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Abstract. We study self-organized navigation in a heterogeneous robotic
swarm consisting of two types of robots: small wheeled robots, called
foot-bots, and flying robots that can attach to the ceiling, called eye-bots.
The task of foot-bots is to navigate back and forth between a source and
a target location. The eye-bots are placed in a chain on the ceiling, con-
necting source and target using infrared communication. Their task is to
guide foot-bots, by giving local directional instructions. The problem we
address is how the positions of eye-bots and the directional instructions
they give can be adapted, so that they indicate a path that is efficient for
foot-bot navigation, also in the presence of obstacles. We propose an ap-
proach of mutual adaptation, where foot-bots move according to eye-bot
instructions, and eye-bots move according to observed foot-bot behav-
ior. Our solution is inspired by pheromone based navigation of ants, as
eye-bots serve as mobile stigmergic markers for foot-bot navigation. We
evaluate the system’s performance in a range of simulation experiments.

1 Introduction

We study how a heterogeneous robotic swarm composed of two sub-swarms can
self-organize to solve a task. We are interested in mutual adaptation between
sub-swarms: how can the sub-swarms adapt their behavior to each other, so
that the swarm as a whole can solve the task. We focus on a navigation task, in
which each sub-swarm plays a distinct role: the robots of one sub-swarm need
to go back and forth between a source and a target location, while the robots
of the other sub-swarm give guidance in this navigation task. For the first sub-
swarm we use small wheeled robots, called foot-bots, and for the second flying
robots that can attach to the ceiling, called eye-bots. Both these robots are under
development in the project Swarmanoid (http://www.swarmanoid.org).

We deploy the robots in an indoor environment. We start from a situation
where foot-bots are placed in the source location, and eye-bots are attached to
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the ceiling, forming a connected path between source and target (e.g., using the
algorithm described in [1]). In this initial setup, eye-bots use infrared communi-
cation among them to derive the shortest path between the two locations. They
locally give directional instructions to foot-bots passing below, so that these can
follow this path. The main problem in this scenario is the presence of obstacles.
If the environment contains obstacles (e.g., cupboards or sofas), the connected
path formed by eye-bots near the ceiling communicating via an infrared device
may pass over them. Such a path is difficult or impossible to follow for foot-bots.
We investigate how eye-bots can adapt their positions and the directions they
give in order to improve the navigability of the path they indicate.

We propose a distributed solution based on local adaptation between foot-
bots and eye-bots. Foot-bots move from eye-bot to eye-bot following the direc-
tional instructions received from the eye-bots they pass. Eye-bots, in turn, adapt
their position and their directional instructions based on the observation of foot-
bots: they move to locations where they see a lot of foot-bots, and they adapt
their instructions based on the directions where they see foot-bots come from.
The former attracts them to areas that are navigable for foot-bots. The latter
makes them indicate directions that are often followed by foot-bots. This way,
eye-bots serve as mobile stigmergic markers for foot-bot navigation. In this sense,
their role is similar to that of pheromone in ant-based navigation behavior. Later
in this paper, we explain through examples from simulation experiments, how
this process of mutual adaptation allows the heterogeneous swarm of eye-bots
and foot-bots to find efficient paths in a wide range of different situations.

2 Robot characteristics and problem setup

We describe the features of the foot-bot and the eye-bot that are relevant for this
work; further details about both robots are given in [2]. The foot-bot (Fig. 1(a))
moves on the ground. It has two cameras, one omnidirectional and one pointing
up. It also has a rotating distance scanner. Foot-bots can communicate with
each other and with eye-bots via visual signals, using the multi-color LED ring
placed around their body and the LED beacon they have on top. Moreover,
they can exchange wireless messages locally (up to 3 m) at low bandwidth using
an infrared range and bearing (IrRB) system, which also gives them relative
position information about each other. The eye-bot (Fig. 1(b)) is a flying robot,
which can attach to the ceiling using a magnet (the design assumes ferromagnetic
ceilings). It has a pan-and-tilt camera which it can point in any direction below.
Like the foot-bot, it can communicate with visual signals using a multi-color
LED ring, or with wireless messages using the IrRB system.

The eye-bots and foot-bots are placed in an arena like the one shown in
Fig. 1(c). The task of foot-bots is to go back and forth between a source (top
right in the figure) and a target location (bottom left in the figure) (e.g., to
transport objects). The role of eye-bots is to support foot-bot navigation, by
giving directional instructions to foot-bots that are within their visual range
(the disk under selected eye-bots in the figure). All eye-bots are attached to
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Fig. 1. (a) Foot-bot (CAD draw), (b) eye-bot (prototype), and (c) example scenario.

the ceiling. One is located near the source and one near the target. The others
form a connected communication network between them, using the IrRB com-
munication system (we study situations where the network is a single path, as
shown in the figure, but also other connected formations could be used). Eye-
bots derive the shortest path between source and target in the network (dotted
line in the figure), and give directional instructions to foot-bots to follow this
path. Foot-bots move from eye-bot to eye-bot following these instructions. The
difficulty lies in dealing with obstacles. While the walls surrounding the arena
reach from floor to ceiling, and can therefore easily be sensed by both foot-bots
and eye-bots, other obstacles are lower (e.g., the two blocks in the middle in
Fig. 1(c)), so that they block the way for foot-bots, but not for eye-bots or for
IrRB communication between them. This means that the path set up between
eye-bots may be difficult or impossible to follow for foot-bots on the ground. We
investigate how the system can improve this path, by changing the positions of
eye-bots and the directional instructions they give.

3 Related work

Our work is in the first place related to research on heterogeneous swarm robotics.
Swarm robotics research has mainly focused on homogeneous systems. Neverthe-
less, there is some work using heterogeneous swarm robots for applications like
flocking [3], where different but similar robots flock together like birds of distinct
species might do, task allocation [4], where robots with different capabilities are
assigned to different tasks, and recruitment [5], where robots of one type re-
cruit robots of a different type. However, we know of no work where swarms of
different robot types mutually adapt to jointly self-organize to solve a task.

In terms of the task to be solved, our work is related to research on self-
organized foraging, where robots need to optimize a path to follow back and



forth between a source and a target [6–9]. All this work is inspired by pheromone
guided foraging of ants in nature [10]. They use varying strategies to implement
pheromone, such as, e.g., light projections [7], a map in a shared memory [8], or
alcohol trails [6]. None of the existing work uses one swarm of robots to function
as pheromone for another swarm, in the form of mobile stigmergic markers.

From an application point of view, we point out the relation with existing
work on sensor network guided navigation [11–13]. They place communicating
sensor nodes in the environment and let them cooperate to guide a single mobile
robot to a target, similar to how eye-bots guide foot-bots. None of this work
considers on-line adaptation of node positions to improve navigation, like we do.
As a consequence, they need nodes to cover the full area in which robots are
deployed. Moreover, they often use the communication links between nodes to
find navigable paths for the mobile robot: they do not deal with the situation
where obstacles block the way for the robot but not for node communication,
which is central in this paper.

4 Self-organized path finding

4.1 General description

We start from a situation as shown in Fig. 1(c). In the beginning, eye-bots use
network communication to derive the shortest route through the eye-bot network
to the source and target locations. Using the relative position information given
by the IrRB system, each eye-bot i derives from this routing information the
directions θs

i towards the source and θt
i towards the target. These directions are

broadcast locally to nearby foot-bots.
Foot-bots follow these directions, moving from eye-bot to eye-bot. When they

encounter an obstacle, they use obstacle circumnavigation to go around it. They
use light signals to give information to eye-bots (which observe them through
their camera): to show where they are, which direction they are coming from,
and whether they are going towards the target or the source.

Eye-bot actions consist in moving their position and changing their directions
θs

i and θt
i (overriding the directions obtained from IrRB communication). Eye-

bots move in the direction of areas where they observe foot-bots. This way, they
are attracted to areas that are navigable for foot-bots and to paths that are often
used by foot-bots. They also move away from nearby eye-bots, which makes them
spread out and avoid collisions. Finally, they make reparatory moves when they
loose network connectivity with source or target, which ensures that foot-bots
can move between source and target while always staying within range of an
eye-bot. Eye-bots adapt their directions θs

i and θt
i based on the direction where

foot-bots going to respectively the target and the source are coming from: they
assume that the direction where most foot-bots going to the target come from
is a good indication of the direction to the source (and vice versa).

Through their adaptations to foot-bot behavior, eye-bots serve as mobile
stigmergic markers for foot-bot navigation: they mark paths often followed by



foot-bots, and indicate them to other foot-bots. Their role is similar to that of
pheromone in ant foraging. In Sect. 5, we show examples of how this works.

4.2 Giving directional instructions to foot-bots

Eye-bots give directional instructions to foot-bots using a combination of visual
signals with LEDs and wireless communication with the IrRB system. Each eye-
bot i switches on a red LED in front and a blue LED in the back, in order to
show a reference direction θ0i . At regular intervals, it broadcasts θs

i and θt
i using

the IrRB system. IrRB communication from an eye-bot i to foot-bots is focused
in a cone below i, so that only foot-bots underneath i can receive its messages.
In order to get directions, a foot-bot j moves under i. It uses its upward camera
to define θ0i , and reads direction θs

i or θt
i (depending on whether j’s goal is the

source or the target) from the received wireless message. j interprets θs
i or θt

i

relative to θ0i , in order to derive a new travel direction θn
j .

4.3 Foot-bot behavior

When a foot-bot j obtains a new direction θn
j from an eye-bot i, it turns into

that direction, and moves forward for a default distance (enough to get out of
the view of i), or until it arrives under a different eye-bot. If no other eye-bot was
reached, j uses its upward camera to define the direction to the closest eye-bot,
and moves there. If no eye-bot is seen, j starts a random movement: repeatedly
make a random turn and move forward for a random distance. Given the nature
of the task (to move from one location to another), foot-bots always avoid to
locally retrace their movements.

When a foot-bot meets an obstacle while following θn
j or while going to an

observed eye-bot, it executes an obstacle circumnavigation behavior. This is
based on its distance scanner. The foot-bot moves parallel to the obstacle, for as
long as it observes the direction it wanted to go in as blocked. Due to noise on the
distance scanner and interference with other robots, obstacle circumnavigation
has limited reliability.

Foot-bots use light signals to give feedback to eye-bots. A foot-bot j simul-
taneously switches on its LED beacon on top and one LED in front, in order
to show its location and the direction it is coming from, θf

j . The color of the
front LED indicates whether it is going towards the source or the target. In some
cases, j can switch off its front led. This way, eye-bots still see where it is, but
not its direction θf

j . As a consequence, eye-bots cannot adapt θs
i or θt

i based on
θf

j . A foot-bot does this whenever its movement direction is not representative
for the general direction it is following from source to target: when it performs
obstacle circumnavigation or random movement. The goal is to limit errors in
the eye-bot directions θs

i and θt
i .

4.4 Updating eye-bot positions

Each eye-bot i adapts its position in three different ways. The first is in the
direction of observed foot-bots (to indicate good feasible paths for foot-bots).



The second is away from other eye-bots (to avoid collisions). The third is in
the direction of lost communication neighbors (to repair connectivity in the eye-
bot network). The first two are based on observations accumulated over time.
The third is a reactive behavior triggered by loss of network connectivity. The
eye-bots indicating the source and target locations never move. In the following
these three behaviors are described.

When an eye-bot i observes a foot-bot j, it uses its camera observation and
altitude measurement to calculate the relative distance rij and angle αij to j in
i’s horizontal plane. We indicate by uij = (cos(αij), sin(αij)) the unit vector in
the direction of j with respect to i’s frame of reference (given by its reference
direction θ0i ). Using uij and rij , eye-bot i updates a two-dimensional vector pi,
which it uses to direct its movements. After observing j, pi is updated:

pi =

{
pi + (1− rij)uij if rij < rf ,

pi + (1− rf )uij otherwise.
(1)

In this equation, rf ∈ [0, 1] is a distance threshold, which produces smaller
updates for faraway foot-bots. Updating pi for each foot-bot observation, eye-
bot i calculates over time an aggregate of the directions in which it sees foot-bots.
If foot-bots are observed more in one direction than in others, pi grows in that
direction. Once the magnitude of pi reaches a threshold value cp, |pi| > cp,
i makes a fixed small move in the direction indicated by pi. Then, pi is re-
initialized to (0, 0). The reduced weight for faraway foot-bots in Eq. 1, based
on the constant rf , is meant to improve stability: faraway foot-bots passing by
are observed in a given direction for longer than nearby foot-bots, which would
make pi grow too fast in their direction.

When i observes another eye-bot k nearby, it uses the IrRB system to derive
the distance rik and angle αik to k. uik = (cos(αik), sin(αik)) is i’s unit vector
in the direction of k. In this case, the same movement vector pi is updated:

pi + e(rik)uik, (2)

where e(rik) is a staircase function that serves to scale uik in different ways
according to how far is eye-bot k. The closer k is, the larger is the scaling. This
update makes pi grow when two eye-bots get close to each other, so that eye-bots
tend to spread out and avoid collisions.

Finally, eye-bots also make moves to repair network connectivity if lost due
to relative eye-bot movements. Network connectivity is established as the result
of running a network routing algorithm in the eye-bot network (in particular, we
chose the Bellman-Ford algorithm [14]). Using the relative position information
returned by the IrRB communication system, eye-bots derive the physical length
of each communication link and use this to calculate the shortest path to source
and target. The same information also allows to derive the direction to the next
hop on each path. When Bellman-Ford routing fails to indicate a next hop,
network connectivity is assumed to be lost. Then, eye-bots make a small move
in the direction of the last known next hop on the lost path.
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Fig. 2. Open space experiments: (a) start positions, (b) convergence to a straight path

4.5 Updating eye-bot directions

Initial values for θs
i and θt

i are based on the directions to next hops as indicated
by Bellman-Ford routing. Once an eye-bot starts observing foot-bots, it updates
the values for θs

i and θt
i based on the directions where observed foot-bots come

from. We explain the update of θs
i ; for θt

i it is equivalent.
Internally, each eye-bot i represents the direction θs

i with a two-dimensional
vector vs

i , which points in the direction of θs
i and initially has a size of 1. At

discrete time intervals, each eye-bot i defines the set V t
i of foot-bots that are

in view of its camera and that are going towards the target (i.e., are coming
from the source). For each foot-bot j ∈ V t

i , it observes the direction it is coming
from (the inverse of its movement direction), θf

j , based on the j’s LED signals.
It calculates uf

j = (cos(df
j ), sin(df

j )), the unit vector in direction θf
j . Then, if

|V t
i | > 0, it updates vs

i as in Eq. 3, and assigns the direction of vs
i to θs

i .

vs
i = avs

i + (1− a)
∑
j∈V t

i

uf
j , where a ∈]0, 1[. (3)

5 Experimental results

We investigate the behavior of the system through simulation tests using a range
of different scenarios. All tests are done with the Swarmanoid simulator [15],
which is developed as part of the Swarmanoid project. It contains precise models
of the foot-bot and eye-bots robots. All experiments last 2000 seconds. We carry
out 30 independent runs for each test.

5.1 Tests in an uncluttered environment: shortest path behavior

Looking at the behavior of our system in open space scenarios, we can understand
how it finds efficient paths in open areas between subsequent obstacles. The
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Fig. 3. Open space experiments: number of foot-bots vs. average travel time. Error
bars show one standard deviation.

scenario is shown in Fig. 2(a): eye-bots start from an inefficient setup that makes
a detour around the arena. Light and dark arrows above eye-bots indicate the
directions they indicate towards respectively the target and source. The line
segment above each foot-bot shows its movement direction.

Figure 2(b) shows a snapshot after 900 s: the eye-bots have formed an almost
straight path between source and target. This is confirmed by numerical results
in Fig. 3. We vary the number of foot-bots, and show the average time needed for
a foot-bot to travel between source and target. Eye-bots start form the positions
of Fig. 2(a) and move according to our algorithm. We measure the average travel
time during the first 1000 s of simulation (“Dynamic, detour”), and between
2000 s and 3000 s, when the system has had time to converge onto a stable path
(“Dynamic, steady state”). We compare to tests where eye-bots do not adapt
their position or direction: we do tests where the eye-bots remain static in the
positions of Fig. 2(a) (“Static detour”), and tests where they are placed in a
straight line between source and target (“Static best”). In both cases they use
IrRB communication to define directions. Results show that with our algorithm,
foot-bot performance is close to that obtained over the straight path. In all cases,
performance decreases with the number of foot-bots, due to congestion.

The ability to find straight paths relies on the tendency of an eye-bot to line
up with neighbors that send foot-bots to it. An eye-bot that is not lined up with
its neighbors observes foot-bots more in one direction than another, and moves in
that direction. E.g., for the eye-bot in the top left in Fig. 2(a), foot-bots enter its
field of view on the right (coming from the source) or at the bottom (coming from
the target). Therefore, the eye-bot observes more foot-bots towards its bottom-
right than towards its top-left half. Its movement vector pi grows towards the
bottom-right, and eventually the eye-bot moves in that direction. This process
goes on continuously and lets eye-bots form straight lines.

5.2 Experiments in a cluttered environment

Here, we examine the setup of Fig. 1(c). In the beginning, eye-bots indicate
a straight path between source and target. Foot-bots follow this path and use
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obstacle circumnavigation when their way is blocked. In Fig. 4(a), we show
the situation after 122s. Foot-bots performing obstacle circumnavigation follow
obstacle perimeters. Eye-bots move to locations where they observe foot-bots,
so they tend to take place along obstacle edges. The directions indicated by
eye-bots are adapted to the main movement directions of foot-bots, so they do
not point towards obstacles. In the free space between obstacles, eye-bots form
straight lines. Ultimately, a path of line segments connecting obstacle corners
emerges. This is observed in Fig. 4(b), which shows a snapshot after 280s.

We measure the average time needed by foot-bots to travel between source
and destination. In Fig. 4(c), we vary the number of foot-bots. We show results
for tests where eye-bots use our adaptive behavior (“Dynamic”), tests where eye-
bots remain static in the positions of Fig. 1(c) (“Static”), and tests where eye-
bots remain static in a pre-defined path efficient for foot-bots (“Static, best”).
The graph shows that our dynamic approach significantly improves foot-bot
navigation efficiency compared to the initial placement, and obtains results close
to those of the efficient path. For low numbers of foot-bots (1 to 10) results
are more variable. This is because obstacle circumnavigation errors of single
robots affect eye-bot behavior less when there are many other robots around.
In Fig. 4(d), we vary the number of eye-bots, and show results for our adaptive
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Fig. 6. Random obstacles experiments: (a) example setup with 10 blocks, (b) number
of blocks vs. run delay

approach (using 15 foot-bots). The graph shows how a higher number of eye-bots
gives the system more flexibility to adapt and find more efficient paths.

5.3 Experiments in more complex environments

We investigate the behavior of our system in more complex cluttered environ-
ments. A first one, shown in Fig. 5(a), has three large obstacles. Due to their
size and their orientation perpendicular to the movement direction of foot-bots,
they are difficult to pass using the foot-bots’ imprecise obstacle circumnavigation
system. Results for average travel time are shown in Fig. 5(b). The performance
of static eye-bots is a lot worse than in the tests of Sect. 5.2, confirming that
these obstacles are more difficult to pass. Nevertheless, the dynamic approach
manages to get a performance that is close to that of a pre-defined efficient path.



Next, we place obstacles randomly between source and target. These obsta-
cles are blocks of 1×1 m2. We use 0 up to 10 blocks. Fig. 6(a) shows an example
scenario with 10 blocks. Results for our adaptive approach and for static eye-
bots in a straight path are shown in Fig. 6(b). As the number of obstacles grows,
the dynamic approach becomes more advantageous. Standard deviations are not
shown, because differences between random scenarios lead to large variability be-
tween different runs (paired t-tests showed that the dynamic approach is better
than the static one in each data point, with p-values in the order of 10−6).

Finally, we explore the limitations of our system. In the scenario of Fig. 7(a),
two large blocks are placed against the walls and form concave obstacles for
foot-bots. The eye-bots’ initial directional instructions based on IrRB communi-
cation lead foot-bots into a corner, and it is difficult for the foot-bots’ obstacle
circumnavigation to escape from this, as it tends to go the wrong way and rarely
manages to find the way around the obstacles. This is confirmed by numerical
results in Fig. 7(b): the performance of our approach is variable and far from
that of the efficient path. Results could be improved using more sophisticated
obstacle circumnavigation, but this would not solve the basic issue, that the path
found by our system is dependent on the initial directions obtained from infrared
communication. One solution is to let eye-bots explore directional instructions,
by sending foot-bots in all possible directions, and learn the best instructions. In
related work, we have investigated this for static eye-bots [16]. In future work,
we will integrate this with the current work where eye-bots are mobile.
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6 Conclusions and future work

We have investigated self-organized path finding in a heterogeneous robotic
swarm consisting of two types of mobile robots, the eye-bots and the foot-bots.
Eye-bots’ role is to provide local guidance for foot-bot navigation. We studied
how eye-bots can adaptively change their positions in order to improve the nav-
igability of the path they indicate. We have shown how local interaction and



mutual adaptation between the two sub-swarms allows the system as a whole
to find efficient paths in cluttered environments. In a number of experiments,
we have investigated the performance of our system and have shown it can find
efficient paths in a wide range of different scenarios. We have also identified the
system’s limitations, which are due to the dependence on wireless communica-
tion to get initial navigation instructions. In future work, we will work on this
issue, by extending the system with capabilities to explore the environment.
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