntNet-FA the adopted learning strategiesare quite essential. An
example of amore complex example learning architecture and strategy is given in AntNet+SELA,
in which the node managersare stochasti@stimatorearningautomata(SELA) [430, 33( and make
use of link-state tablesto provide guaranteed QoSrouting in ATM networks. Stochasticlearning
automata, have beenused in early times [331, 334 to provide fully distributed adaptive routing.
Their main characteristics consistsin the fact that they learn by induction: no data are exchanged
among the controllers. They only monitor local traf ¢ and try to get an understanding of the
effectivenessof their routing choices.In AntNet+SELA the static inductive learning component
is enhancedby using the ants asactive perceptions in order to gather also non-local information
to keep up-to-date the link-state routing table in the perspective of rapidly allocating resources
for multipath QoSrouting when necessary

7.3.1.2 Active perceptions and effectors

Active perceptions are mobile agentsexplicitly generated by node managersfor the purpose of
non-local exploration and monitoring. Most of the general characteristicsthat can be attributed
to active perception agents have been already described in the previous subsections. Here we
complete the general pictur e pointing out some additional aspects.

The model of interaction between perceptions and node managers envisaged by ACR is
that typical of agent and object-orientegorogramming Node managers and active percep-
tions are situated at a dif ferent hierarchical level. The active perception is subordinate to
the node manager, that createsit for the purpose of collecting useful non-local informa-
tion. Therefore, the hierarchically lower active perception should not dir ectly modify the
internal state of a node manager. That is, perceptions are not expectedto dir ectly modify

the node manager's data structures(e.g.,the pheromone table). Perceptions canonly com-
municate to node managers the information they have collected along the path, while is
the node manager's responsibility and decision to use or not this information to update its
private data structures. There are at least threereasonsto follow this behavior. First, by
design the component for “intelligent” processingof sensory data is supposed to be the
node manager and not its perception. Second,for securityreasonswhat if acompeting and
“malicious” network provider generatesintr uder perceptions carrying wrong information

and evil objectives? ACR does not dir ectly addressthis classof problems, but shielding a
potential enemy from gaining accessto the main node data structuresis clearly an issue
of critical importance. Third, a direct modi cation of the node data structureswould be
against the principles of information hiding at the basisof all the modern (object-oriented)
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programming. The perception does not need to know about which kind of models, struc-
tures, data are used by the node managers. All it does need to know is the protocol to
communicate its data to the node manager. In this way, data representationsand learning
algorithms internal to the nodes can either changevery often or even being dif ferent from
node to node. The only important thing from the point of view of the perceptions is that
the local communication interface does not change.

Active perceptions canhave the peculiar characteristic of replicating(or, proliferating when
there is more than one single good alternative. For instance, let Fs, 4 be a “forwar d” per-
ception moving from s to d. At the current node k, an AntNet ant would just pick-up one
single link proportionally to its probability and move through it. Acting in this way, the
ant discards other potentially promising links. On the other hand, if after the calculations

avoid an uncontrolled proliferation of perception agents,somelimits must be heuristically
assignedon the allowed number of replicas.

For instance, in AntHocNet, when no pheromone information for the ant destination is
presentat the current node, the ant is broadcast. This equals to considering all the links
as equally good, such that the ant is transmitted to each possible neighbor. Clearly, if
multiple broadcastings happen, the network can easily get ooded (and congested) by
routing packets. Therefore, some heuristics are applied in order to kill the forward ant
(e.g.,ants that have proliferated from the sameoriginal ant and that arrive at a samenode
with no pheromone are destroyed if they have beenalready broadcasta certain number of
times, or if their traveling time and number of hops do not score favorably with those of
previous passedby ants).

Active perceptions can be of different type, according to the dif ferent task they will be in-
volved in. Clearly, dif ferent tasks usually require also dif ferent characteristic (e.g.,level of
stochasticity). While in AntNet and AntNet-FA all the ants are involved in the sametask
such that they all have the sametype and characteristics, in both AntNet+SELA and An-
tHocNet there are severaltypes of active perceptions, and the dif ferent types have dif ferent
internal characteristics.

Thereis not somuch moreto say about the effectomgents We have already intr oduced them
when talking about AntHocNet's ants that notify pheromone updates after a link failur e.
Also in AntNet+SELA effector agentsare used: to take care of allocation and deallocation
of QoSresources. In general effectors are “blind” executoragents used to carry out tasks
whose speci cations have been completely de ned at the level of the generating node
manager.

7.3.2 Two additional examples of Ant Colony Routing algorithms

Both AntNet and AntNet-FA can be seen as instances of the more general ideas of the ACR
framework. On the other hand, in both AntNet and AntNet-FA all the ants are generated ac-
cording to the same xed proactive scheme, have the same characteristics and behavior, and
the notion of node manager has not been made explicit, such that there s little “intelligence” at
the nodes. In a sense,AntNet and AntNet-FA results in a rather natural way from the general
ACO's guidelines and from the adaptation of the main ideas of previous ACO implementa-
tions for static combinatorial problems. Eventhough thesecharacteristics might be a quite good
match for the considered casesof wir ed best-efort networks, it is apparent that smarter node
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managers, as well as increased levels of heterogeneity and adaptivity , might be useful if not
necessarycomponents to deal effectively with network scenariosthat are either highly dynamic
(e.g.,mobile ad hoc networks) or include someforms of QoSprovisioning. Therefore,in order to
show how the ACR's ideas nd their natural application in such complex and highly dynamic
scenarios (or, equivalently, how the basic AntNet and AntNet-FA design can be extended and
adapted to deal with the increasedcomplexity), we briey describein the two next subsections
two additional routing algorithms: AntNet+SELA [130] and AntHocNet[126, 154, 127).

AntNet+SELA is aintended for guaranteed QoSrouting in ATM networks, while AntHocNet
is for routing in mobile ad hoc networks. AntNet+SELA and AntHocNet will be not described
in all their details. In fact, in order to properly discussall the components of thesealgorithms, an
in-depth intr oduction to both QoSand mobile ad hoc networks issuesis required. However, this
would likely require an additional chapter, that would make this thesis unnecessarily too long.
Mor eover, AntNet+SELA has never beenfully tested, such that it is more a model than a real
implementation, while AntHocNet is still under intensive development, and only preliminary,
evenif extremely encouraging, results are at the moment available (they will be shortly reported
in the next chapter).?

7.3.2.1 AntNet+SELA: QoS routing in ATM networks

The transmission capacity of current network technology allows to support multiple classesof
network servicesassociatedto dif ferent QoSrequirements. QoSrouting is the rst, essentialstep
toward achieving QoS guarantees. It serve to identify one or more paths that meet the QoSre-
quirementsof current traf ¢ sessionswhile possibly providing at the sametime ef cient utiliza-

tion of the network resourcesin order to satisfy the QoSrequestsof also futur e traf ¢ sessions.
When a new user application arrives and requires some speci c network resources,the local
connection admission control (CAC) component makes use of the available routing information

to evaluate at which degree the QoS requirements can be satis ed and to decide if the session
can be accepted or not. Several dif ferent general models (e.g., IntServ, DiffServ, MPLS, ATM)
have beenproposed sofar to deal with the severalissuesinvolved in this general pictur e: reser
vation vs. non-reservation of the resources, classesof type of provided services, deterministic

vs. statistical guarantees,mechanismsfor evaluation (and allocation) of the available resources,
levels of negotiation between the user and the CAC component, rerouting vs. non-rerouting of
the applications, use of multiple paths vs. single path, etc. (there is an extensive literatur e on
QoS,good and quite comprehensive discussions can be found for example in [398, 285 44Q).

AntNet+SELA [130] focuseson the caseof providing QoSin ATM networks for generic vari-
able bit rate (VBR) traf c. For this classof networks virtual circuits can be established either per
ow or per destination basis such that physical reservation of resourcesis possible. Therefore,
statistically guaranteed quality of service can be provided.

In AntNet+SELA the node managers, that are dir ectly responsible for both routing and ad-
mission decisions, are designed after the stochastiestimatorearningautomata(SELA) [430] used
in the SELA-routing distributed system [8]. They make use of active perceptions to collect non-
local information according to both on-demand and proactive generation schemes. The active
perceptions are designed after the AntNet-F A ants. Also effectors agentsare used, to tear down
paths and to gather speci ¢ information about traf ¢ pro les of running applications.

22 Mor e conclusive and comprehensive experiments about AntHocNet are expectedto result from Ducatelle's doctoral
work, asexplained in Footnote 4.
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Node managersin SELA-routing

In order to understand the overall behavior of the algorithm, is rst necessaryto briey ex-
plain the characteristicsof the SELA-routing system,in which eachnode manager is a stochastic
learning automaton. In general terms, a stochasticlearning automaton is an nite-state machine
that interacts with a stochastic environment trying to learn the optimal action the environment
offers. The automaton choosesan action according to an output function and a vector of prob-
abilities scoring the goodness of every possible action. After executing the action, it receivesa
reward/feedback signal from the environment and usesthe signal to update a statistical model
(e.g.,amoving average of the received rewards and of the last time an action has been selected)
of the expectedfeedback associatedto every possible action. The actions are then sorted accord-
ing to the new estimatesand the vector of probabilities is updated increasing the probability of
the action with the new bestestimated reward and lowering the probabilities for all the other ac-
tions. In the speci ¢ caseof SELA-routing, the node managers make use of a link-statedatabase
and ofine nd the k-minimum-hop paths P;;:::; P for eachdestination. Thesek paths are the
setof actions available to the automaton. The behavior of the algorithm is then asfollows:

Arrival ofanewapplication: Whenever a new application asksfor a QoS connection, the applica-
tion must communicate to the local node manager: (i) its traf ¢ pro le in terms of peak cell
rate, mean idle and burst periods, (ii) its QoSrequestsin terms of bandwidth, delay, delay
jitter, and loss rate.

Estimateoflink utilization: The application's characteristicsare input to a uid-ow approxima-
tion model to estimate the expected utilization u; for eachlink i on the k possible paths.

EnvironmentfeedbackFor each possible ag,tlon (path with n hops) the feedback from the envi-
ronment is computed as:a; = M i=1,2P, ui; where M is a constant representing the
maximum number of hops that can be admitted in a path, u; 2 [0;1]and u; = 1if u; is
greaterthan athreshold uy 4ok de ned according to sometrunk-r eservation strategy.

Pathselection:Order the actions accoring to the estimated feedback and select the action a;
with the bestestimated feedback: a; > a;; 8i;i 6 j (ties are resolved at random). If g; is a
minimum-hop path and meetsthe QoSrequirementsthen the path is acceBted.Otherwise,
if a is not a minimum-hop path but meets the QoS requirements and |, wop, Ui <
Uy unk » then the path is accepted. If none of thesetwo setsof conditions are met, the next
path in the a's sequenceis considered until an acceptablepath is found and the application
can start. If none of the paths meetsthe requirements, the application is rejected.

AntNet+SELA: description of the algorithm

In AntNet+SELA the node managers make use of ant-like agentsin order to proactively up-
date their link-state database,take routing decision using fresh information about the candi-
date paths, and split and reroute the applications if useful/necessary. In particular, node man-
agers make use of two sets of active perceptions. The perceptions in one set behave exactly
like AntNet-FA ants, and are aimed at proactively building and maintaining pheromone ta-
bles for the perceptions (ants) in the second set, which are reactively generated at the setup of
a new application. These perceptions make use of the pheromone tables either to probe the
paths suggestedfor routing by the node manager or to discover other and possibly better paths.
Node managers make also use of effector agents, to gather information about the congestion
status over the allocated paths in order to update the parameters of uid-ow model used
by node managers and/or to possibly reroute them. More in specic, the overall behavior of
AntNet+SELA is asfollows:
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Perception agents (hereafter called proactiveants) are generated from every node manager
according to a proactive scheme. They behave like AntNet-FA ants, searching for paths
and updating the pheromone tablesthat are going to be used for routing also by other per-
ceptions. That is, the routing information used by the perception agentsis dif ferent from
that used to route data, which is contained in the link-state tables of the node managers.
In this way, network exploration and routing of data traf ¢ follow dif ferent dynamics.

At the arrival of anew application, the node manager launchestwo groups of perceptions:

— Perceptions in the rst group (path-pobingsetupants) probe online the the k paths
suggestedby the node manager path selection phase.

— Perceptionsin the other group (path-discoveringetupants) make use of the pheromone
tables built by proactive ants to discover new QoS-feasiblepaths for the application.

Ants in both groups temporary reserveresourcesfor the application while they move along
the paths.

Path-discovering setup ants are created with dif ferent internal parameters, such that they
canbe more or lessgreedy with respectto the current status of the link queues (parameter

in Equation 7.7). Moreover, they always choosethe link with the highest probability
(computed on the basisof ant-routing table).

In the casethat thereis only alittle differencebetweenthe bestand the secondbestlink, the
setup ant forksand both links are followed (however, to avoid uncontrolled multiplication
of ants, an ant is allowed the fork only once).

If afollowed path doesnot meetanymore the QoSrequests,an effector ant is generatedto
retraceback the setup ant path and freethe allocated resources.

Every setup ant which is able to arrive at destination following a QoS-feasiblepath comes
back and reports the information to the node manager. This information is also used to
revise the selection probabilities for the k paths.

After the rst setup ant is back (earlier than a maximum timeout delay), the application
can start sending packets.

If more setup ants come back, the node manager decides about the opportunity to split or
not the application over multiple paths(e.g., if path superposition is very low it might be
quite effective to use multiple paths).

Once the application is active, periodically some effectors agents (monitor ants) are proac-
tively sent over the allocated path(s) to collect information about the application traf ¢
pro le and about the links' usage. This information is used to update online the param-
eters of the uid- ow approximation model used by the node managersto calculate the
environment feedback associatedto the possible paths.

The information reported by the monitor agentsis also used to monitor the traf ¢ over
established paths for the purpose of maintenance If the network load becomesheavily
unbalanced and/or new resources are made available, the application can be gracefully
rerouted (or split).

When the application endsits activities, effector agentsare sentover the paths used by the
application in order to freethe allocated resources.

The system can be used to manage at the sametime QoStraf ¢ and best-effortraf ¢ (via
the routing tablesbuilt by the proactive monitor ants).
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AntNet+SELA contains several additional components with respectto both AntNet and
AntNet-F A: learning agents as node managers, reactive and effector agents, diversity in the
agent population, allocation and maintenance of virtual circuits, etc. However, all the three
algorithms are clearly designed according to the same philosophy, which is that that we have
tried to capturein the informal de nition of ACR.

AntNet+SELA is agood example of how severalaspectcanand must coexistin the sameant-
basedrouting system in order to cope effectively with the overall complexity of routing tasks.
Mor eover, it is apparent the modularity of the approach: a dif ferent learning architecture can be
used for the node managersin place of learning automata without requiring major modi cations
in the structure and behaviors of the ant-like agents (whose task remains that of exploring and
gathering information).

No pseudo-code description is given for AntNet+SELA (as well as for AntHocNet). In
fact, these algorithms, are designed to deal with a number of different events (e.g., genera-
tion, forwarding, and processing of monitor, path-probing and proactive ant perceptions, as
well as of various effector agents), such that, for instance, the pseudo-code description of an
AntNet+SELA's node manager would result in a nite state machine with several states and
state transitions. The pseudo-code of AntHocNet would result even more complex since An-
tHocNet has beenimplemented using a realistic packet-level simulator, such that the protocol
has to deal in practice with all the possible events that characterize a fully realistic protocol.
Thesefactswould probably make the pseudo-code quite hard to follow and so quite uselessfor
the purpose of helping to get a clearer idea of the algorithm behavior.

7.3.2.2 AntHocNet: routing in mobile ad hoc networks

In recentyearsthere hasbeenan increasinginterestin Mobile Ad Hoc Networks (MANET s). In
this kind of networks, all hodes are mobile and can enter and leave the network at any time.
They communicate with each other via wir elessconnections. All nodes are equal and there is
neither centralized control nor xed infrastructureto rely on (e.g.,ground antennas). There are
no designated routers: all nodes can serve as routers for each other, and data packets are for-
warded from node to node in amulti-hop fashion. Providing reliable data transport in MANET s
is quite dif cult, and alot of reseach is being devoted to this. Especially the routing problem is
very hard to solve, mainly due to the constantly changing topology, the lack of central control
or overview, and the low bandwidth of the shared wir elesschannel. In recentyears a number of
routing algorithms have beenproposed (e.g.,see[371, 61, 399), but even current state-of-the-art
protocols are quite unreliable in terms of data delivery and delay.

The main challenge of MANET s for ant-based routing schemesconsistsin nding the right
balance between the rates of agent generation and the associatedoverhead. In fact, from one
side, repeated path sampling is at the very core of ACR algorithms: more agents meansthat an
increasedand more up-to-date amount of routing information is gathered, possibly resulting in
better routing. On the other side, an uncontrolled generation of routing packets can negatively
affect whole sets of nodes at once due to the fact that the radio channel is a shared resource
among all the nodes, such that multiple radio collisions can happen at the MAC layer with con-
sequentdegradation of performance (this is especially true if the channel haslow bandwidth).

In aMANET nodescanenter and leave the network at any time, aswell asnodes canbecome
unreachablebecomesof mobility and limitations in the radio range. Therefore, in general it is
not reasonableto keep at the nodes either a complete topological description of the network or
a set of distances/costs to all the other nodes (even at the same hierarchical level) asit can be
done, for instance, in the most of the casesof wir ed networks. Thesesituations call for building
and maintaining routing tables on the basisof reactivestrategies possibly supported by proactive
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actionsin order to continually refreshthe routing information that might quickly becomeout-of-
date becauseof the intrinsic dynamism of the network.

This is the strategy followed in AntHocNet[126, 128 154, 127], which is a reactive-proactive
multipath algorithm for routing in MANET s. The structure of AntHocNet is quite similar to
that of AntNet-FA with the addition of some components speci ¢ to MANET s that results in
the presenceof severaltypes of ant-like agents. In particular, the design of AntHocNet features:
reactive agentsto setup paths toward a previously unknown destination, per-sessionproactive
gathering of information, agentsfor the explicit management of link failur e situations (because
of mobility and limited radio range the established radio link between two nodes can easily
break). Node managers are not really learning agentsasit was the casefor AntNet+SELA, but
rather nite statemachinesresponding more or lessreactively to external events. This is partially
due to the fact that in such highly dynamic environments it might be of questionable utility to
rely on approachesstrongly basedon detecting and learning environment's regularities. In the
general case,some level of learning and proactivnessis expectedto be of some usefulness, but
at the sametime the core strategy should be areactive one. This hasbeenour design philosophy
in this case.

The algorithm's behavior is explained in the following subsections. Each subsection dis-
cussesthe algorithm actions in relationship to a different subtask: (i) setup of routing informa-
tion, (ii) maintenance of established routes and exploration of new ones, (iii) data routing, (iv)
management of link failur es.

Path setup

When a new data sessionto a destination d is started, the node manager at source node s reac-
tively sendsout a setupant for the purpose of searching for routes between s and d (unless, of
course the source already has routing information about the destination). Setup ants, asall the
other agents,always make use of higher priority queueswith respectto data packets. Eachnode
which receivesthe setup ant either radio broadcasbr unicastit according to the fact that it hasor
not routing information about d in the routing table. The node to unicast the ants to is selected
according to the pheromone information. Broadcasting determines a sort of proliferationof the
original ant since eachneighbor will receivea copy of it. This proliferation, if uncontrolled, can
be easily lead to an unwanted congestion. Therefore, setup ants are Iter edaccording to the qual-

ity of the path followed so far in order to limit the generated overhead. When a node receives
several ants of the same generation (i.e., deriving from the same forwar d ant generated in s),
it will compare the path traveled by the ant to that of the previously received ants of the same
generation: only if its number of hops and travel time are both within a certain factor of that of
the bestant of the generation, it will forwar d the ant. Ants canget alsokilled on the way if their

number of hops exceedsa prede ned time-to-live value, which is setaccording to the network

size.

Upon arrival at the destination d, the forward ant is converted into a backward ant which
travels back to the source, retracing the forwar d path. At eachnode i, it setsup a path towards
the original destination d creating or updating routing table entries T/, for the neighbor n it is
coming from. The entry will contain a pheromone value which representsan average of the
inverse of the cost, in terms of both estimatedime and numberof hops to travel to d through n
fromi.

Data routing

The path setup phase createsa number of paths between source and destination, indicated in
the datagram routing tables of the nodes. Data can then be forwar ded between nodes accord-
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ing to a stochastic policy parametrized by the data-routing tables, which are obtained from the
pheromone tables after a power-law transformation equivalent to that used in AntNet-FA.

The probabilistic routing strategy leads to data load spreading with consequent automatic
loadbalancing This might be quite important in MANET s, becausethe bandwidth of the wir e-
lesschannelis very limited. Of course,in order to spread data properly, adapting to the repeated
modi cations in both the traf ¢ and mobility patterns, it is customary to keep monitoring the
quality (and the existence)of the dif ferent paths. To this end the node managersgenerate proac-
tive maintenance ants (perceptions) and pheromone dif fusion ants (effectors).

Path maintenance and exploration

While adata sessionis running, the node manager sendsout proactivemaintenancantsaccording
to the data sending rate (one ant every n data packets). They follow the pheromone values
similarly to data but have a small probability at each node of being broadcast. In this way
they servetwo purposes. If an ant reachesthe destination without a single broadcastit simply
samples an existing path. It gathers up-to-datequality estimatesf this path, and updates the
pheromone values along the path from source to destination. If on the other hand the ant got
broadcastat any point, it will leave the currently known “pher omone-constrained” paths, and
exploenew paths. However, we limit the total number of broadcastsof a proactive ant to a small
number (e.g.,two) in order to avoid excessiveagent proliferation. The effect of this mechanism
is that the search for new paths is concentrated around the current paths, so that we are looking
for pathimprovementsand variations

In order to guide the search more ef ciently , node managers make use also of effector agents
termed pheomonediffusion ants short messagesresembling hello messagesbroadcast every t
seconds(e.g.,t = 1seq. If anode receivesa pheromone diffusion agent from a new node n,
it will add n asa new destination in its routing table. After that it expectsto receive an agent
from n every t seconds. After missing a certain number of expected messages(2 in our case),
n will be removed. Using these messages,nodes know about their immediate neighbors and
have pheromone information about them in their routing table. Pheromone diffusion ants also
serve another purpose: they allow to detect broken links. This allow nodes to clean up stale
pheromone entries from their routing tables. In the following we plan to make these agents
carrying more information (e.g.,the list of neighbors).

Link failures

Node managers can detect link failur es (e.g., a neighbor has moved far away) when unicast
transmissions (of data packets or ants) fail, or when expected pheromone dif fusion agentswere
not received. When alink fails, a node might loose a route to one or more destinations.

If the node has other next hop alternatives to the samedestination, or if the lost destination
was not used regularly by data, this loss is not so important, and the node manager will just
update its routing table and broadcastan effector agent, termed failurenoti cation ant. The agent
carries a list of the destinations it lost a path to, and the new best estimated end-to-end delay
and number of hops to this destination (if the node still has entries for the destination). All its
neighbors receivethe noti cation and update their pheromone table using the new estimates. If
they in turn lost their bestor their only path to a destination due to the failur e, they will in turn
generateand broadcasta failur e ant, until all nodes along the dif ferent paths are noti ed of the
new situation.

If the lost destination was regularly used for data traf ¢, and it was the node's only alterna-
tive for this destination, the lossis important and the node should try to locally repairthe path
This is the strategy followed in AntHocNet, with the restriction that a node only repairs the path
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if the link losswas discovered with afailed data packet transmission. After the link failur e, the
node manager broadcastsa routerepairant that travels to the involved destination very alike
a setup ant; it follows available routing information when it can, and is broadcast otherwise
(with alimit of the maximum number of broadcasts). The hode manager waits for a certain time
and if no backward route repair ant is received, it concludes that it was not possibleto nd an
alternative path to the destination which is then removed from the routing table, and a failur e
noti cation ant is generatedto advertise the new situation.

7.4 Related work on ant-inspired algorithms for routing

An exhaustive related work analysis should include general work on both multipath and adap-
tive routing, aswell aswork on (multi-)agent systemsin telecommunication and ant/natur e-
inspired work on routing. The general discussions on routing approachesgiven in the previous
chapter, aswell asthe discussionsin the next chapter on the algorithms used for performance
comparison, partly cover general related work on adaptive multipath algorithms. On the other
hand, the use of agent and multi-agent technologiesin the telecommunication domain (and not
only in this domain) is attracting a growing interest, and there is already a large number of
applications and scienti ¢ studies. However, a proper discussion of these works would result
rather long while at the sametime take us quite far away from the logical path that has been
followed so far. Therefore, we chooseto not to account here for related work on multi-agent
systems. Good overviews and/or particularly signi cant applications canbe found for instance
in [444, 400 220, 259, 206, 320, 424, 265, 437.

According to these facts, the only related work which is discussedin the following of this
section concerns ant-inspir ed algorithms for routing in telecommunication networks. That is,
algorithms that have beeninspir ed by some behavior of either ants or ant colonies. As a matter
of fact, most of the ant-inspir ed algorithms algorithms take inspiration from the the sameforag-
ing behavior at the roots of ACO. Therefore, they can be seenas conceptually, if not historically,
belonging to the ACO framework. Mor eover, severalamong thesealgorithms are either modi -
cations of or have beendir ectly inspired by AntNet. A fact that indir ectly con rms the general
goodnessand appealing of the approachesto routing that have beenproposedin this thesis.

It follows acommented list (chronologically ordered) of ACO- and ant-inspir ed related work
on routing. The algorithms are divided in two groups, those for wir ed networks (including both
data and telephone networks, and best-effort an QoSrouting), and those for wir elessand mobile
ad hoc networks. The review is not comprehensive. In fact, it is quite hard to keep track of all
the newly proposed implementations implementations (this is particularly true for the caseof
mobile ad hoc networks). Moreover, the list does not take into account approachesthat bear
only little resemblancewith ACO and/or that have to be intended more as proof-of-concept
than practical implementations and study of optimized algorithms for routing. The algorithms
for mobile ad hoc networks are only shortly discussed, since the focus in the thesis is more
on wir ed networks. Moreover, as a matter of fact, in spite of their claim of being inspired by
ACO and/or AntNet, the majority of thesealgorithms for MANET sloose much of the proactive
sampling and exploratory behavior of the original ACO approach in their attempt to limit the
overhead causedby the ant agents, such that they often show a behavior which is very closeto
that of the already mentioned AODV (while, on the other hand, AntHocNet retains most the of
original ACO's characteristics).

Wired networks

Schoonderwoerd, Holland, Bruten and Rothkrantz (1996,1997)[382, 381 were the rsts to
consider routing as a possible application domain for algorithms inspired by the behavior of
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ant colonies. Their approach, called ABC, has beenintended for routing in telephone networks,
and differs from AntNet in many respectsthat are discussed here with some detail to acknowl-
edge the impact of ABC during the rst phase of AntNet's development. The major differ-
encesbetween the two algorithms are a dir ect consequenceof the dif ferent network model that
has been considered. ABC's authors considered a network with the following characteristics:
(see Figure 7.15): (i) connection links can
potentially carry an innite number of full-
duplex, xed bandwidth channels, and (ii)
transmission nodes are crossbar switches
with limited connectivity (that is, there is N Didirectional channel i Link 2
no necessity for queue management in the Q :
nodes). In such a model, bottlenecks are put
on the nodes, and the congestion degree of
a network can be expressedin terms of con-
nections still available at each switch. As a Link 3
result, the network is cost-symmetricthe con- e
gestion status over available paths is fully bi-
dir ectional. . A path Ps, q connecting noc_jes Figure 7.15: Networknodein thetelecommunicationet-
s and d exhibits the same level of congestion |, Ji modelof Schoonderwoeret al. [382,381].
in both dir ections becausethe congestion de-
pends only on the state of the nodes in the
path. Mor eover, dealing with telephone networks, eachcall occupies exactly one physical chan-
nel acrossthe path. Therefore, calls are not multiplexed over the links, but they can be accepted
or refused, depending on the possibility of reserving a physical circuit connecting the caller and
the receiver. All thesemodeling assumptions make the problem of Schoonderwoerd etal. rather
dif ferent from the more general cost-asymmetric routing problems for data networks considered
by AntNet algorithms. This differenceis re ected in several important implementation dif fer-
encesbetween ABC and AntNet. The most important one consisting in the fact that in ABC ants
update pheromone trails after eachhop, without waiting for the completion of an experiment,
asdone in AntNet, and the ants do not need to go back to their source?® In ABC ants move over
a control network isomorphic to the one were calls are really established. In the used model
the system evolves synchronously according to a discrete clock. At each node an ant ages of
T virtual stepscomputed asa xed function of the current node spare capacity, that is, the
number of still available channels. If s is the source and d the destination node of a traveling
ant, after crossing the control link connecting node i with node j, the routing table on node j
is updated by using the ant age T. The probability for subsequentantsto choosenode i when
their destination node is s, is increasedproportionally to the current value of T accoring to an
updating/normalizing rule similar to rules 7.9and 7.8. In this way, during the ant motion, the
routing table entries that are modi ed are those concerning the ant source node, that is, modi -
cations happen in the dir ection opposite to that of the ant motion. This strategy is sound only in
the caseof an (at least) approximately cost-symmetric network, in which the congestion status
is dir ection-independent.
Other important differencescan be found in the fact that: (i) ABC does not use local traf ¢
models to score the ant traveling time: T values are used asthey are, without considering their
relativity with respectto different network states(seeSubsection7.1.4),(ii) neither local queue
information (see Equation 7.7) nor ant-private memory are used to impr ove the ant decision
policies and to balancelearned pheromone information and current local congestion. Mor eover,

n << N possible connections

23 This choice, justied by the cost-symmetry assumption, is reminiscent of the pheromone trail updating strat-
egy implemented in ant-density one of the Dorigo's etal. rst algorithms inspired by the foraging behavior of ant
colonies [150, 135, 91], and makes ABC behavior in a sensecloser to those of real ants than AntNet (seeChapter 2).
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ABC's ants do not recover from cyclesand do not use the information contained in all the ant
sub-paths (seeSubsection7.1.3.7).

ABC hasbeentested on a model of the British Telecom (BT) telephone network in UK (30nodes)
using a sequential discrete time simulator and has been compared, in terms of percentage of
acceptedcalls, to an agent-basedalgorithm previously developed by BT reseachers[7]. Results
were encouraging: ABC always performed signi cantly better than its competitor on a variety
of different traf ¢ situations.

Subramanian, Druschel and Chen (1997)[411] have proposed an ant-based algorithm for
packet-switched networks. Their algorithm is a straightforwar d extension of Schoonderwoerd
etal. system by the addition of so-called uniform ants, a very simple (but of quite questionable
ef cacy) exploration mechanism: ants just wonder around without a precisedestination and
selecttheir next hop according to auniform random rule. While regular ants update the routing
tablesforwar d, in the dir ection of their destination, uniform ants update in the reversedir ection,
that is, toward the nodes they come from. Both the two types of ants update the routing tables
according to a not well specied path cost, which is the sum of the costs associatedto each
one of the links belonging to the path followed so far. The mechanism of the uniform ant is
intended to avoid arapid sub-optimal convergenceof the algorithm and help to nd new paths
in caseof link/node failur e (the algorithm is explicitly aimed at scenariosinvolving frequent
topological modi cations). A major limitation of the approachconsistsin the fact that, although
the algorithm they proposeis basedon the same cost-symmetry hypothesis as ABC, they apply
it to packet-switched networks where this requirement is seldom met. On the other hand, the
pheromone updating of the uniform ants, since it happens in the reverse dir ection, does not
require the assumption of cost-symmetry, but it is however prone to ef ciency problems since
the followed paths from one node to another are expectedto be highly sub-optimal due to the
uniform random selectionrule.

Bonabeau,Henaux, Guérin, Snyers,Kuntz and Theraulaz (1998)[50] have impr oved ABC
by the intr oduction of a mechanism basedon dynamic programming ideas. Pheromone values
along an ant path are updated not only with respectto the ant's origin node asin ABC, but also
with respectto all the other intermediate nodes between the origin and the ant current node.
A similar mechanism, as discussed in depth in Subsection7.1.3.7,was earlier implemented in
AntNet sinceits rst draft version [116]. The dif ferencebetween the AntNet's and Bonabeau'set
al. updating strategy lies in the fact that AntNet does not necessarily updates all the sub-paths
of apath, but only those which appear to carry reliable or competitive information. The fact that
a straight application of the Bellman's principle is not freefrom problems hasbeendiscussedin
Subsection7.1.3.7.

Van der Put and Rothkrantz (1998,1999)[426, 427] designed ABC-backwardan extension
of the ABC algorithm basedon the AntNet strategy. Accordingly, ABC-backward is applicable
to cost-asymmetric networks, but, ultimately, the algorithm results to be identical to AntNet
with some, rather questionable simpli cations directly inherited from the ABC settings. The
authors usethe sameforwar d-backward mechanism used in AntNet: Forward ants, while mov-
ing from the source to the destination node, collect information on the status of the network,
and backward ants use this information to update the routing tables of the visited nodes during
their journey back from the destination to the source node. In ABC-backward, backward ants
update the routing tables using an updating formula identical to that used in ABC, except for
the fact that the ants' ageis replaced by the trip times experienced by the ants in their forwar d
journey. The authors have shown experimentally that ABC-backward has a better performance
than ABC on both cost-symmetric (becausebackward ants can avoid depositing information on
cycles) and cost-asymmetric networks. ABC-backward has been applied to a fax distribution
problem proposed by the Dutch largesttelephone company (KPN Telecom).

White, Pagurek and Oppacher (1998)[446, 445 usean ACO algorithm for unicast and mul-
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ticast routing in connection-oriented networks. The algorithm, called ASGA, follows a scheme
very similar to that of Ant System (seeSection4.2)which was designed for TSPs.On the other
hand, the TSPis a minimum costpath problem with the addition of the Hamiltonian constraint.
Therefore, it can be seenin the terms of a constrained routing problem. In this perspective, the
authors added some additional componentsto Ant Systemto accountfor the fact that they were
dealing with routing and not anymorewith TSR In particular, they have used the sameforwar d-
backward mechanism of AntNet, combined with amechanismsvery similar to that envisagedin
ACR for supporting the setup phase of a QoS or connection-oriented application and for main-
taining it. The major difference with AntNet lies in the fact that the authors apply the same
selection and updating formulae used in Ant System. In practice, Equation 7.7 is replaced by
one in which the terms are multiplied instead of being summed, and the | term is replaced by a
not clearly speci ed link cost. Equations 7.9and 7.8are replaced by exponential averages.From
the sourcenode of eachincoming connection, agroup of antsis launched to search for a path. At
the beginning of the trip eachant k setsan internal path costvariable Cy to 0, and after eachlink
crossing the internal path costis incremented by the current link costlj : Cx  Cy + I . When
arrived at destination, the ant moves backward to its sourcenode and at eachnode usesa simple
additive rule, similar to that of AntNet, to compute the equivalent of the AntNet's T value: T
becomesequal to Cy, which is the sum of all the previously encountered costs. When all the
spooled ants come back at the source node, a simple local daemon algorithm decideswhether a
path should be allocated for the session,basedon the percentage of ants that followed a same
path. Moreover, during all the connection lifetime, the local daemon launches and coordinates
exploring ants to re-route the connection paths in caseof network congestion or failur es. A ge-
netic algorithm [202, 226 is used online to evolve two critical parameters (the equivalent of in
Equation 7.7)that regulate the behavior of the transition rule formula (the name ASGA precisely
comesfrom this mechanism: ant-system plus genetic algorithm). Somepreliminary resultswere
obtained testing the algorithm on severalnetworks and using severallink costfunctions. Results
are promising: the algorithm is able to compute shortest paths and the genetic adaptation of the
rule parameters seemsto impr ove considerably the algorithm's performance.

Actually the sameauthors have published several other short conference papers on ant, swarm,
multi-agent systemsfor network managementand control. Most of them mix the above mecha-
nisms and conceptswith other similar avors, therefore they are not further mentioned here.

Heusse,Snyers,Guérin and Kuntz (1998)[224] developed a new algorithm for general cost-
asymmetric networks, called Co-operativésymmetricForward(CAF). CAF, evenif still grounded
on the ACO framework, intr oduces some new ideasto exploit the advantages of an online step-
by-step pheromone updating scheme,asthat usedin ABC, in addition to the forwar d-backward
model of AntNet. In ABC the step-by-step updating strategy was made possible by the as-
sumptions of cost-symmetry, in CAF this assumption is relaxed, but it is still possible to use
step-by-step updates. In fact, each data packet, after going from node i to node j, releaseson
node j the information c; about the sum of the waiting and crossing times experienced from
node i. This information can be used as an estimate of the traveling time to go fromi toj. An
ant Asi ¢ hopping from j to i readsthe ¢; information in j and movesit to i, where it is used
to update the estimate for the time to travel from i to j, and, accordingly, for the total traveling
time T;; 4 from i to all the nodes sCvisited by the ant during its journey from s. In this way the
routing tables in the opposite dir ection of the ant motion can be updated online step-by-step.
Clearly, in order to work properly, the system requiresthat an “updating ant” would arrive in
coincidence or with a negligible time shift with respectto the moment the “information ant” de-
posited the information ¢; . The algorithm's authors tested CAF under some static and dynamic
conditions, using the average number of packetswaiting in the queuesand the average packet
delay as performance measures. They compared CAF to an algorithm very similar to an earlier
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version of AntNet. Results were encouraging and under all the test situations CAF performed
better than its competitors.

The CAF mechanismis quite generaland could be straightforwar dly incorporated in AntNet
and AntNet-FA. Actually, Doi and Yamamura (2000,2002)[133, 134 make use of a similar strat-
egy in their BntNetL algorithm. BntNetL has been designed as a supposed impr ovement over
AntNet-F A. Supposed becausethe authors misunderstood some of the behaviors of AntNet-F A
and then tried to devise some additional heuristics to “corr ect” them. For instance, they have
assertedthat AntNet's selection rule could get “locked” if one entry in the routing table would
reachthe limit value of 1, but actually this is not the case,becauseAntNet-FA makes use of the
selectionrule of Equation 7.7which weights both the entries in the routing table and the current
status of the link queues. BntNetL has beencompared to AntNet-FA on a restricted set of sim-
ulated situations. BntNetL and AntNet-FA (actually, a version of AntNet-FA containing some
incorr ectly interpr eted parts), showed more or lesssimilar performance.

On a similar stream of misleading interpr etations of AntNet is the work of Oida and
Kataoka (1999)[337]. Theseauthors, for some reasons,decided to work on impr oving the very
rst draft version of AntNet [116], in which the status of the data link queues was not used,
such that the above mentioned “lock” mechanism could actually happen. To avoid this fact,
Oida and Kataoka have added some simple adaptive mechanisms to the routing table updat-
ing rule. Their algorithms, DCY-AntNet and NFB-Ants, once compared to the early version of
AntNet [116] performed much better under the challenging considered situations. Actually, the
mechanismsproposed by Oida and Kataoka could be also of some usefulnessin AntNet-FA and
ACR, but their ef cacy should be anyhow tested more carefully.

The same Oida, but this time in collaboration with Sekido (1999, 2000)[338, 339, also
added some functionalities to the basic behavior of AntNet to make it suitable to work in a
QoS environment with constraints on the bandwidth and the number of hops. In particular,
in their algorithm Agent-basedRouting System(ARS), they make the forwar d ants moving in a
“virtually constrained network” in order to support several classesof bandwidth requirements
(e.g.,similarly to the DiffServ model [440]). The probability of aforwar d ant of choosing alink is
made depending not only on the values in the routing table but also on the level of the already
reserved bandwidth, and for each class of service in terms of bandwidth there is a different
colony of ants. All the ants of a colony only use those links whose the unreserved bandwidth
resources are not less than the value of the bandwidth constraint assigned to the colony. If
almost all bandwidth had already beenreservedthen the probability is accordingly made very
low. Similarly, if the number of executed hops is already too large and/or none of the outgoing
links has still much free bandwidth, then the forwar d ant terminates its journey. Interestingly,
theseheuristics canbereadily seenasthe dir ecttransposition of the basic AntNet's mechanisms
in a QoS context. In fact, the heuristic taking into account the available bandwidth to assign
the link probabilities is equivalent to the AntNet's heuristic that takesinto account the current
number of bits waiting on the link queue. While the mechanisms for the ant self-termination
had already beenimplemented in AntNet by using the TTL parameter to remove those ants that
aretrying to build alikely very bad path.

Using the same concepts(stigmergy, ants, pheromone, multi-agency) underlying ACO but
not being explicitly inspired by ACO, Fennetand Hassas(2000)[166, 167] developed amodel of a
multi-agent system for multiple criteria balancing on a network of processors.It has beentested
on a some rather simple simulated situations. In their system ants move among the processing
units, perceiving local arti cial pheromone elds that are emitted by the units and that encode
some useful information about the criteria to optimize. While the description that the authors
give of the actions and of the tasks is quite vague and not not well de ned, it is interesting
to mention here that they use a terminology that reminds that of ACR: a distinction is made
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between static and mobile agentsinteracting together, while the mobile agentsare also seenas
sensory and effector agentsfor user applications.

Baran and Sosa(2000)[13] have proposed several supposed impr ovements over AntNet:
(i) routing tables are initialized more ef ciently by taking into account knowledge about the
neighbors, such that ants searching for destinations coinciding with one of the neighbors are not
actually generated, (ii) link and node failur esare explicitly taken into account: after a link fail-
ure, the related pheromone entries are explicitly setto zero, (iii) with some small probability ants
can also issue a random uniform selection among the available alternatives in order to suppos-
edly reducethe (in)famous locking problem that has beenrepeatedly and incorr ectly attributed
to AntNet, (iv) ants make greedy deterministic decisions instead of random proportional ones
(with the clearrisk of incurring in very long lived loops and at the sametime cutting off neces-
sary exploration),(v) the number of ants living in the network is arbitrarily limited to four times
the number of links (it is however not clear why this number and also how the number of active
ants can be actually determined given the fully distributed characteristicsof the problem).

Michalareas and Sacks(2001)[314] have studied the performance of an AntNet version
that makes use of deterministic greedy choicesand of no link queue heuristic with respectto
that of an OSPF-like algorithm. The authors have considered three small topologies (tree, ring
and grid-like) and uniform FTPtraf ¢ using TCP Tahoe. According to the their results, at steady
state both the algorithms show equivalent performance. The sameauthors have implemented a
hybrid between their AntNet and ABC for the management of the routing in multi-constrained
QoS networks [315, 314. They have considered an IP network offering soft-QoS service with
two constraints: on the end-to-end delay and on the available bandwidth. The proposed algo-
rithm makes use of two types of ant agents, one for eachQoS constraint. The ants dealing with
the delay constraint are the same asin their previous version of AntNet, since AntNet's ants
precisely try to minimize end-to-end delays. On the other hand, the bandwidth constraint is
dealt with ants that are arti cially delayed at the nodes, asin ABC, proportionally to the occu-
pied link bandwidth asmeasured by a local exponential average of the link utilization. In this
way, their virtual delay bring a measure of the available bandwidth along the path. Experiments
conducted on the sametraf ¢ types and networks of the previously mentioned work show that
the AntNet-like algorithm performs similarly to an OSPF-like one, but scalesmuch better with
the increasing of the load.

In [378 (2001), Sandalidis, Mavr omoustakis, and Stavroulakis have studied the perfor-
mance of Schoonderwoerd et al.'s ABC using a different network and considering some addi-
tional variables to monitor ants behavior. Their study con rms the earlier results for ABC. In a
more recentwork [379 (2004),the same authors have developed a new version of ABC which
makesuse of the notions of probabilistic routing of the phone calls and of anti-pheromone. When
an ant arrives at a node with an agelarger than that currently recorded on the node, pheromone
is decreasedinstead of being increased. The performance of the new algorithm is compared to
that of ABC for atopology of 25nodes and have shown a certain degreeof impr ovement over it.

Jain (2002)[234] has compared AntNet to a link-state protocol using the well known net-
work simulator ns-2. The author has implemented a version of AntNet very similar to that of
Michalareasand Sacksand has made use of greedy deterministic forwar ding for data packets
(the link with the highest probability is deterministically chosen),suchthat the algorithm turned
into asingle-path one. Experiments wererun on asmall grid network and on the samenetworks
that have beenused in the next chapter for AntNet experiments, but using dif ferent traf ¢ pat-
terns. The experiments show that under light traf ¢ conditions the two considered algorithm
behave similarly, but on the other hand the single-path AntNet algorithm can adapt to new
situations much quicker and much better.

Kassabalidis, EI-Sharkawi, Marks Il, Arabshahi, and Gray (2002)[244] have proposed a
modi cation of AntNet basedon the organization of the network in clusters and on the use of
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multiple colonies The network is rst partitioned into clusters of nodes which are de ned by
running a centralized k-means algorithm using asa metric the geographic location of the nodes
(e.g., clusters can be easily seenin the terms of Autonomous Systemsin the Internet). Once
the clustering is realized, intra- and inter-clustering route discovery and maintenanceis realized
by two different types of ants, and separaterouting tables are hold at the nodes for intra- and
inter-clustering routing. In this way, the number of ants that have to be sentis in principle re-
duced, since every node needsto hold aroute only to eachnode in the samecluster it belongs
to and to eachother cluster, and not to all the other nodes in the network (seealso the discus-
sion in Subsection 7.1.3.1about the assumption of adopting a at topological organization in
AntNet). The authors propose also other minor modi cations that are more simpli cations of
the AntNet's mechanisms more than real impr ovements. In particular, again, the authors have
misunderstood AntNet's behavior, and af rm that in AntNet data packetsare routed determin-
istically according to the link with the highest probability (while a whole section is speci cally
devoted to this issuein the main AntNet paper [119, Pages352-353]).Their AntNet-derived al-
gorithm, Adaptive-SDR was compared for two test networks of 16 and 49 nodes respectively to
their single-path implementation of AntNet and to OSPFand RIP. The ns-2 simulator has been
used. While AntNet, OSPF and RIP show similar performance, Adaptive-SDR shows much
better results for both throughput and averagedelay.

The sameauthors have also realized a short review on so-called swarm intelligence (in prac-
tice, ACO) algorithms for routing in networks [245]. Mor eover, in [243] they have also discussed
the conditions for the applicability of AntNet-like algorithms to wir elessnetworks, like satellite
and sensor networks. In particular, they have pointed out the importance of energy and radio
propagation issues,and have proposed some possible ways of incorporating theseaspectsin the
mechanismsused to search and score a path.

Sim and Sun (2003)[390] have made a quite detailed review paper on ACO approaches
for routing and load balancing, focusing in particular on discussing the issue of the dif ferent
methods (for both static and dynamic problems) devised to avoid early convergence in the
pheromone tables (also previously indicated as stagnation or locked decisions). In the same
paper the authors propose an ACO approach, named MACO, based on multiple colonies for
load balancing tasksin connection-oriented networks. The idea is to use multiple colonies and
pheromone repulsion among colonies in order to nd good disjoint path to allocate the traf ¢
sessions: at setup time of a traf ¢ session multiple (two in the example reported in the pa-
per) colonies are generated and concurrently search for feasible paths. The issue of how many
colonies should be generated in not considered. Differently from what is claimed in the pa-
per, AntNet and AntNet-FA, with their stochastic data spreading, comeswith a built-in way of
providing load balancing. However, the use of pheromone repulsion in order to favor the ex-
ploration of disjoint paths appears as promising and it has been already used also by Navarro
Varela and Sinclair (1999)[333] to solve (static) problems of virtual wavelength path routing
and wavelength allocations. For this class of problems the challenge consistsin allocating a
minimum number of wavelengths for eachlink by evenly distributing the wavelengths over the
different links, while atthe sametime minimizing the number of hops for eachpath. Pheromone
repulsion is used precisely to favor the even distribution of the wavelengths.

Tadrus and Bai (2003) [416] have implemented the QColony algorithm for QoS routing.
QColony is basedon AntNet but contains a number of new featuresspeci ¢ for QoS, such that
it is more correct to seeit as an interesting example of ACR. In QColony each node contains
several QoS pheromone tables, with eachtable used to route ants associatedto a dif ferent QoS
requirement. Each QoStable is associatedto a range of continuous bandwidth constraints (i.e.,
eachQoStable is related to one classof service in terms of provided range of bandwidth). QoS
sessionsask for a classof servicein terms of acceptablerange of bandwidth and maximum num-
ber of hops. The QoStables are built by the ants according to several proactive and on-demand
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schemes,and are used by the ants to search for feasible QoS paths at the setup time of anew ses-
sion. The system comprises several classesof ant agents, each classhas a dif ferent priority and
deals with a different task: search for best-efort paths, search for a QoS-feasiblepath at setup
time, retry of the search in caseof failur e of the rst search attempt, allocation/deallocation
of resources, search for alternative paths to be used by the QoS sessionsin caseof link/node
failur es. All the ants update the QoS tables, but with a strength which is proportional to their
priority and age. QColony shares several similarities with AntNet+SELA. In fact, both: make
use of different agentsfor the dif ferent tasks, search for a QoS-feasiblepath at setup time by us-
ing ants, send per-sessionants (so-called soldierantsin the caseof QColony) in order to provide
the QoS sessionwith a bundle of paths to deal with possible failur e situations, try to optimize
also the number of hops of the used paths. However, important differencesalso exist between
the two algorithms. In particular, one of the claims of QColony consists precisely in the fact
that purely local information is used at the nodes, while in the caseof AntNet+SELA the node
manager issuesits decisions on the basis of an OSPF-like topological description of the whole
network. The QColony's design is quite interesting, since it is another crystalline example of
how different types of agentsand on-demand/pr oactive generation strategiesare jointly neces-
sary in order to effectively deal with complex routing tasks. The performance of QColony has
been compared to that of ARS and to the selective ooding algorithm described in [79]. For
the considered scenarios(threenetworks up to 35nodes, and 10 ranges of bandwidth) QColony
has shown performance comparable to the competitors for small networks and mild traf ¢, and
much better performance for the larger networks and heavy traf ¢ loads.

Other work in the domain of QoSis that of Subing and Zemin (2001)[410] and Carrillo et al.
(2003)[74], that suggestalgorithms similar to QColony in the senseof using ants at setup time
and multiple QoS tables, but the structure of their algorithms is simpler and has less compo-
nents than that of QColony. The same authors of [74] have also made a preliminary theoretical
study on the general scalability of AntNet, showing the expectedgood level of scalability of the
approach [74].

Other implementations of both the ACO and AntNet paradigms are the works of: Gallego-
Schmid (1999)[181], who implemented a minor modi cation of AntNet in the general perspec-
tive of using it for network management, and Zhong (2002)[452], which is the rst who has
considered the issue of security when using AntNet, an issue that has been also pointed out
when ACR has been discussed, emphasizing the fact that ant agents should not be allowed to
directly modify the routing tables. The use of key certi cates and ant identi ers are proposed as
away to overcome to possible armful situations like: (i) generation of bogus backward ants in
order to promote/avoid a specic route, (i) dropping ant agentsin order to not allow them to
further update routing tables and/or nd a path through the current node, (iii) tampering the
backward ants information in order to generatewrong routing paths.

Wireless and mobile ad hoc networks

Matsuo and Mori (2001)[302] have proposed Acceleratedints Routing, which is an extension
to MANET s of the ideas of Subramanian et al. [411]. They add the rule that uniform ants do not
return to an already visited node, and make theseantsto hold the history about the n last visited
nodes. In this way, routing information can be updated not only toward the source, but all the
intermediate nodes. The algorithm heavily rely on the uniform ants, and no on-demand actions
aretaken. It hasbeencompared for a small 10nodes network to Q-routing, dual Q-routing [264],
and to the original algorithm making use of uniform ants, showing better performance than the
competitors. In alater paper [178] the algorithm was testedin a 56 node network, and compared
alsoto AntNet, again showing better performance and faster convergence.
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Céamara and Loureiro (2001)[69, 68] describe a location-based algorithm which makes use
of ant agentsto collect and disseminate routing information in MANET s. Every node keepsin a
routing table location information of all the other nodes, and routing paths are calculated with a
shortest path algorithm. To keep the tables up-to-date, information is exchangedlocally among
neighbors, and globally by sending ants to nodes further away. In practice, ants implement
an efcient form of ooding. The algorithm is compared to another popular location-based
algorithm, LAR [255] and shows lessoverhead and comparable performance.

Sigel, Denby, and Heéarat-Mascle (2002)[389] have applied a straightforwar d modi cation
(and simpli cation) of AntNet to the problem of adaptive routing in the LEO satellite network.
Some experimental results from simulations are discussed taking into account some possibly
realistic traf ¢ patterns in terms of both voice and data telecommunication. The algorithm is
compared to more a classical routing algorithms such as SPF(seenext chapter), as well asto
an "ideal” realization of it aimed at providing a kind of performance upper bound. Overall,
the performance of the proposed algorithm is near-optimal and much better than that of SPE
especially for high non-bursty traf cs.

Glnesetal. (2002)[211, 21Q intr oduced Ant-Colony-BasedRouting Algorithm (ARA), which
does not differ much from other popular MANET algorithms like AODV. In fact, it works in a
purely on-demand way, with both the forwar d and backward ants setting up the paths about the
node they are coming from. Also data packets do the same,reducing in this way the node for
sending more ants. The reported performance was slightly better than that of AODV but worse
than that of DSR[236] in highly dynamic environments.

Marwaha et al. (2002)[301] have proposed Ant-AODV , an hybrid algorithm combining
ants with the basic AODV behavior. A certain number of ants keepsgoing around the network
in amore or lessrandom manner, keeping track of the last n visited nodes and when they arrive
at a node they update its routing table. The behavior of the algorithm is like AODV, but the
presenceof the ants is supposed to boost AODV's performance. In fact, they proactively refresh
routing tables, increasing the chance that either the node will have a route available or one
of its neighbors has. Moreover, ants can discover better paths than those currently in use by
AODV and the paths canbererouted. According to the reported simulation studies, Ant-AODV
performs usually better than the simple ant-basedalgorithm or AODV separately.

In [14] Barasand Mehta (2003)proposetwo algorithms for MANET s. The rst is very sim-
ilar to AntNet: it is in fact purely proactive, trying to maintain pheromone entries for all the
destinations. It differs from AntNet becauseof data packets that are routed deterministically
and ants taking also random uniform decisions for the purpose of unbiased exploration. The
algorithm doesnot work very well, due to the large amount of routing overhead, and the inef -
cient route discovery. The secondversion of the algorithm, called ProbabilisticEmegentRouting
Algorithm (PERA), is much closerto AODV. In fact, the algorithm becomespurely reactive: ants
are only sentout when aroute is needed. Also, they are now broadcastinstead of being unicast
to a certain destination. In this way, the forwar d ants are in practice identical to route request
messagesin AODV and DSR. The only difference staysin the fact that multiple routes are set
up, but actually only the one with the highest probability is actually used by data, with the
other being available for quick recovery from link failur es. The performance of the algorithm is
comparable to that of AODV.

In [221], Heissenhiittel and Braun (2003) describe an ant-based algorithm for large scale
MANET s. The algorithm is quite complicate and makes use of geographical partitioning of the
node area. It sharessomeresemblancewith the Terminode project[40, 39].
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7.5 Summary

In this chapter four novel ACO algorithms for adaptive routing in telecommunication networks,
AntNet, AntNet-FA, AntHocNet, and AntNet+SELA, have been described and throughly dis-
cussed. Thesealgorithms cover awide range of possible network scenarios. Experimental result
are bereported in the next chapter, and only for the rst threeof them.

In addition to these algorithms, in this chapter we also intr oduced ACR, a high-level dis-
tributed control framework that specializesthe general ACO's ideas to the domain of network
routing and at the sametime provides a generalization of these sameideas in the dir ection of
integrating explicit learning components into the design of ACO algorithms.

AntNet, which was chronologically the rst of thesealgorithms to be developed, is a traf c-
adaptive multipath routing algorithm for best-effort datagram networks. It makes use of a strat-
egy based on:(i) ant-like mobile agents repeatedly and concurrently sampling paths between
assigned source and destination nodes, (ii) stochastic routing of data according to the local
pheromone values, with automatic load balancing and multipath routing effects, (iii) informa-
tion from both pheromone values (resulting from collective ant learning) and current status of
the local link queues(current congestion at the node) to take balanced ant routing decisions, (iv)
adaptive statistical models to track signi cant changesin the estimate end-to-end delays of the
sampled paths. The basic characteristics of the routing delivered by AntNet (traf c-adaptive,
and multipath), and the strategiesadopted to obtain thesebehaviors (active sampling by mobile
agents, stochastic routing, Monte Carlo learning, use of local queues information) are in some
senseconserved also in all the other algorithms. They can be seenas their true ngerprints.
Mor eover, we discussedin this and in the previous chapter why thesecharacteristicsand strate-
gies have to be seenasinnovative with respectto those of popular routing algorithms.

AntNet-F A is an impr ovement over AntNet in which both backward and forwar d ants make
use of high priority queues. AntNet-FA allows prompter reactions and always makes use of
information more up-to-date with respectto AntNet. AntNet-FA is expectedto always perform
equally or better than AntNet. This will be conrmed by the experimental results reported in
the next chapter.

ACR intr oduces a hierarchical organization into the previous schemes,with node managers
that are fully autonomic learning agents, and mobile ant-like agentsthat are under the direct
control of the node managersand serve for the purpose of non-local discovering and monitoring
of useful information. Evenif all the ACO routing algorithms described in this thesiscanbe seen
asinstancesof the ACR framework, the purpose of de ning ACR is more ambitious than apure
generalization of the ACO design guidelines for the speci c caseof network problems. ACR
de nes the general architecture of a multi-agent society basedon the integration of the ACO's
philosophy with ideas from the domain of reinforcement learning, with the aim of providing a
framework of referencefor the design and implementation of fully autonomic routing systems
in the same spirit asdescribed in more general terms in [25Q] (fully distributed systemsable to
globally self-govern through self-tuning, self-optimization, self-management,..., of the single
autonomic unit that socially interacts with all the other units). ACR points out the critical issues
of the scheduling of the ant-like agents,the de nition of their characteristics, and the ability to
deal effectively with a range of different possible event (such that some diversity is necessary
into the population of the ant-like agents).

In order to show how these ACR issuescan be (partly) dealt with, two more novel routing
algorithms have beendescribed: AntNet+SELA, for QoSrouting in ATM networks, and AntHoc-
Net, for best-effort routing in mobile ad hoc networks. The purpose of introducing these two
additional algorithms was twofold: from one hand they addressmore complex routing problems
than those considered by AntNet and AntNet-F A, such that that they are practical examples of
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how to deal with the issuesof ant scheduling, diversity, responseto several dif ferent high-level
events, and so on, raised up in ACR. So,they can be seenas practical instancesof ACR. On the
other hand, with AntNet+SELA and AntHocNet in addition to AntNet and AntNet-FA, we have
covered the majority of the routing scenariosof practical interest.

In AntNet+SELA the node managers, that are dir ectly responsible for both routing and ad-
mission decisions, are designed after the stochastiestimatorearningautomata(SELA) [430] used
in the SELA-routing distributed system[8]. They make use of severaltypes of agents: (i) mobile
ant-like (perception) agentsto collect non-local information, and that are generated according
to both on-demand (at sessionsetup time) and proactive generation schemes,and (ii) mobile
effectors agents used to tear down paths and to gather specic information about traf ¢ pro-
les of running applications. The different perception agents are designed after the AntNet-FA
ants, however, they are generatedwith dif ferent parametersin order to have dif ferent behaviors
according to the dif ferent task they are involved in.

AntHocNet is areactive-proactive multipath algorithm for routing in MANET s. Node man-
agersare not really learning agentsasit was the casefor AntNet+SELA, but rather nite state
machines responding more or less reactively to external events and generating the appropri-
ate action and type of ant-like agent. In particular, the design of AntHocNet features: reactive
agentsto setup paths toward a previously unknown destination, per-sessionproactive gathering
of information, and agentsfor the explicit managementof link failur e situations (repair and noti-
cation to the neighbors). The fact that a strong reactive component is included in the algorithm
is partially due to the fact that in such highly dynamic environments it might be of questionable
utility to rely on approachesstrongly basedon detecting and learning environment's regulari-
ties. Somelevel of learning and proactivity is expectedto be of some usefulness,but at the same
time the core strategy is expectedto be areactive one.

The chapter has also extensively reviewed related work in the domain of ant-inspir ed algo-
rithms for routing tasks. The review has pointed out the main different solutions proposed so
far, aswell ashas served to remark the interestthat AntNet and, more in general, ACO ideas,
have aroused in the routing community .
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CHAPTERS8

Experimental results for ACO
routing algorithms

This chapter is devoted to the presentation of extensive experimental results concerning AntNet,
AntNet-F A, and AntHocNet. The majority of the results concern AntNet and AntNet-FA and re-
fer to the caseof best-effortouting in wiredIP networks As discussedin Subsection7.1.1,failur e
eventsare not taken into account, the focus being on the study of traf c-adaptiveness and on the
effective use of multiple paths. Some preliminary results concerning AntHocNet and routing
mobile ad hoc networks are also briey reported. However, AntHocNet is still under develop-
ment and testing, such that theseresults must be considered aspreliminary ones.

All the results refer to simulations The algorithms have not beentested yet on real networks,
even if some explicit interestin this sensehas beenshown by someimportant network compa-
nies. Actually, alarge part of the reseachin the eld of networks is basedon simulation studies,
due to the dif culties related to the use of effective mathematical tools to study the properties
of routing algorithms under realistic assumptions (e.g., seethe extensive discussions in [325]).
The simulator that has beenimplemented and used for the experiments has the characteristics
discussedin Subsection7.1.1.

No mathematical proofs concerning the speci ¢ properties of the algorithms are provided. In
fact, a sound mathematical treatment for the non-stationary casewould require the knowledge
of the dynamics of the input traf ¢ processesput this is precisely what is a priori not known. If
suchknowledge is available, an optimal routing approach (Subsection6.4.1)should be de nitely
adopted (at least in the wir ed case,while the situation is way more complex in the wir eless
and mobile case). Moreover, such dynamics should be representablein terms of low-variance
stationary stochastic processedo be amenable to effective mathematical analysis. On the other
hand, it is not immediately obvious which type of convergenceor stability is appropriate to be
studied under conditions of non-stationarity .

Concerning convergence under conditions of traf ¢ stationarity, the general proofs of con-
vergenceprovided for the more general ACO caseby Stiitzle and Dorigo [403] and Gutjahr [214,
215 216 canintuitively guarantee that a basicform of an AntNet-like algorithm, will converge
to an optimal solution. Where the optimality must be intended in some sensein between the
optimal shortest path solution and the optimal routing solution. In fact, the optimization strat-
egy followed by AntNet and AntNet-FA can be situated in between the criteria used by these
two approaches. However, ACR algorithms are intended for traf c-adaptive routing. The case
of static or quasi-static traf ¢ patterns is in a sensenot of interest. Generic ACR algorithms are
not expectedto be really competitive with more classicalapproachesfor the static case.

The experimental results will show that under all the considered situations AntNet and
AntNet-F A clearly outperform all the considered ve competitors, that include several traf c-
adaptive state-of-the-art algorithms. Testshave beenrun for a number of different traf ¢ pat-
terns and for ve different topologies (two real-world ones,two arti cially designed ones,and
one setof randomly generated ones containing up to 150nodes). End-to-end packet delay and
throughput have beenconsidered as measures of performance, asis common practice.
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Also the results for AntHocNet show very good performance under a variety of scenarios
and up to networks with 2000nodes. Instead of varying the traf ¢ load, aswe have done in the
wir ed case,we have rather changed the conditions affecting the topological characteristics of
the network (i.e.,the number of nodes, their average density, and their mobility). In spite of the
fact that some scenarioswere not really suited for a reactive-proactive multipath approach, An-
tHocNet shows performance (in terms of packet delivery ratio and end-to-end delays) always
comparable or better than AODV [349], the popular state-of-the-art algorithm that we have used
for comparison. In this case,we ran simulation testsusing Qualnet[354], a commercial network
simulator providing packet-level resolution and realistic implementation of all the network lay-
ers, as well as of the radio propagation physics and of the most popular protocols, including
AODV.

At the end of the chapter the rationale behind the excellent performance that has been ob-
served is discussed, focusing in particular on AntNet and AntNet-FA and on their differences
with respectto classicallink-state and distance-vector algorithms.

Organization of the chapter

Section 8.1 is completely devoted to the detailed description of the experimental settings. Its
three subsectionsdescribe, respectively, the considered network topologies, traf ¢ patterns, and
performance metrics.

Section 8.2 describesthe set of six state-of-the-art routing algorithms that have beenused to
evaluate by comparison the performance of AntNet and AntNet-FA. Subsection8.2.1discusses
the way parameters have beensetfor all the considered algorithms.

Section 8.3 and its subsectionsreport all the experimental results obtained by simulation.
Subsectionsfrom 8.3.1to 8.3.5report the performance of all the considered algorithms for ve
different types of network (starting from a simple hand-designed 9-nodes network and end-
ing with 150-noderandomly generated networks). Subsection8.3.6shows the amount of traf-
¢ overhead due to routing packetsfor all the implemented algorithms, while Subsection8.3.7
shows the behavior of AntNet as a function of the ant generation rate at the nodes. Subsec-
tion 8.3.8discussesthe importance of using adaptive reinforcementsin AntNet by showing the
performance with and without path evaluation.

Section8.4 rst describesthe experimental settings used to test the performance of AntHoc-
Net, which are clearly quite different from those adopted in the wir ed and no-mobility , caseof
AntNet and AntNet-F A, and then reports the result from simulation studies. The performance of
AntHocNet are compared to those of AODV in function of the number of nodes, of their density,
and their mobility . We tested situation from 50up to 2000nodes.

The chapter ends with Section8.5,which contains a discussion of the reasonsbehind the fact
that the implemented ACO algorithms for routing problems outperform all the other considered
algorithms.

8.1 Experimental settings

The functioning of atelecommunication network is governed by many components, which may
interact in avery complex way. The characteristicsof the network itself, those of the input traf c,
aswell asthe metrics used for performance evaluation, are all components which critically affect
the behavior of the routing algorithm. In order to cover a wide range of possible and realistic
situations, different settings for each of these components have been considered. The following



8.1 EXPERIMENTAL SETTINGS 259

two subsections show which type of networks and traf ¢ patterns have been used to run the
experiments, while the last subsection discussesthe performance metrics.

8.1.1 Topology and physical properties of the networks

In the ran experiments, the following networks have been considered: a small hand designed
network, two networks modeled on the characteristicsof two dif ferent real-world networks, one
network with somehow regular grid-like topology, and two classesof randomly generated net-
works with a rather high number of nodes. Their characteristics are described in the following
of this subsection. For eachnetwork a triple of numbers ( , , N) is given, indicating respec-
tively the mean shortest path distance in terms of hops between all pairs of nodes, the variance
of this mean value, and the total number of nodes. Thesethreenumbers are intended to provide
a measure concerning the degree of connectivity and balancing of the network. It canbein gen-
eral said that the dif culty of the routing problem, for the sameinput traf ¢, increaseswith the
value of thesenumbers.

SimpleNet(1.9,0.7,8) is a small network designed ad-hodo closely study how the dif ferent
algorithms manageto distribute the load on the threedifferent possible paths. SimpleNet
is composed of 8 nodes and 9 bi-dir ectional links, eachwith abandwidth of 10Mbit/s and
propagation delay of 1 msec. The topology is shown in Figure 8.1.

Figure 8.1: SimpleNet. Numberswithin circlesarenodeidenti ers. Shadedodeshavea specialnterpretationde-
scribedateron. Eachedgen thegraphrepresents pair ofdirectedinks. Link bandwidthis 10 Mbit/sec,propagation
delayis 1 msec.

NSFNET (2.2,0.8,14)is the old USA T1 backbone (1987).NSFNET is a WAN composed of
14nodes and 21 bi-dir ectional links with abandwidth of 1.5Mbit/s. Its topology is shown
in Figure 8.2. Propagation delays range from 4 to 20 msec. NSFNET is a well balanced
network.

Figure 8.2: NSFNET. Eachedgen the graphrepiesentsa pair of directedinks. Link bandwidthis 1.5 Mbit/sec,
propagatiordelaysrangefrom4 to 20 msecandareindicatedby the numbersreportedcloseo thelinks.
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NTTnet (6.5, 3.8, 57) is modeled on the former NTT (Nippon Telephone and Telegraph
company) ber -optic corporate backbone. NTTnet is a 57 nodes, 162 bi-dir ectional links
network. Link bandwidth is of 6 Mbit/sec, while propagation delays range from around 1
to 5 msec. The topology is shown in Figure 8.3. NTTnet is not awell balanced network.

Figure 8.3: NTTnet. Eachedgein the graphrepresentsa pair of directedlinks. Link bandwidthis 6 Mbit/sec,
propagatiordelaysrangefrom1 to 5 msec.

6x6Net(6.3,3.2,36) is a 36 nodes network with aregular topology and a sort of bottleneck
path separating the two equal halves of the network. This network has beenintr oduced
by Boyan and Littman [56] in their work on Q-Routing. In a sense.this is a “pathological”

network, considered its regularity and the bottleneck path. All the links have bandwidth

of 10 Mbit/s and propagation delay of 1 msec.

Figure 8.4: 6x6Net. Eachedgein the graphrepresentsa pair of directedinks. For all thelinks the bandwidthis
equalto 10 Mbit/secandthe propagatiordelayis equalto 1 msec.

RandomNetworks(4.7,1.8,100)and (5.5,2.1,150)are two setsof randomly generated net-
works of respectively 100and 150nodes. The level of connectivity of eachnode has been
forcedto range between 2 and 5. The reported values for the mean shortest path distances
and their variances are averagesover the 10randomly generated networks that have been
used for the experiments. Every bi-dir ectional link hasthe samebandwidth of 1 Mbit/sec,
while the propagation delays have beengeneratedin a uniform random way over the in-
terval [0.01,0.001].

For all the networks the probability of node or link failur e is equal to 0. Node buffers are of
1 Gbit, and the maximum time-to-live (TTL) for both data packetsand routing packetsis setto
15sec.
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8.1.2 Traf c patterns

Traf ¢ isde ned in terms of open sessionsbetween pairs of dif ferent nodes. Traf ¢ patterns over
the whole network depend on the characteristics of eachsessionand on their geographical and
temporal distribution.

Each single sessionis characterized by the number of transmitted packets and by the dis-
tribution of their sizesand inter-arrival times. Sessionsover the network are characterized by
their geographical distribution and by their inter-arrival time. The geographical distribution is
controlled by the probability assignedto eachnode to be selectedas a start- or end-point of a
session.

Arrival of new sessions at the nodes

The following three different types of basic processeshave been used in the experiments to
regulate the arrival of new sessionsat the nodes:

Poisson(P): for each node an independent Poisson processregulates the arrival of new
sessions,i.e., sessions'inter-arrival times are negative exponentially distributed.

Fixed (F): at the beginning of the simulation an assigned number of sessionsis set up at
eachnode, and they keep sending data for all the remainder of the simulation.

TemporaryHot Spots(TMPHS): in this casesome nodes actlike temporary hot spots, that is,
they generatea heavy load of traf ¢ but only for a short time interval.

Geographical distribution of traf ¢ sessions

The geographicatlistribution of the active sessionsall over the network is de ned according to
one of the following threebasic patterns:

Uniform (U): the characteristics of the processthat at eachnode is regulating the arrival of
new sessionsare the samefor all the nodesin the network.

Random(R): the characteristics of the processthat at eachnode is regulating the arrival of
new sessionsare set up according to the samerandomized procedure for all the network
nodes.

Hot Spots(HS): some nodes act as hot spots, concentrating a high rate of input/output
traf c. In this case,a xed number of sessionsare opened from the hot spots toward all
the other nodes.

Complex traf ¢ patterns have beenobtained by combining in various ways the above basic
patterns for temporal and spatial distribution (e.g.,F-CBR,UP, UP-HS). For example, UP traf ¢
meansthat for eachnode an identical Poisson processis regulating the arrival of new sessions,
while RP means that the Poisson processis different for each node and its characteristics are
drawn from arandom distribution. UP-HS meansthat a Hot Spotstraf ¢ processis superim-
posedto a UP traf ¢, and soon.

Packet stream of traf ¢ sessions

Concerning the characteristics of the bit stream generated by eachsession,two basictypes have
beenconsidered:
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ConstantBit Rate(CBR):the per-sessionbit rate is kept constant. Examples of applications
of CBR streams are the voice signal in a telephone network, which is converted into a
stream of bits with a constant rate of 64 Kbit/sec, and the MPEG1 compression standard,
which converts a video signal into a stream of 1.5Mbit/sec.

GenericVariableBit Rate(GVBR): the per-sessiongenerated bit rate is time varying. The
term GVBR is a broad generalization of the VBR term normally used to designate a bit
streamwith avariable bit rate but with known averagecharacteristicsand expected/admitted
uctuations. ! Here, a GVBR sessiongeneratespackets whose sizesand inter-arrival times
are variable and follow a negative exponential distribution. The information about these
characteristicsis never dir ectly used by the implemented routing algorithms.

The values used in the experiments to shapetraf ¢ patterns are values considered somehow
“r easonable” oncethe current network usageand computing power are taken into account. The
mean of the distribution of packet sizeshasbeensetto 4096bits in all the experiments.

8.1.3 Performance metrics

Results refer to measures of throughput, packetdelaysand network resoucesutilization. Results
for throughput are reported as average values without an associatedmeasure of variance. The
inter-trial variability isin fact usually very low, just afew percentof the averagevalue. Network
resource utilization is only considered with respectto the routing packets and is reported for
a single speci ¢ sample instance. Numerical results on packet delays are reported either by
displaying the whole empirical distribution or by using the statistic of the 90-th percentile. The
empirical distribution shows the complete pictur e of what happened during the observation
interval, but it might be dif cult to compare two empirical distributions. On the contrary, the
90-th percentile allows to compactly compare the algorithms on the basis of the upper value of
delay they beenhave able to keep the 90% of the correctly deliver ed packets. In other works on
routing, the mean packet delay is often used asa suf cient statistics for packet delays. However,
the mean value is of doubtful signi cance. In fact, packet delays can spread over a wide range
of values. This is anintrinsic characteristics of data networks: end-to-end delays canrange from
very low values for sessionsopen between adjacentnodes and connected by fast links, to much
higher values in the caseof sessionsinvolving nodes very far apart and possibly connected by
several slow links. According to this, in general, the empirical distribution of packet delays
cannot be meaningfully parametrized in terms of the mean and variance. This is why here the
display of the whole empirical distribution and/or the statistics of the 90-th percentile have been
used.

Most of the results will show little differencein throughput among the algorithms, while
more marked differenceswill concern end-to-end delays. This is also a consequenceof the fact
that node buffers are quite large. Therefore, packets can accumulate long delays while suffering
little throughput loss due to dropping becauseof lack of buffer space(however, the 15 seconds
TTL put alimit on the maximum delay that a packet can experience). Some experiments con-
ducted with smaller buffers have con rmed the obtained results with dif ferencesmore marked
for what concernsthroughput.

1 The knowledge about the characteristics of the incoming CBRor VBR bit streamsis of fundamental importance in
networks ableto deliver QoS.lIt is on the basisof this knowledge that the network canaccept/r efusethe sessionrequests,
and, in caseof acceptance allocate/r eservenecessaryresources.
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8.2 Routing algorithms used for comparison

The performance of AntNet and AntNet-FA is compared to that of the following routing algo-
rithms which aretaken asrepresentative of the state-of-the-artin the elds of telecommunication
and machine learning for both the casesof static and adaptive algorithms.

OSPF (static, link-state): the algorithm considered hereis asimplied implementation of OSPF
[328], the most used Interior Gateway Protocol on the Internet (seeChapter 6). According
to the assumptions made for the communication network model as described in Subsec-
tion 7.1.1(no failur e situations or topological modi cations), the routing protocol here
called OSPFdoes not mirror the real OSPF protocol in its details. It only retains some
basic features of OSPF Link costs are statically assigned on the basis of the link physical
characteristics. Routing tables are set as the result of the shortest (minimum end-to-end
delay) path computation for a sample data packet of 512bytes. This way of assigning link
costspenalizes the implemented version of OSPFwith respectto the one used on real net-
works, where costsare setup by network administrators, who canuse additional heuristic
and the on- eld knowledge they have about local traf ¢ workloads. Sinceno topological
alterations are considered, the periodically ooded link state advertising messageshave
always the samecontents. As a result, the routing tables do not change over time and the
algorithm is here labeled as “static”, while the real OSPFis a dynamic algorithm in the
sensespeci ed in Subsection6.2.2(i.e., topology-adaptive).

SPF(adaptive, link-state): this algorithm is a sort of prototype of link-statealgorithmswith adap-
tive link costs A similar algorithm was implemented in the second version of ARPANET
[304] and in its successiverevisions [252] (see Section 6.5). The implementation consid-
ered here makes use of the same ooding algorithm used in the real implementation,
while link costs are assigned over a discrete scale of 20 values by using the ARPANET
hop-normalized-delagnetric? of Khanna and Zinky [252] and the the statistical window av-
eragemethoddescribed in [386]. Link costsare computed as weighted averagesbetween
short- and long-term real-valued statisticsre ecting a costmeasure (e.g., utilization, queu-
ing and/or transmission delay, etc.) over time intervals of assignedlength. The resulting
costvalues are then rescaledand saturated by alinear function in order to obtain a value
in the range f1;2;3;:::;20g. We have tried also other discrete and real-valued metrics in
addition to the discretized hop-normalized-delay, but none of them was able to provide
better performance and stability than the hop-normalized-delay one. The reason might
be that using a discrete scalereducesthe sensitivity of the algorithm but at the sametime
reducesalso undesirable oscillations.

BF (adaptive, distance-vector): isanimplementation of the asynchonouddistributedBellman-Ford
algorithm [26] making use of adaptive cost metrics. The basic structure of the algorithm
is the sameasdescribed in Subsection6.4.2.1,while link costsare calculated asin the SPF
case,that is, according to [386]. As discussedin Subsection6.4.2.1,several enhanced ver-
sions of the basic Bellman-Ford algorithm can be found in the literatur e (e.g., the Merlin-
Segall[310] and the Extended Bellman-Ford [82]). However, thesealgorithms mainly focus
on the problem of avoiding the countingto in nity , or, more in general, the slow conver-
gencerecovering from alink failur e. Thesealgorithms try to optimize the time necessary
to spread the information about the link failur e such that the risk of routing inconsisten-
ciesis much reduced. On the other hand, concerning dynamic situations other than link

2 Thetransmitting node monitors the averagepacketdelay d (queuing plus transmission time) and the averagepacket
transmission time t over observation windows of assignedtime length. From these measures,and assuming an M/M/1
queue model [26], a cost measure for the link utilization is calculated as1 t=d.
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failur es, their behavior is in general equivalent to that of the basic adaptive distributed
Bellman-Ford considered here.

Q-R (adaptive, distance-vector): this algorithm is afaithful implementation of the Q-Routingal-
gorithm proposed by Boyan and Littman [56]. The algorithm makes use of the Q-learning
[442] updating rule within a schemewhich is an online version of the asynchronous dis-
tributed Bellman-Ford algorithm. Q-learning is a popular reinforcement learning algo-
rithm designed for solving Markov decision processwithout relying on the use of the
environment model. Q-Routing learns online the values Qk(d;n), which are estimates of
the time to reachnode d from node k via the neighbor node n. The algorithm operatesas
follows. Upon sending a packet P from node k to neighbor node n with destination d, a
back packet Pp,ck is immediately generated from n to k. Ppack carries: (i) the information
about the current estimate

Qu(d) = min Qn(din9)

held at node n about the bestexpected time-to-go for destination d, and (i) the sum T,
of the queuing and transmission time experienced by P to hop from k to n. The sum

Qu(d;n) = Qu(d) + T
is used to update the k's Q-value for destination d and neighbor n:
Qu(din) = (Qu(din)  Q(din); 2 (0;1]:

Data packets are routed toward the neighbor currently associatedto the Q estimate. In
the BF schemerunning averagesfor link costsare calculated locally and then broadcastat
somehow regular intervals to the neighbors, that, in turn usethem to dir ectly update their
time-to-go estimates. In the Q-routing scheme,local estimates are sent from one node to
another after each packet hop, and time-to-go estimates are updated not by direct value
replacementbut rather using exponential averaging.

PQ-R (adaptive, distance-vector): this is the Predictive Q-Routing algorithm [84], which is an
extended and revised version of Q-Routing designed to possibly deal in a better way with
traf ¢ variability . In Q-routing, the bestlink (i.e., the one with the lowest Qg(d;n)) is
always deterministically chosenby data packets. Therefore, a neighbor n which has has
beenassociatedto a high value of Qk(d;n), for example becauseof a temporary high load
condition, will never be used again until all the other neighbors will be associatedto a
worse, that is, higher, Q-value. To overcome this potential problem, PQ-Rtry to learn a
model, called the recoveryate of the variation rate of the local link queues,and makes use
of it to probe also those links that, although do no have the lowest Q(d; n), shows a high
recovery rate. The idea is to give a chanceto those links that seemto have recovered from
that was only atemporary congestion.

Daemon (adaptive, centralized): this algorithm is de ned to provide a measure of an empirical
upper bound on the achievable performance. It is asort of idealalgorithm, in the sensethat
in general it cannot be implemented in practice since is at the sametime centralized and
makes use of a “daemon” able to instantaneously read the state of all the queuesin the
network such that shortest path calculations can be done for eachpacket hop according to
the up-to-date overall network status. A more preciseupper bound could have been de-
ned by assuming full knowledge on the input traf ¢ processesand then calculating the
optimal routing solution. However, such solution would have required to choosetraf ¢
patterns amenableto mathematical treatment, and would have ruled out the study of tem-
porary hot spots situations. On the other hand, the Daemon algorithm proposed here can
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be applied to any kind of traf ¢ patterns and does not require any additional knowledge.
The algorithm works asfollows.

Link costsarede ned in terms of the depletion time of the corresponding queue (similarly
to the strategy adopted in AntNet-FA), and the daemon knows at any time the cost of all
the links in the network. In order to assignthe next hop node, before eachpacket hop the
algorithm re-calculatesthe shortest path solution according to the current costsof all net-
work links. The next hop node is then chosenasthe one along the current minimum cost
path. In a sense,Daemon behavesasan SPFmaking use of instantaneous and continuous
information ooding.

Links costsexpressthe time necessaryfor a new packet of size s, to crossthe link | given
the current queues:
_ Sp a g .

G dl+h+(1 )h+ b
whered, is the transmission delay for link I, by is its bandwidth, q isthe currentsize(in bits)
of the queue of link |, and g is an exponential average of the size of the samelink queue. By
meansof the weight factor , aweighted averagebetween g and g is in practice calculated
in order to take into account both the current and the previous level of congestion along
the link (the value of hasbeensetto 0.4in all the ran experiments). Clearly, for each
recalculation of the shortest paths, the value of s, is setto zero for all links but the ones
connectedto the node where the current packet to be routed is located at.

8.2.1 Parameter values

All the implemented algorithms depend on their own setof parameters. For all the algorithms
the size of their routing packetsand the related elaboration time must be properly set. Settings
for thesespeci ¢ parameters are shown in Table 8.1.

Table 8.1: Characteristicof routing packetsfor the implementedalgorithms, exceptfor the Daemonalgorithm,
which doesot generateouting packetsN, is theincrementahumberof hopsmadeby theforwardant, jN , j is the
numberof neighborofthegenericnoden, andN is thetotal numberof networknodes.

] ” AntNet T AntNet-FA [ OSPFE SPF [ BF [ Q-R,PQ-R [

Packetsize (byte) 24+ 8Np 24+ 4Ny, 64+ 8iNnj | 24+ 12N 12
Packetprocessingtime (msec) 3 3 6 2 3

These parameters have been assigned on the basis of values used in previous simulation
works [5] and/or on the basis of heuristic evaluations taking into consideration information
encoding schemesand currently available computing power. The size for AntNet forwar d ants
has been determined as the same size of a BF packet plus 8 bytes for each hop to store the
information about the node addressand the traveling time. In the caseof AntNet-FA only 4
additional bytes are necessaryfor eachhop.

Exceptfor AntNet, the parameters speci ¢ to eachalgorithm have beenassignedby using the
best settings available in the literatur e, and/or through atuning processin order to obtain pos-
sibly better results. The length of the time interval between consecutive broadcasting of routing
information and the length of the time window to averagethe link costsare both setto the value
of 0.80or 3seconds,depending on the experiment, for SPFand BFE. The samevalues have beenset
to 30 secondsfor OSPF Link costsinside eachtime window are assigned asthe weighted sum
between the arithmetic average computed over the window and an exponential average with
decay factor equal to 0.9. The obtained values are mapped on a scaleof integer values ranging
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from 1 and 20, through a linear transformation with slope setto 20. The maximum variation
which is admitted from one time step to another is setto 1 (i.e., when costs are updated the
difference between the previous and the new cost can be either -1, 0, or 1). For Q-R and PQ-R
the transmission of routing information is totally data-driven. The used learning and adaptation
rates have beensetto the samevalues reported in the original papers [56, 84].

Concerning AntNet and AntNet-F A, the algorithms appear very robust to internal parame-
ter setting. Actually, the sameset of values have beenused for all the dif ferent experiments that
have beenran, without really going through a processof ne tuning experiment by experiment.
Most of the parameter values have been previously reported in the text at the moment the pa-
rameter was discussed. Therefore, they are not repeated here. The ant generation interval at
eachnode has beensetto 0.3seconds;Subsection8.3.6discussesthe robustnessof AntNet with
respectto this important parameter. Regarding the parameters of the statistical model M : the
value of ,weighting the number of the samplesconsidered in the model (seeEquation 7.2),has
beensetto 0.005,the c factor for the expressionof w (seePage207)has beensetto 0.3,and the
con dence level factor z to 1.70,implying acon dence level of approximately 65%.

8.3 Results for AntNet and AntNet-F A

For eachof the networks considered in Subsection8.1.1,performance has beenstudied for var-
ious traf ¢ patterns con gurations. Most of the experiments refer to the following two classes
of situations: (i) increasingtraf ¢ loads, from low congestion to near-saturation, (ii) low traf c
loads temporarily modi ed by the addition of near-saturation input traf c. Most of the results
concernonly AntNet and not AntNet-FA. A direct comparison between the two algorithms is
given on the two setsof larger, randomly generated networks.

In spite of the variety of the considered situations, both in terms of networks and traf ¢ pat-
terns, it cannot be claimed that an exhaustive experimental analysis has been carried out. The
universe of the possible situations of some practical interestis inevitably too large. According to
this fact, in the following the performance of algorithm A is said to be better of the performance
of algorithm B only if thereis a clear dif ferencebetween their performance. “Clear” is somehow
intended in the sensethat it is not necessaryto run any statistical test to assertthe differencein
performance, since it is immediately evidentthat a signi cant differenceit exists. In this sense,
in the following algorithms are ranked only when they provide really different performance,
otherwise, considered the large number of different traf ¢ situations that are notincluded in the
test suite, it is not reasonableto predict (or assert)any differencein the expected performance.
This approach could be formally translated into a statistical test procedurein which the accepta-
tion threshold is setto a very high value. In the following, sincethe differencesin performance
between AntNet (and AntNet-F A) and the other algorithms are usually quite striking, the use of
statistical testshasbeenjudged asunnecessaryin practice.

All reported data are averageaverl0trials. Eachtrial correspondsto 1000secondsf activity
in arealnetwork One thousand secondsshould representa time interval long enough to expire
all transients and to get enough statistical data to evaluate the behavior of the routing algorithm.
Before being fed with data traf ¢, the algorithms run for 500 secondsin conditions of absence
of data traf c. In this way, each algorithm can initialize the routing tables according to the
physical and topological characteristics of the network. The choice of 500secondsis completely
arbitrary. Usually a much shorter time is necessaryfor the algorithms to converge. However,
since this phase usually lasted only few secondsin real time, it was unnecessaryto de ne any
more optimized initialization procedure.

The values of the parameters specifying the characteristics of the traf c generationprocesses
are given in the gur e captions, with the following meaning: MSIA is the mean of the inter-
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arrival time distribution for new sessionsfor what concerns the the Poisson (P) case, MPIA
stands for the mean of the distribution of the inter-arrival time of data packets. In the CBR case,
MPIA indicates the xed packet production rate. HS is the number of nodes acting ashot-spots,
and MPIA-HS is the equivalent of MPIA for the hot-spot sessions. In the following, when not
otherwise explicitly stated,the shapeof the bit streamsin eachsessionis assumedto be of GVBR
type.

This is a summary of the observed results:

Under input traf ¢ corresponding to a low loadwith respectto the available network re-
sources,all the tested algorithms show similar performance. In this case,according to the
abovereasonings,it is very hard to assessvhether an algorithm is signi cantly better than
another or not. According to this fact, results for very low traf ¢ loads are not reported.

Under high, nearsaturation,loads all the tested algorithms are more or lessable to deliver
the input throughput. That is, in most of the cases.all the generatedtraf ¢ is routed with-
out incurring in major data losses. On the contrary, the resulting distributions for what
concernsthe packet delays show remarkable dif ferencesamong the dif ferent algorithms.
In some sense,almost all the input traf ¢ is delivered, but the paths followed by the pack-
ets are signi cantly different among the different algorithms, such that nal end-to-end
delays show large variations.

Signi cant differencesare also evident in the caseof temporarysaturationloads Saturation
is the situation in which heavy packet lossesand/or high values for packet delays are ob-
served. Therefore, saturation can be acceptedonly as a temporary situation. If it is not,
structural changesto the network characteristics, like adding new and faster connection
lines, should bein order. The traf ¢ load bringing a network in saturation canbein prin-
ciple estimated according to the physical characteristics of the network itself. However,
saturation usually appears before the physical limit is reached. In this case,is the routing
algorithm which is responsibleto bring the network in saturation. Therefore, for the same
physical network, saturation will happen in correspondenceto different traf ¢ loads ac-
cording to the different routing algorithm which is in use. The reference saturation load
considered in the reported experiments has beenthat observed for AntNet.

8.3.1 SimpleNet

Experiments with SimpleNet have beendesigned to closely study how the dif ferent algorithms
manageto distribute the load on the dif ferent available paths. In theseexperiments all the traf c,
of F-CBRtype, is directed from node 1 to node 6 (seeFigure 8.1), and the traf ¢ load has been
setto avalue higher than the bandwidth of a single link, sothat it cannot be routed ef ciently
over asingle path.

Results regarding throughput (Figure 8.5a)evidence a marked dif ference among the algo-
rithms. This differenceis determined by the joint effect coming from the little number of nodes
and the stationarity of the traf ¢ workload. AntNet is the only algorithm able to deliver al-
most all the generated data traf c: its throughput, after a short transient phase, approaches
very closely the level of that delivered by the Daemon algorithm. PQ-R attains a steady value
approximately 15% inferior to that obtained by AntNet. The other algorithms behave poorly,
stabilizing on values of about 30% inferior to those provided by AntNet. In this caseit is
rather clear that AntNet is the only algorithm able to exploit at best all the three available
paths hl; 8;7; 6i; hl; 3; 5; 6i ; hl; 2; 4; 5; 6i to distribute the data traf ¢ without generating counter-
productive oscillations. The AntNet's stochastic routing of the data packet plays in this casea
fundamental role to achieve results of better quality. Results for throughput are con rmed by
those for packet delays, reported in the graph of Figure 8.5b. The differencesin the empirical
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distributions for packet delays re ect approximatively the same proportions evidenced in the
throughput case.
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Figure 8.5: SimpleNet: Comparisorofalgorithmsfor F-CBRtraf ¢ directedromnodel to node6 (MPIA = 0.0003
sec).(a) Throughput,and (b) empiricaldistribution of theend-to-endiatapacketdelays.

8.3.2 NSFNET

Performance on NSFNET have beentested using UP, RP, UP-HS and TMPHS-UP traf ¢ patterns.
For all the considered cases,all the algorithms behave similarly with respectto throughput,
while major differencesare apparent for packet delays. For each one of the UP, RP and UP-
HS cases,we have ran a sequenceof ve distinct experiments sets, each of ten repeated trials.
The generatedworkload is gradually increasedat eachsetstarting from aninitial low workload
until a near-saturation one is reached. The workload is increasedby reducing the time interval
between sessions'inter -arrivals.

UP TRAFFIC - WORKLOAD RANGING FROM LOW TO NEAR-SATURATION

In this case dif ferencesin throughput (Figure 8.6a)are small: the bestperforming algorithms are
BF and SPE which can attain performance of only about 10% inferior to those of Daemon, and
of the same amount better than those of AntNet, Q-R and PQ-R .2 while OSPFbehavesslightly
better than these last ones. Concerning delays (Figure 8.6b) the pictur e is rather different: it
seemsthat all the algorithms but AntNet have beenable to produce a quite good throughput at
the expensesof a much worse result for end-to-end delays, asit will also happen in the majority
of the ran experiments. OSPF Q-R and PQ-R show really poor results (delays of order 2 or more
secondshave to be considered asvery high values, evenif considering the 90-th percentile of the
distribution). BF and SPFshow a similar behavior, with performance of order 50% worse than
those obtained by AntNet and of order 65%worse than Daemon.

3 In theseand in some of the experiments presentedin the following, PQ-R's performance is slightly worse than that
of Q-R. This seemsto bein contrast with the results presentedby the PQ-R'sauthors in the article wherethey intr oduced
PQ-R[84]. A possible explanation of such a behavior the fact that: (i) their link recovery rate has beendesigned having
in mind a discrete-time system while in the ran simulations time is a continuous variable, and (ii) the experimental
and simulation conditions are rather different, due to the fact that the simulator they have used is quite far from being
realistic. Mor eover, in the paper the way traf ¢ patterns are generated is not speci ed.
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Figure 8.6: NSFNET: Comparisorof algorithmsfor increasingworkloadunder UP traf ¢ conditions. Theloadis
increasedy reducingthe MSIA valuefrom 2.4 to 2 second¢MPIA = 0.005sec). (a) Throughput,and (b) 90-th
percentileof the empiricaldistribution of the end-to-endiatapacketelays.

RP TRAFFIC - WORKLOAD RANGING FROM LOW TO NEAR-SATURATION

In the RP case(Figure 8.7a),the throughput generated by AntNet, SPFand BFlook very similar,
although AntNet shows a slightly better performance. OSPFand PQ-R behave only slightly
worse than SPFand BF, while Q-R is the worst performing algorithm. Daemon is able to obtain
only slightly better results than AntNet. Again, looking at the results for end-to-end delays
(Figure 8.7b), OSPFE Q-R and PQ-R perform quite bad, while SPF'sresults are a bit better than
those of BF but of order 40%worse than those of AntNet. Daemon s in this casefar better, which
might be an indication of the fact that the testbed was rather dif cult.

m2.8 m2.7 02.6 025 m24 m2.8 m2.7 02.6 025 m2.4

11 2
4.0

3.5

=
S)

3.0

[

2.0

1.5

1.0

Throughput (10° bit/sec)

0.5 -

90-th percentile of packet delays (sec)

0.0 ~
AntNet  OSPF SPF BF QR PQ-R  Daemon AntNet  OSPF SPF BF QR PQ-R  Daemon

(@) (b)

Figure 8.7: NSFNET: Comparisorof algorithmsfor increasingworkloadunder RP traf ¢ conditions. Theloadis
increasedy reducingthe MSIA valuefrom2.8to 2.4 second§MPIA = 0.005sec).(a) Throughput,and (b) 90-th
percentileof the empiricaldistribution of the end-to-endiatapacketelays.

UP-HSTRAFFIC - WORKLOAD RANGING FROM LOW TO NEAR-SATURATION

In this casepacket burstiness is setto a much lower level than in the previous casesdue to
the additional load given by the hot spots. Throughput (Figure 8.8a)for AntNet, SPF BF, Q-R
and Daemon are very similar, while OSPFand PQ-R clearly obtain much worse results. Again
(Figure 8.8b),end-to-end delays results for OSPF Q-R and PQ-R are much worse than those for
the other algorithms (they are so much worse that actually they do not t in the chosenscale).
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AntNet is still the bestperforming algorithm. In this case,dif ferenceswith SPFare of order 20%,
and of 40%with respectto BF. Daemon performs about 50%better than AntNet and scalesmuch
better than AntNet, which, again, indicates that the testbed was rather dif cult.
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Figure 8.8: NSFNET: Comparisorof algorithmsfor increasingload for UP-HS traf c. Theloadis increasedy
reducingthe MSIA valuefrom2.4to 2.0 second¢MPIA = 0.3secHS = 4, MPIA-HS = 0.04sec).(a) Throughput,
and (b) 90-th percentileof the empiricaldistribution of theend-to-endiatapacketdelays.

TMPHS-UP TRAFFIC

Figure 8.9 shows how the algorithms behavein the caseof a TMPHS-UP situation. At time t =
400four hot spot nodes areturned on and superimposed to the existing, light, UP traf ¢ (packet
burstiness for the HS sessionsis much higher than that for the UP sessions).The transient is held
for 120seconds. The graph shows the details of the typical answer curves observed during the
experiments. Reported values are a sort of “instantaneous” values for throughput and packet
delays, computed as the average of the values observed during moving time windows of 5
seconds. Most of the algorithms have a similar, very good, performance asfar asthroughput is
concerned. Only OSPFand PQ-R,lose afew percent of the packetsduring the transitory period.
The graph of packet delays con rms previous results. SPFand BF show similar behavior, with
performance of about 20% worse than AntNet and 45% worse than Daemon. The other three
algorithms show a big out-of-scale jump, clearly being unable to adapt properly to the sudden
increasein the workload.

8.3.3 NTTnet

The same set of experiments run on NSFNET have been also run on NTTnet. Results are in
this caseeven sharper than those obtained with NSFNET: AntNet clearly outperforms all the
competitor algorithms.

UP TRAFFIC - WORKLOAD RANGING FROM LOW TO NEAR-SATURATION

In the UP case,aswell as,in the RP and UP-HS cases dif ferencesin throughput are not signi -
cant (Figures8.10a,8.11aand 8.12a).All the algorithms, with the exception of OSPF, are able to
deliver more or lessthe samethroughput asDaemon does.

Concerning delays (Figure 8.10b),dif ferencesbetween AntNet and the other algorithms are
of one or more orders of magnitude. AntNet's packet delays are very closeto those obtained by
Daemon. SPFis the third best, but its performance is about of 80% worse than that of AntNet.
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Figure 8.9: NSFNET: Comparisonof algorithms for transient saturation conditionswith TMPHS-UP traf ¢
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bothaveragedn the basisof thevaluesobservedver5 secondsnovingwindows.

BF performs similarly to SPFbut slightly worse than it. AntNet, SPFand BF all show a regu-
lar behavior with the increaseof the workload, as expected. On the contrary, Q-R, PQ-R and
OSPFshow a somehow more irr egular behavior. This might be due to the fact that the consid-
ered workload is already in saturation zone for these algorithms, such that irr egular dynamics
may in general appear. The performance of Q-R and PQ-R are close to each other, with Q-R
slightly better than PQ-R, but however much worse than that of AntNet. OSPFresponse,both
for throughput and packet delays is very poor: the end-to-end delays 90-th percentile for the
caseof the heaviestworkload is about 50times that of AntNet.
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Figure 8.10: NTTnet: Comparisorof algorithmsfor increasingworkloadunder UP traf ¢ conditions. Theloadis
increasedy reducingthe MSIA valuefrom3.1to 2.7 second§MPIA = 0.005sec).(a) Throughput,and (b) 90-th
percentileof the empiricaldistribution of the end-to-endiatapacketelays.
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RP TRAFFIC - WORKLOAD RANGING FROM LOW TO NEAR-SATURATION

Again, the differencesin the deliver ed throughput arelittle for all the considered algorithms but
OSPFE which delivers about the 15%lessthan the others.

The pictur e for end-to-end delays is similar to that observed for the caseof UP traf c. The
most notable dif ferencelies in the even larger dif ferencebetween AntNet's performance, which
is again very closeto that of Daemon, and that of the other algorithms. SPF which is the best
performing algorithm among the competitors, has a value of 90-th percentile of end-to-end de-
lays about ten times bigger than that provided by AntNet. The difference between SPFand
BF performance is of about 10%. PQ-R and Q-R's delays are of the same order of magnitude,
with PQ-R performing slightly better, but still about the double of those of SPE OSPFvalues for
packet delays are completely out-of-scale with respectto those of all the other algorithms.
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Figure 8.11: NTTnet: Comparisorof algorithmsfor increasingworkloadunder RP traf ¢ conditions. Theloadis
increasedy reducingthe MSIA valuefrom3.1to0 2.7 second¢MPIA = 0.005sec).(a) Throughput,and (b) 90-th
percentileoftheempiricaldistribution of the end-to-enddatapacketlelays.

UP-HSTRAFFIC - WORKLOAD RANGING FROM LOW TO NEAR-SATURATION

In this casetoo, throughput results are practically the same for all the algorithms but OSPRK
which shows a throughput more than 25% less of that of the other algorithms (Figure 8.12a).
In addition to this, OSPFalso shows an irregular behavior, with the throughput which is either
decreasing or showing a slow increasewith the increasing of the offered workload. Actually,
this apparently contradictory behavior is counterbalanced by the behavior for packet delays,
which is increasing with the increaseof the workload, asFigure 8.12bshows. In this case,due
to the heavy traf ¢ load, alot of packets are discarded, such that the throughput is decreasing,
but, at the sametime, OSPFis able to forwar d the surviving packetsto their destinations with

decreasingdelays. The other algorithms show a more regular behavior. Again, the performance
of AntNet for packet delays are very closeto that obtained by Daemon, and much better than
that of the other competitors. SPFand BF show similar results, while Q-R performs comparably
but in a more irregular way. Finally, PQ-R s in this casethe third best algorithm, with delays
about four times larger than those of AntNet.

TMPHSUP TRAFFIC

The TMPHS-UP sudden load variation experiment (Figure 8.13)con rms the previous results.
OSPFis not able to adequately follow the variation both for throughput and delays. On the other
hand, all the other algorithms are able to follow the sudden increasein the offered throughput,
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Figure 8.12: NTTnet: Comparisorof algorithmsfor increasingworkloadunder UP-HS traf ¢ conditions.Theload
is increasedy reducingthe MSIA valuefrom4.1to 3.7 second¢MPIA = 0.3secHS = 4, MPIA-HS = 0.05sec).
(a) Throughput,and (b) 90-th percentileof the empiricaldistribution of the end-to-endiatapacketdelays.

but only AntNet and Daemon show a clearly regular behavior. Dif ferencesin packet delays are
striking. AntNet performance is very closeto that obtained by Daemon (the respectivecurves are
practically superimposed at the scaleused in the gur e). Among the other algorithms, SPFand
BF are the best ones, although their responseis rather irregular and, in any case,much worse
than that of AntNet. OSPFand Q-R are out-of-scale and show a curve with a very delayed
recovering. PQ-R, after a huge jump, which takesthe graph out-of-scale in the rst 40 seconds
after hot spots are turned on, shows a trend approaching that of BFand SPFE
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8.3.4 6x6Net

The results reported in this subsection refer to the 6x6Net network. Only one single traf ¢ sit-
uation is considered for this network which has been designed by the authors of Q-R. The big
differencein the observed performance between AntNet and the other considered algorithms,
aswell asthe fact that this network is arather pathological one, did not stimulated the need for a
more extensive setof experiments. The considered traf ¢ situation is of type UP with a medium
level of workload.

In Figure 8.14athroughput curves generatedby AntNet, Q-R and PQ-Rare quite similar even
if AntNet shows slightly better performance. The other threealgorithms, and OSPFin particular,
are able to deliver much lessthroughput.

As usual, AntNet's packet delays are much lower than those of all the other algorithms (Fig-
ure 8.14b). The second best algorithm is OSPF, whose throughput was on the other hand the
worst one. All the other algorithms show quite poor performance: their packet delays distribu-
tion cannot even be fully representedon the reported scaleof up to 2 seconds.
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Figure 8.14: 6x6net Comparisonof algorithms for traf ¢ situation of type UP with medium level workload
(MSIA=1.0, MPIA=0.1). (a) Throughput,and (b) 90-th percentile of the empiricaldistribution of the end-to-end
datapacketelays.

8.3.5 Larger randomly generated networks

This subsection reports the experimental results for the caseof randomly generated networks.
The number of nodes of the networks is signi cantly larger than in the previous cases.Reported
data are the average over 10trials, where for eachtrial a different randomly generated network
has beenused.

Results also concern the performance of AntNet-FA. The performance of all the other algo-
rithms considered so far but Daemon are also reported. Daemon has been excluded becauseit
was too demanding from a computational point of view due to the high number of nodes.

100-NobDESRANDOM NETWORKS- UP TRAFFIC

Figure 8.15shows the experimental results for a setof 100-nodesrandomly generated networks
under heavy UP workload. In this caseall the algorithms have been able to deliver the same
amount of throughput, while, once again, differencesin the distribution of end-to-end delays
are striking. AntNet-FA is by far the best performing algorithm, followed by AntNet, while all
the competitors perform about 30%-40%worse.
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150-NODESRANDOM NETWORKS - RP TRAFFIC

Figure 8.16reports the experimental results for a setof 150-nodesrandomly generated networks
under heavy RPworkload. In this casedif ferencesare signi cant for both throughput and packet
delays.

Only AntNet, AntNet-FA and SPFare able to follow the generated throughput without
losses, OSPF behaves only slightly worse, while all the other algorithms can only deliver a
throughput about 35%lower.

Concerning packet delays, AntNet-F A is again by far the bestperforming algorithm. AntNet
is the secondbestone, but it keepsdelays much higher than AntNet-F A, about four times higher
considering the 90-th percentile. SPFkeepsdelays much higher than AntNet-FA, and about 60%
higher than AntNet on the 85th percentile. BF follows, but it had much worse performance on
throughput. OSPFE Q-R and PQ-R perform rather poorly.
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Figure 8.16: 150-NodesRandom Networks : Comparisorof algorithmsfor heavyRP traf ¢ conditions.Average
overlOtrials using a differentrandomlygenerated 50-nodenetworkin eachtrial (MSIA=10.0, MPIA=0.005). (a)
Throughput,and (b) 90-th percentileof the empiricaldistribution of the end-to-endiatapacketdelays.

Theseresults on randomly generated networks con rm the AntNet's excellent performance
evenon large network instances? Even more interesting is the fact that actually AntNet-FA per-

4 One of the world leadersin network technologies, CISCO, suggestsnot to put more than few hundr ed nodes on the
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forms much better than AntNet itself. The differencein performance seemsto increasewith the
size of the network. This behavior can be explained in terms of the higher reactivity of AntNet-

FA with respectto AntNet. In AntNet-FA forwar d ants do not wait in the data queues. Accord-
ingly, information is collected and propagated faster, and it is also more up-to-date with respect
to the current network status, Clearly, these characteristicsbecomemore and more important as
the diameter of the network grows and paths becomelonger and longer. In these cases AntNet

can show very long delays in gathering and releasing traf ¢ information across the network,

making completely out-of-date the information used to update the local traf ¢ models and the
routing tables.

8.3.6 Routing overhead

Table 8.2 shows the results concerning the overhead generated by routing packets. For each
algorithm the network load generated by the routing packets is reported as the ratio between
the bandwidth occupied by all the routing packets and the total available network bandwidth.

Eachrow in the table refersto a previously discussedexperimental situation (Figures8.5,8.6to
8.8,and 8.10to 8.12). Routing overhead is computed for the experiment corresponding to the
caseof the highest workload in the series.

Table 8.2: Routing Overhead: ratio betweerthe bandwidthoccupiedy all therouting packetsandthetotal avail-
ablenetworkbandwidth.All dataarescalecy afactorof10 2.

| [ AntiNet | OSPF| SPF|[ BF | QR | PQR |
SimpleNet - F-CBR || 0.33 | 0.01 | 0.10] 0.07 | 149 2.01
NSFNET - UP 239 | 0.5 | 0.86] 1.17 [ 6.96 | 9.93
NSFNET - RP 260 | 015 | 1.07| 117 | 5.26 | 7.74
NSFNET - UP-HS 163 | 015 | 114 117 | 7.66 | 8.46
NTTnet - UP 285 | 0.14 | 368 1.39 | 3.72 | 6.77
NTTnet - RP 441 | 014 | 3.02] 118 3.36 | 6.37
NTTnet - UP-HS 381 | 0.14 | 456 | 1.39 | 3.09 | 4.81

All data are scaledby afactor of 10 3. Data in the table show that the routing overhead with
respectto the available bandwidth is in practice negligible for all the considered algorithms.
Among the adaptive algorithms, BF shows the lowest overhead, closely followed by SPE AntNet
generatesaslightly bigger consumption of network resources,but this is widely compensatedby
the much better performance it provides. AntNet-F A, which is not show in the table, generates
slightly less overhead. Q-R and PQ-R produce an overhead a bit higher than that of AntNet.
The routing load causedby the dif ferent algorithms is function of many factors, speci ¢ to each
algorithm. Q-R and PQ-R are data-driven algorithms: if the number of data packets and/or
the length of the followed paths grows (either becauseof topology or bad routing), so will do
the number of generated routing packets. B, SPFand OSPFhave a more predictable behavior:
the generated overhead is mainly function of the topological properties of the network and of
the generation rate of the routing information packets. AntNet produces a routing overhead
depending on the ants generation rate and on the length of the paths along they travel. AntNet-
FA impr oves over AntNet sinceforwar d ants do not needto carry crossing times.

same hierarchical level given the current routing protocols and technologies. In this sense,150is already a reasonably
high value for the number of nodes.
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8.3.7 Sensitivity of AntNet to the ant launching rate

In AntNet and AntNet-FA, The ant traf ¢ can be roughly modeled in the terms of a set of ad-
ditional traf ¢ sources,one for each network node, producing rather small data packets (and
related sort of acknowledgment packets, the backward ants) at a constant bit rate. In general,
ants are expectedto travel over rather “short” paths and their size grows of 8 bytes at eachhop
during the forward (AntNet ants) or backward (AntNet-FA) phase. Therefore, eachant traf ¢
sourcerepresents,in general, an additional source of light traf c. Of course, they can become
heavy traf ¢ sourcesif the ant launching rate is dramatically raised up. Figure 8.17 shows the
sensitivity of AntNet's performance with respectto the ant launching rate and versus the gener-
ated routing overhead.
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Figure 8.17: AntNet normalized power vs. routing overhead. Power hasbeende ned asthe ratio between
the deliveedthroughputand the 90-th percentileof packetdelay This valuehasbeemormalizedbetweer(0; 1] by
dividing it for the highestvalueof powerobtainedduring the 10trials oftheexperiment.

For the sample caseof aUP traf ¢ situation on NSFNET (previously studied in Figure 8.6)the
interval t between two consecutive ant generations at a node is progressively decreased( t
is the samefor all nodes). t values are sampled at regularly spacedpoints over a logarithmic
scaleranging from about 0.006to 25seconds. The lower, dashed curve interpolates the generated
routing overhead expressed,asbefore, asthe fraction of the available network bandwidth used
by routing packets. The upper, solid curve plots data for the obtained powernormalized to its
highest value asobserved during the ten trials of the experiment. The power is de ned here as
the ratio between the deliver ed throughput and the packet delay. The value used for delivered
throughput is the throughput value at time 1000averaged over ten trials, while for packet end-
to-end delay the 90-th percentile of the empirical distribution is used.

From the gur e it is quite clear that using a very small t determines an excessivegrowth
of the routing overhead, with consequentreduction of the algorithm power. Similarly, when

t is too large, the power slowly diminishes and tends toward a plateau becausethe number
of ants is not enough to generate and maintain up-to-date statistics of the network status. In
between thesetwo extremeregions,awide range of t intervals gives raise to quite similar and
rather good power values. In these cases,the routing overhead is practically negligible but the
number of ants is enough to provide satisfactory performance. This gur e strongly support the
conjecture that AntNet, and, more in general, ACR algorithms, can be quite robust to internal
parameter settings.
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8.3.8 Ef cacy of adaptive path evaluation in AntNet

At a rst glance,the mechanismsused by AntNet and AntNet-F A to assignreinforcementvalues
might seemover-complicate. Subsection7.1.4has discussedin depth the need for such mecha-
nisms, and, accordingly, the need to maintain at eachnode a local model for the network-wide
traf ¢ patterns.

In Figure 8.18we report the outcome of a simple experiment that compare the performance
of AntNet without path evaluation (i.e., making use of an assigned constant value for the rein-
forcementswhatever path is followed), with the performance of the usual AntNet, making use
of path evaluation and therefore of possibly non-constant reinforcements.
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Figure 8.18: Constant vs. non-constant reinforcements AntNet powerfor increasingvaluesof ant generation
ratesat eacmode.Theresultsareaveragesverl0trials for UP traf ¢ conditionson NSFNET.

In the caseof the use of constant reinforcements,what is at work in AntNet is the implicit re-
infor cement mechanism due to the differentiation in the ant arrival rates explained at Page217.
Ants traveling along faster paths will arrive at a higher rate than other ants, hence their paths
will receive a higher cumulative reward. In AntNet-FA this effect is much reduced. The g-
ure shows that, in spite of its simplicity , the implicit reinforcement mechanism is already quite
effective but, in the range of the ant generation rates corresponding to the higher power val-
ues, the difference between the two algorithms can reach about 30%. Such a dif ference surely
justi es the additional complexity associatedto path evaluation and to the use of non-constant
reinforcements.

8.4 Experimental settings and results for AntHocNet

We report in this section some preliminary experimental results for AntHocNet. As simulation
software we have used Qualnet[354], a discrete-eventpacket-level simulator developed by Scal-
able Networks Inc. asa follow-up of GloMoSim, which was a shareware simulator designed at
University of California, Los Angeles. Qualnet is speci cally optimized to simulate large-scale
MANET s, and comeswith correctimplementations of the most important protocols for all the
network layers and for routing in particular. We have compared the performance of AntHocNet
with  Ad Hoc On-DemandDistanceVector(AODV) [349] (with local route repair and expanding
ring search, e.g., [268]), a state-of-the-art MANET routing algorithm and a de facto standard.
AODV s a purely reactive approach. Single-path routes are established on-demand and on the
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basison aminimum-hop metric. Only the nodesalong the path used by the application maintain
routing information toward the destination, such that in practice a virtual-cir cuit is established
and end-to-end signaling is used tear up and down the path, aswell asto rebuild the path in
caseof broken links.

Most of our simulation scenarios, except for the scalability study scenario which is taken
from [268], are derived from the basescenarioused in [61], which is so far a constant reference
in the current MANET literatur e, even if it is quite pathological and not really general. In this
base scenario 50 nodes are randomly placed in a rectangular area of 1500 300 m?2. Within
this area, the nodes move according to the random waypoint model [236]: eachnode randomly
choosesa destination point and a speed, and moves to this point with the chosenspeed. After
that it stops for a certain pausetime and then randomly choosesa new destination and speed.
The maximum speedin the scenariois 20 meters/sec and the pausetime is 30seconds. The total
length of the simulation is 900 seconds. Data traf ¢ is generated by 20 constant bit rate (CBR)
sources sending one 64-byte packet per second. Each source starts sending at a random time
between 0 and 180secondsatfter the start of the simulation, and keepssending until the end. At
the physical layer we useatwo-ray signal propagation model. The transmission range is around
300 meters, and the data rate is 2 Mbit/sec. At the MAC layer we use the popular 802.11DCF
protocol.

In this scenarionodes are densely packed, such that from one side thereis a high probability
of radio collisions but from the other side it is always possible to easily nd a short route to a
destination. The average path length is about two hops and the average number of neighbors
of anode is about ten (due to the dimensions of the node areavs. the radio range and the fact
that random waypoint movements tend to concentrate nodes in the central zone of the area).
This is clearly a scenariothat well match the characteristics of a purely reactive algorithm like
AODV since it is relatively easy and fast to build or re-build a path while at the same time
is important to keep low the routing overhead in order to reduce the risk of radio collisions.
Mor eover, since it is quite hard to nd multiple (and good) radio-disjoint paths for the same
destination given the high node density, the AODV's single-path strategy minimizing the hop
number appears asthe most suitable one. On the other hand, AntHocNet is a hybrid, reactive-
proactive, algorithm for multi-path routing using both end-to-end delay and hop metrics to
de ne the paths. In order to study the behavior of the two algorithms under this reference
scenario but also under possibly more interesting and challenging conditions involving longer
path lengths and less dense networks, we have performed extensive simulations changing the
pausetime, the node areaand the number of nodes. For eachnew scenario, 5 dif ferent problems
have beencreated, by choosing dif ferent initial placementsof the nodesand dif ferent movement
patterns. The reported results, in terms of delivery ratio (fraction of sentpacketswhich actually
arrives at their destination) and end-to-end delay, are averaged over 5 dif ferent runs (to account
for stochastic elements, both in the algorithms and in the physical and MAC layers) on eachof
the 5 problems.

Since AntHocNet generate considerably more routing packets than AODV, we have also
made a further study increasing the number of nodes up to 2000in order to study the over-
all scalability of the approach.

Increasing number of hops and node sparseness

We have progressively extended the long side of the simulation area. This has a double effect:
paths becomelonger and the network becomessparser. The results are shown in Figure 8.19.In
the basescenario,AntHocNet hasa better delivery ratio than AODV, but a higher averagedelay.
For the longer areas,the differencein delivery ratio becomesbigger, and AODV also loosesits
advantage in delay. If we take a look at the 99-th percentile of the delay, we can seethat the
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decreasein performance of AODV is mainly due to a small number of packets with very high
delay.This meansthat AODV delivers packetswith avery high delay jitter, that might a problem
in terms of QoS.Thejitter could be reduced by removing thesepacketswith very high delay, but
that would mean an evenworse delivery rate for AODV.
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Figure 8.19: Increasing the length of the horizontal dimension of the node area: (a) Delivery ratio, and (b)
averageand 99-th percentile of the packetend-to-enddelays. On the x-axis is reportedthe increasingsize of the
long edgeof the nodearea, while the otheredgeis xed at 300 meters. That is, starting from the basescenarioof
1500 300m?, andendingat2500 300m?.

The performance trend shown in these set of experiments will be also con rmed by the fol-
lowing ones: in all scenarios AntHocNet gives always better delivery ratio than AODV, while
for the simpler scenariosit has a higher average delay than AODV but a lower average de-
lay for the more dif cult ones. The better performance on delivery ratio likely comesfrom the
multipath nature of AntHocNet. The construction of multiple paths at route setup, and the con-
tinuous search for new paths with proactive ants ensuresthat there are often alternative paths
available in caseof route failur es, resulting in less packet loss and quicker local recovery from
failur e. On the other hand, the use of multiple paths meansalsothat not all packetsare sentover
the minimum-delay path, such that the resulting average delay might be slightly higher. How-
ever, since AODV relies on just one path, delays can becomevery bad when this path becomes
inef cient or invalid, asituation that is more likely to happen in the more dif cult scenarios.

Increasing node mobility

We have changed the level of mobility of the nodes, varying the pausetime between 0 seconds
(all nodes move constantly) and 900seconds(all nodes are static). The terrain dimensions were
kept on 2500 300m?, like at the end of the previous experiment (results for 1500 300 m?
were similar but lesspronounced). Figure 8.20shows a trend similar to that of the previous ex-
periment. For easysituations (long pausetimes, hardly any mobility), AntHocNet has a higher
delivery ratio, while AODV haslower delay. As the environment becomesmoredif cult (higher
mobility), the differencein delivery becomesbigger, while the average delay of AntHocNet be-
comesbetter than that of AODV. Again, the 99-th percentile of AODV shows that this algorithm

delivers some packets with a very high delay. Also AntHocNet has some packets with a high

delay (since the average is above the 99-th percentile), but this number is lessthan 1% of the
packets.
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Figure 8.20: Changing node pause time: (a) Delivery ratio, and (b) averageand 99-th peicentile of the packet
end-to-enddelays.For pausetime equalto 0 secondsiodeskeepmoving, while for pausetime equalto 900 seconds
nodedonot moveat all.

Increasing both node areaand number of nodes.

The scaleof the problem is increasedmaintaining an approximately constantnode density: start-
ing from 50nodesin a1500 300m? area,we have multiplied both areaedgesby a scaling factor
and the number of nodes by the square of this factor. The results, presentedin Figure 8.21,show
again the sametrend: asthe problem gets more dif cult, the advantage of AntHocNet in terms
of delivery rate increases,while the advantage of AODV in terms of average delay becomesa
disadvantage. Again this is mainly due to anumber of packetswith avery high delay.
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Figure 8.21: Scaling both node areaand number of nodes: (a) Delivery ratio, and (b) averageand 99-th per-
centileof the packetend-to-enddelays.On the x-axisis reportedhe scalingfactorfor the problemstarting fromthe
basescenariaf50 nodesand1500 300 m? (e.qg.,for ascalingfactorof = 2 thenumberofnodess 50 2 = 200
andtheareabecomegl500 ) (300 ) = 3000 600m?).

In another setof similar experiments we have increasedboth the size of the node area(start-
ing from 1000 1000m?) and the number of nodesin the sameway asin [268]. That is, such that
node density stays approximately constant while increasing the number of nodes up to 2000.
The number of traf ¢ sessionsis maintained constant to 20, but this time the data rate is of 4
packets/sec and each packet has a payload of 512 bytes. Due to the high computational times
necessaryfor the simulations, we have limited the simulation time to 500 seconds,and only 3
trials per experiment point have beenran. Resultsin Figure 8.22con rms the previous trend.
AntHocNet always delivers a higher number of packets, while it keepsdelays at a much lower
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level than AODV (results of the 99-th percentile are not shown sincethey would be out-of-scale,
however, they conrm the datum for the average). This results show the scalability of the ap-
proach, that, in spite of the higher number of routing packets generated with respectto AODV,
is able to scaleup its performance. However, for large networks more results and experiments
are de nitely necessary such that results reported in Figure 8.22 must be considered as very
preliminary
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Figure 8.22: Increasing both node areaand number of nodes up to a large network: (a) Delivery ratio, and
(b) averageand 99-th percentileof the packetend-to-endielays.On the x-axisis reportedhe numberof nodes.The
nodeareais alsoscaledsuchthat a nodehasapproximatelyalwaysthe sameof numberof neighborgabout?).

8.5 Discussion of the results

For all the experiments reported in the previous Section 8.3, the performance of AntNet and
AntNet-FA has been excellent® AntNets have always provided comparable or much better
performance than that of the considered competitor algorithms (of course, made exception for
Daemon). The overall result can be seenas statistically signi cant, given that the experimen-
tal testbed, even if far from being exhaustive, has considered a set of several dif ferent realistic
situations.

The positive experimental results con rm the validity of the design choicesof AntNets and
support the discussionsof the previous chapter that have pointed out the several possibilities for
impr oving current routing algorithms. The good performance that also AntHocNet has shown
for the more challenging caseof mobile ad hoc networks up to large and very dynamic scenarios
further support the general validity of the ACR approach.

In the following, the reasonsbehind the excellent performance of AntNets are discussed
by comparing the design characteristics of AntNets to those of the other algorithms that have
beentaken into account. Some of the issuesthat are going to be considered have been already
discussed at a more general level in the previous chapter. While most of the arguments apply
alsoto AntHocNet, the discussionswill almost exclusively refer to AntNets.

PROACTIVE INFORMATION GATHERING AND EXPLORATORY BEHAVIOR

AntNets fully exploit the unique characteristics of networks consisting in the possibility of us-
ing the network itself asa simulator to run realistic Monte Carlosimulationsconcurrently with the

5 Hereafter, AntNet and AntNet-FA are also jointly indicated with the term “AntNets” in order to shorten the nota-
tion.
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normal operations of the system. In this sense,AntNets have beenamong the rst examples of

routing systemsbasedon the distributed and repeatedgeneration of mobile agentsfor (pro)active
gathering of information on routing paths, and making at the sametime use of a stochastic pol-

icy to dir ectagents' actions and realize data-independent exploration AntNets make use of both

the local (passive) observation of data ows (the status of the link queues)and the explicit gen-
eration of mobile agentsaimed at collecting speci ¢ non-local information about network paths.

Mor eover, a built-in  variancereductioneffect in the Monte Carlo estimatesis determined by: (i)

the way ant destinations are assigned, which are biased toward the use of the most frequently

requested destinations for data packets, and (ii) the fact that the ant decision policy combines
both current (link queues)and past (pheromone) traf ¢ information. In this way, paths are not

sampled uniformly , but according to the speci c characteristics of the traf ¢ patterns. On the

other hand, the experimental results have shown how effective can be the use of online simula-

tion, aswell as, how small, and in practice negligible, can be the extra overhead generated by

the ant-like agents.

In all the other considered algorithms, routing tables are built through measures coming
only from the passive observation of data ows. No actions are generated to explicitly gather
additional information. Non-local information is passively acquired from the other nodes, which
proactively send their local estimates. On the other side, concerning exploration, in OSPF SPF
and BF there is no exploration at all, while in Q-R and PQ-R exploration is tightly coupled to
data traf ¢ and is of local nature.

INFORMATION MAINTAINED AT THE NODES

The type of information maintained at eachnode to build the routing tables and the way this
information is possibly propagated are key components of every routing algorithm. All the con-
sidered adaptive algorithms can be seenas maintaining at eachnode two types of information:
amodel M representing either the local link costsor somelocal view of the global input traf c,
and a routing table T, which storeseither distances-to-go or the relative goodnessof eachlocal
routing choice. SPFand BF make use of amodel M to maintain smoothed averagesof the local
link costs,that is, of the distancesto the neighbor nodes. Therefore, M is a model concerning
only local components. This local information is, in turn, used to build the local routing tables
and is also sent to other nodes. In Q-R the local model M is a ctitious one, since is the raw
traveling time observed for eachhop of a data packet which is dir ectly used asavalue to update
the entries of T, which are, on the contrary, exponential averagesof theseobserved transmission
times. PQ-R makes use of a slightly more sophisticated model with respectto Q-R, storing also
ameasure of the utilization of eachlink. All thesealgorithms propagate part of the locally main-
tained information to other nodes, which, in turn, make use of this information to update their
routing tables. SPFnodessendlink costs,while BF, Q-R and PQ-Rnodes send distance estimates
(built in different way by eachalgorithm). In SPFand BF the content of each T is updated at
regular intervals through asort of “memoryless strategy”: the new entries do not depend on the
old values, that are discarded. On the contrary, Q-R and PQ-R make use of a Q-learning rule to
incrementally build exponential averages.

AntNets show characteristics rather different from those of the other algorithms. The local
model M maintains for eachdestination adaptive information about the time-to-go. The con-
tents of M allow to evaluate and reinforce the ant paths in function of what has beenobserved
sofar. The pheromone table T is a stochasticdecision matrix which is updated according to the
values of the assigned reinforcements and of the current entries. Moreover, ants decisions are
also based on a model L of the depletion dynamics of the link queues, that is, on the current
local status of the link queues. The pheromone tablesare, in turn, usedto build the data-routing
tables, which are still stochastic matrices but somehow more biased toward the bestchoices.
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It is apparent that AntNets make use of a richer repertoire of information than the other
algorithms: (i) adaptive probabilistic models for distance estimates and to score the relative
goodnessof eachlocal choice, (ii) a simple model to capture the instantaneous state of the link
queues, (iii) a stochastic decision matrix for both data and ants routing. Eachnode in AntNets
is an actor-critic agent, learning on the basis of a wise balance between long- and short-term
estimates, in order to cope with the intrinsic variability of the input traf c. The use of several
components at eachnode has also the great advantage of reducing the criticality of eachof these
components, since a sort of task distribution happens. In some sense,AntNets' architecture is
not only using richer information but is also more robust with respectto those of the considered
competitors.

STOCHASTIC MULTIPATH ROUTING BASED ON PHEROMONE TABLES

All the tested algorithms but AntNets use a deterministicrouting policy. Mor e in general, AntNets
are the only algorithms really relying on the use of stochastic components. It has already dis-
cussedthe fact that stochasticpolicies seemin general to be more appropriate to deal with non-
Markov, non-stationary problems. In AntNets, being basedon proactive Monte Carlo simulation
(the ants), stochasticityis at the core of the mechanismsfor building the routing tables. But what
makes AntNets even more dif ferent from the other algorithms is the combined effect of using
dif ferent stochastic matrices to route ants and data. In this way, the ants have a built-in explo-
ration component that allow them to explore new routes using the ant-routing tables, while at
the sametime, data packets make use of the data-routing tables, exploitingthe best of the paths
discovered so far. None of the other considered algorithms keep on separatelevels exploration
and exploitation. Actually, none of them really do exploration.

The use of a stochasticpolicy to route data packetsresult in a better distribution of the traf ¢
load over different paths, with a resulting better utilization of the resourcesand automaticload
balancing(the experiments with SimpleNet well show this fact). In this sense,AntNets are the
only algorithms which implement multipath routing. Data packets of a same sessionare con-
currently spread over multiple paths, if there are several equally good possible paths that can
be used. Moreover, AntNets do not have to face the problem of deciding a priori how many
paths have to be used. Sincea relative goodnessis assignedto every local choice, the chosen
transformation function of Equation 7.10and the random selection mechanism of a next hop
automatically selectthe appropriate number of paths that will be actually used by data packets.
On the other hand, since every choice is locally scored by means of pheromone (and status of
link queues) and this score is proactively and repeatedly refreshed with some non null proba-
bility , even those paths that are not actually used by data are made available and canbe usedin
caseof sudden congestion along the bestpaths, and/or in caseof failur e.

The fact that a bundleof paths is made available and scored by the ants, such that it can be
used for both multipath and backuprouting is quite important to explain the good performance
shown by AntHocNet over AODV. The construction of multiple paths at route setup, and the
continuous search for new paths with proactive ants ensures that there are often alternative
paths available in caseof route failur es, resulting in less packet loss and in the higher delivery
ratio shown by AntHocNet in all the experiments. Moreover, local repair of paths after link
failur esis made easier and quicker by the presenceof the presenceof multiple paths. On the
other hand, AntHocNet has a higher average delay than AODV for the simpler scenarios, but
a lower average delay for the more dif cult ones (while results are always usually better if the
99-th percentile is considered). Again, this is in line with the multipath nature of AntHocNet:
sinceit usesdif ferent paths simultaneously, not all packetsare sentover the shortest path, and so
the averagedelay will beslightly higher. On the other hand, since AODV relieson just one path,
delays can become very bad when this path becomesinef cient or invalid. This is especially
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likely to happen in dif cult scenarios,with longer paths, lower node density or higher mobility ,
rather than in the denseand relatively easybasescenario.

Concerning the contents of the routing tables, while AntNets maintains probabilisticmeasues
of the relativegoodnessf the localchoicesall the other algorithms maintain for eachchoice a dis-
tanceestimateo the destinations. The main dif ferenceconsistsin the fact that distance values are
absolute values, while the AntNets' goodness measures are only relative values. For instance,
the values in the routing table of BFsaythat passing by neighbor n the distanceto dist, seconds,
while passing by m is t, seconds.This is quite different from what happensin AntNets, whose
data-routing table contains [0; 1] normalized entries like .4 and g that indicate the relative
goodness of choosing the route through m with respectto the route through n. On the other
hand, AntNets maintain estimatesfor the expectedand besttraveling times toward the destina-
tions from the current node in the model M . However, distancesare calculated considering the
whole setof neighbors, and not separately for eachneighbor.

Under rapid traf ¢ uctuations, it might result quite hard to keep track for each neighbor
of the preciseabsolute distancestoward the destinations of interest (aswell as misleading con-
clusions can be easily drawn as shown in Subsection7.1.4). On the other hand, is expected to
be more robust to deal with only relative measure of goodness assigned on the basis of all the
sampled information available, which is the approach followed in AntNets.

Another advantage of using normalized goodnessvalues instead of absolute distances, con-
sists in the possibility of exploiting the arrival rate of the ants as a way to assign implicit rein-
forcementsto the sampled paths. In fact, after the arrival of a backward ant, the routing table is
always updated, kicking up the path that hasbeenfollowed by an amount that depends on both
the quality of the path and its estimated goodness. It is not obvious how the same effect could
be obtained by using routing tables containing distance estimates. In fact, in this caseeachnew
sampled value of atraveling time would have to be added to the statistical estimate, that would
then oscillate around its expected value without inducing an arrival-dependent cumulative ef-
fect.

It is interesting to remark that the use of probabilistic routing tableswhose entries are learned
in an adaptive way by changing on positive feedbackand ignoring negative feedback,is reminis-
centof older automataapproachesto routing in telecommunication networks, already mentioned
in the previous chapters. In these approaches,a learning automaton is usually placed on each
network node. An automaton is de ned by a set of possible actions and a vector of associated
probabilities, a continuous set of inputs and a learning algorithm to learn input-output associ-
ations. Automata are connected in a feedback con guration with the environment (the whole
network), and a set of penalty signals from the environment to the actions is de ned. Routing
choicesand modi cations to the learning strategy are carried out in a probabilistic way and ac-
cording to the network conditions (e.g.,see[334, 331]). The main differencelies in the fact that in
AntNet the ants are part of the environment itself, and they actively dir ect the learning process
towar ds the most interesting regions of the search space. That is, the whole environment plays
a key, active role in learning good state-action pairs, while learning automata essentially learn
only by induction.

ROBUSTNESS TO WRONG ESTIMATES

AntNets do not propagate local estimatesto other nodes, as all the other algorithms do. The
statistical estimates and the routing table maintained at each node are updated after each ant
experiment without relying on any form of estimate bootstrapping AntNets rely on pure Monte
Carlo sampling and updates. Each ant experiment affects only the estimates and the routing
table entries relative to the nodesvisited by the ant, and local information is updated on the basis
of the “global” information collected by traveling ants along the path, implicitly reducing in this
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way the variance in the local estimates. All these characteristics make AntNets particularly
robust to wrong or out-of-date estimates. The information associatedto each ant experiment
has a limited impact. If this characteristic can be a disadvantage under conditions of traf ¢
stationarity, it is an advantage under the more usual conditions of non-stationarity .

On the contrary, in all the other algorithms local estimates (of either link costsor distances)
are propagated to other nodes and might affect the decisions concerning all the different des-
tinations. Accordingly, an estimate which is wrong in some sense,is propagated overall the
network, and can have a globally negative impact. How bad this is for the algorithm perfor-
mance depends on how long the effect of the wr ong estimate stay in the network. In particular,
for SPFand BF this is a function of frequency updates and of the propagation time throughout
the network, while for Q-R and PQ-Ris afunction of the learning parameters.

The issue of information bootstrapping in BF, Q-R, PQ-Rand AntNets can be considered un-
der a more general perspective. In fact, asit has been already pointed out, AntNets are a sort
of parallel replicated Monte Carlo systems. As it has been shown by Singh and Sutton (1996),
a rst-visit Monte Carlo simulation system (only the rst visit to a state is used to estimate its
value during atrial) is equivalent to a batch temporaldifferencgTD) [413] method with replacing
tracesand decay parameter = 1. In somesense, TD(1) is a pathological caseof the TD classof
algorithms, since its results are the same obtained by a rst-visit Monte Carlo, that is, without
any form of bootstrapping. The advantage of TD(1) over Monte Carlo is the fact that it canberun
asan online method [414, Chapter 7]. Although AntNets can be seenas rst-visit Monte Carlo
simulation systems,there are some important differenceswith the type of Monte Carlo consid-
ered by Singh and Sutton and, more in general, by other works in the eld of reinforcement
learning. The differencesare mainly due to the differencesin the characteristic of the considered
classesof problems. In AntNets, outcomes of experiments are both used to update local models
able to capture the global network state, which is only partially observable, and to generate a
sequenceof stochasticpolicies. On the contrary, in the Monte Carlo system considered by Singh
and Sutton, the outcomes of the experiments are used to compute reduced maximum-likelihood
estimates of the expected mean and variance of the states' returns (i.e., the total costor payoff
following the visit of a state) of a Markov process. Actually, batch Monte Carlo methods learn
the estimatesthat minimize the mean-squared error on the usedtraining set,while, for example,
batch TD(0) methods nd the maximume-likelihood estimatesfor the parameters of the under-
lying Markov process[414, Page 144]. In spite of the differencesbetween AntNet and TD(1),
the weak parallel with TD( ) methods is rather interesting, and it allows to compare some of
the characteristics of AntNets with those of BF, Q-R and PQ-R by reasoning within the TD class
of algorithms. In fact, BF, Q-R and PQ-R are TD methods. In particular, Q-R and PQ-R, which
propagate the estimation information only one step back, are precisely distributed versions of
the TD(0) class of algorithms. They could be transformed into generic TD( ), O < 1, by
transmitting backward to all the nodes previously visited by the data packet, the information
collected by the routing packet generated after eachdata hop. Of course, this would greatly in-
creasethe routing traf ¢ generated, becauseit hasto be done after eachhop of eachdata packet,
making the approach at leastvery costly, if feasible at all.

In general, using temporal dif ferencesmethods in the context of routing presentsan impor -
tant problem: the key condition of the method, the self-consistency between the estimates of
successivestates,that is, the application of the Bellman's principle, may not be strictly satis ed
in the general case. This is due to the fact that (i) the dynamics at each node are related in a
highly non-linear way to the dynamics of all its neighbors, (ii) the traf ¢ processevolves concur-
rently over all the nodes, and (iii) thereis arecursive interaction between the traf ¢ patterns and
the control actions (that is, the modi cations of the routing tables). According to thesefacts, the
nodes cannot be correctly seenasthe statesof a Markov process,therefore, the assumptions for
the effective application of TD methods whose nal outcomes are based on information boot-
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strapping are not met. In this sense,the poor performance of TD(0)-like algorithms asQ-R and
PQ-Rin caseof highly non-stationary routing problems can be better understood. On the con-
trary, being AntNets a sort of batch TD(1) methods, not relying on information bootstrapping,
they canbe more safely applied in thesecases.Although, in caseof quasi-stationarity, bootstrap-
ping methods are expectedto be more effective and to converge more quickly .

UPDATE FREQUENCY OF THE ROUTING TABLES

In BFand SPFthe frequency according to which routing information is transmitted to the other
nodes plays a major role concerning algorithm performance. This is particularly true for BF
which maintains at each node only an incomplete representation of the network status and
topology. Unfortunately, the “right” frequency for sending routing information is problem-
dependent, and there is no straightforwar d way to make it adaptive, while, at the sametime,
avoiding large oscillations (asis con rmed by the early attempts in both ARPANET and Inter-
net). In Q-R and PQ-R, routing tables updating is data driven: only the Q-values associatedto
the neighbor nodes visited by data packets are updated. Although this is a reasonablestrategy,
given that the exploration of new routes (by using data packets) could causeundesired delays
to data, it causeslong delays before discovering new good routes, and is a major handicap in a
domain in which good routes could change all the time. In OSPFrouting tables are practically
never updated: link costshave been assigned on the basis of the physical characteristics of the
links. This lack of an adaptive metric is the main reasonof the poor performance of OSPF, asit
has beenalready remarked.

AntNets, from one side do not have the explorationproblems of Q-R and PQ-R, since they
make use of simulation packetsto explore new routes, from the other side, they do not have the
samecritical dependency of BFand SPFfrom the frequency for sending routing information. In
fact, from the experiments carried out, AntNets have shown to be robust to changesin the ants'
generation rate: for a wide range of generation rates, rather independent of the network size,
the algorithm is able to provide very good performance, while, at the sametime, the generated
routing overhead is in practice negligible also for considerable amount of generated ant agents.

8.6 Summary

In this chapter we have reported an extensive set of experimental results based on simulation
about the performance of AntNet, AntNet-FA, and AntHocNet.

Concerning AntNet and AntNet-FA, to which the majority of results refer to, in order to
provide signi cance to our studies, we have investigated several different traf ¢ patterns and
levels of workload for six dif ferent types of networks both modeled on real-world instancesand
arti cially designed. The performance of our algorithms have been compared to those of six
other algorithms representative of state-of-the-art of both static and adaptive routing algorithms.
The performance showed by AntNet and AntNet-FA are excellent. Under all the considered
situations they clearly outperformed the competitor algorithms. In the caseof low and quasi-
static input traf ¢, algorithms' performance is quite similar, and has not beenshowed here.

On the other hand, AntHocNet hasbeencompared only to AODV, which is however the cur-
rently most popular state-of-the-art algorithm for MANET s. We investigated the behavior of the
algorithms for a range of different situations in terms of number of nodes, node mobility , and
node density. We also brie y investigated the behavior in large networks (up to 2000nodes). In
general,in all scenariosAntHocNet performed comparably or better than AODV. In particular, it
always gave better delivery ratio than AODV. Concerning delay, it had a slightly higher average
delay than AODV for the simpler scenarios (high density and short paths) but a lower aver-
age delay for the more dif cult ones. While when considering the 99-th percentile for delays,
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AntHocNet had always better performance. The better performance on delivery ratio likely re-
sults from the multipath nature of AntHocNet that ensuresthat there are often alternative paths
available in caseof route failur es, resulting in less packet loss and quicker local recovery from

failur e. On the other hand, the use of multiple paths meansalsothat not all packetsare sentover
the minimum-delay path, such that the resulting average delay might be slightly higher. How-

ever, since AODV relies on just one path, delays can becomevery bad when this path becomes
inef cient or invalid, asit might likely be the casein the more dif cult scenarios. The good
performance also for large networks are promising regarding the scalability of the approach.

Even if it is not really possible to draw nal conclusions, it is clear that we have at least
good indications that the general ACO ideas, once applied to distributed and highly dynamic
problems can be indeed very effective. In the last section of the chapter we have (re)discussed
the major design characteristics of AntNet and AntNet-F A, which have beendir ectly inherited
from the ACO metaheuristic, and we have pointed out why and under which conditions these
characteristics are possibly an advantage with respectto those of other adaptive approaches.In
particular, the use of: active information gathering and path exploration, stochasticcomponents,
and both local and non-local (brought by the ants) information, are the most distinctive and ef-
fective aspectsof AntNet, AntNet-FA, and AntHocNet design, and, morein general, of instances
of ACR. Thesealgorithms can automatically provide multipath routing with an associatedload
balancing. More in general, a bundle of paths is adaptively made available and maintained,
with eachpath associatedto arelative measure of goodness(the pheromone), such that the best
paths can be used for actual data routing, while the lessgood onescan be used asbackup paths
in caseof need.

We have shown that the algorithms are quite robust to internal parameter settings and in
particular to the ant generation rate, as well asto possible ant failur es. Moreover, the study
on routing overhead for AntNet has shown that the actual impact of the ant-like agentscan be
made quite negligible while at the sametime still providing good performance, at leastin small
wir ed networks. Clearly much more care in the ant generation and spreading must be taken in
the caseof mobile ad hoc networks. And in a sense,this is one of the issuescritically affecting
the performance of the algorithm in this case.
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