
SWARM INTELLIGENCE FOR ROUTING IN MOBILE AD HOC NETWORKS

Gianni Di Caro, Frederick Ducatelle and Luca Maria Gambardella

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)
Galleria 2, CH-6928 Manno-Lugano, Switzerland

{gianni,frederick,luca}@idsia.ch

ABSTRACT

Mobile Ad Hoc Networks are communication networks built
up of a collection of mobile devices which can communi-
cate through wireless connections. Routing is the task of
directing data packets from a source node to a given des-
tination. This task is particulary hard in Mobile Ad Hoc
Networks: due to the mobility of the network elements and
the lack of central control, routing algorithms should be
robust and adaptive and work in a decentralized and self-
organizing way. In this paper, we describe an algorithm
which draws inspiration from Swarm Intelligence to obtain
these characteristics. More specifically, we borrow ideas
from ant colonies and from the Ant Colony Optimization
framework. In an extensive set of simulation tests, we com-
pare our routing algorithm with a state-of-the-art algorithm,
and show that it gets better performance over a wide range
of different scenarios and for a number of different evalu-
ation measures. In particular, we show that it scales better
with the number of nodes in the network.

1. INTRODUCTION

In communications network research, there is currently an
increasing interest for the paradigm of autonomic comput-
ing [14]. The idea is that networks are becoming more and
more complex and that it is desirable that they can self-
organize and self-configure, adapting to new situations in
terms of traffic, services, network connectivity, etc.. To sup-
port this new paradigm, future network algorithms should
be robust, work in a distributed way, be able to observe
changes in the network, and adapt to them.

Nature’s self-organizing systems like insect societies show
precisely these desirable properties. Making use of a num-
ber of relatively simple biological agents (e.g., the ants) a
variety of different organized behaviors are generated at the
system-level from the local interactions among the agents

This work was supported by the Future & Emerging Technologies unit
of the European Commission through project “BISON: Biology-Inspired
techniques for Self Organization in dynamic Networks” (IST-2001-38923)
and by the Swiss Hasler Foundation through grant DICS-1830.

and with the environment. The robustness and effective-
ness of such collective behaviors with respect to variations
of environment conditions are key-aspects of their biologi-
cal success. This kind of systems are often referred to with
the term Swarm Intelligence. Swarm systems have recently
become a source of inspiration for the design of distributed
and adaptive algorithms, and in particular of routing algo-
rithms. Routing is the task of directing data flows from
sources to destinations maximizing network performance.
It is at the core of all network activities. Several success-
ful routing algorithms have been proposed taking inspira-
tion from ant colony behavior and the related framework
of Ant Colony Optimization (ACO) [8]. Examples of ACO
routing algorithms are AntNet [6] and ABC [19].

One type of networks where the need for autonomic
control is intrinsically necessary are Mobile Ad Hoc Net-
works (MANETs) [17]. These are networks in which all
nodes are mobile and communicate with each other via wire-
less connections. Nodes can join or leave at any time. There
is no fixed infrastructure. All nodes are equal and there is
no centralized control or overview. There are no designated
routers: nodes serve as routers for each other, and data pack-
ets are forwarded from node to node in a multi-hop fashion.

The ACO routing algorithms mentioned before were de-
veloped for wired networks. They work in a distributed and
localized way, and are able to observe and adapt to changes
in traffic patterns. However, changes in MANETs are much
more drastic: in addition to variations in traffic, both topol-
ogy and number of nodes can change continuously. Further
difficulties are posed by the limited practical bandwidth of
the shared wireless channel: although the data rate of wire-
less communication can be quite high, algorithms used for
medium access control, such as IEEE 802.11 DCF[12] (the
most commonly used in MANETs), create a lot of overhead
both in terms of control packets and delay, lowering the ef-
fectively available bandwidth. The challenges of autonomic
control are therefore much bigger, and new designs are nec-
essary to guarantee even the basic network functions.

In the following, we describe AntHocNet, an ant inspired
algorithm for routing in MANETs. Building on ideas from
previous work on ACO routing, in combination with tech-

niques from dynamic programming, it is tailored to deal
with the challenges posed by the extreme dynamics of MA-
NET environments. We compare the algorithm with tradi-
tional approaches and show its superiority especially under
those conditions where the difference with wired networks
is more evident. We also present results indicating that the
algorithm is remarkably scalable. The rest of this article is
organized as follows. First we introduce some necessary
background, next we describe the algorithm, and finally we
present the results of an extensive simulation study.

2. SCIENTIFIC BACKGROUND

In this section we discuss some issues related to the work
presented in this paper, and introduce some notions which
will be used in the rest of this paper.

2.1. MANET routing algorithms

Many MANET routing algorithms have been proposed. In
the literature, the classical distinction is between table-driven
and demand-driven algorithms [17]. Table-driven algorithms,
such as DSDV [15], are purely proactive: all nodes try to
maintain routes to all other nodes at all times. This means
that they need to keep track of all topology changes, which
can be difficult if there are a lot of nodes or if they are very
mobile. Demand-driven algorithms, such as AODV [16],
are purely reactive: nodes only gather routing information
when a data session to a new destination starts, or when
a route which is in use fails. Reactive algorithms are in
general more scalable [4] since they reduce routing over-
head, but they can suffer from oscillations in performance
because they are never prepared for disruptive events. In
practice, many algorithms are hybrid (e.g. ZRP [11]), using
both proactive and reactive components. Also AntHocNet
can be described as a hybrid algorithm.

2.2. Stigmergic learning and ACO routing

Stigmergy is a form of distributed control based on indi-
rect communication among agents which locally modify the
environment and react to these modifications leading to a
phase of global coordination of the agent actions [21]. The
local environment’s variables whose values determine in turn
the characteristics of the agents’ response, are called stig-
mergic variables. An example of a stigmergic process is
the mechanism used by ant colonies to find the shortest path
between their nest and a food source [10, 8]. The main cata-
lyst of this colony-level shortest path behavior is the use of a
volatile chemical substance called pheromone, which acts as
a stigmergic variable: ants moving back and forth between
the nest and a food source lay pheromone, and preferentially
move towards areas of higher pheromone intensity. Shorter
paths can be completed quicker and more frequently by the

ants, and are therefore marked with higher pheromone in-
tensity. These paths can then attract more ants, which in
turn increases the pheromone level. The overall effect is a
distributed reinforcement learning [20] process which even-
tually allows the majority of the ants to converge onto the
shortest path.

The ant colony shortest path behavior has attracted a lot
of attention, and has been reverse-engineered in the con-
text of ACO [8]. For this paper, we are interested in the
application of ACO for routing [5]. In ACO routing algo-
rithms, routing information is gathered through a stigmer-
gic learning process using ant agents. These are lightweight
agents which are generated concurrently and independently
by the nodes, with the task to sample path to an assigned
destination. An ant going from its source s to a destination
d collects information about the quality of the path it fol-
lows (e.g. end-to-end delay), and, retracing its way back
from d to s, uses this to update the routing information at
intermediate nodes. Following the datagram model of IP
networks, routing information is expressed in the form of
tables kept locally at each node. The routing table T i at
node i is a matrix, where each entry T i

nd ∈ R of the ta-
ble is a value indicating the estimated goodness of going
from i over neighbor n to reach destination d. These ta-
ble entries play the role of stigmergic variables in the learn-
ing process: an ant agent sampling a path to its destination
d makes a stochastic routing decision at each node, giving
higher probability to decisions with high goodness, while an
ant retracing its way back from d to s updates the table en-
tries influencing the routing of other ants. The routing tables
are therefore also called pheromone tables and the goodness
values pheromone values. Data packets are routed more or
less in the same way as ants: packets are routed stochasti-
cally, choosing with a higher probability those links associ-
ated with higher pheromone values. The result is automatic
balancing of the data load over the network.

2.3. Information bootstrapping

The way ACO routing algorithms gather information could
be described as a Monte Carlo learning process: ants try
out complete paths from source to destination, and gather
information about it. Hence, the estimated goodness values
for routing decisions recorded in the pheromone tables are
the result of the direct experiences of the ants. In the rein-
forcement learning [20] literature, Monte Carlo learning is
often contrasted with a different learning paradigm, namely
information bootstrapping. Bootstrapping is a characteris-
tic of dynamic programming. Nodes estimate the cost-to-go
of a path by combining the cost estimates made by neigh-
boring nodes and the cost to go to those neighboring nodes,
rather than by the direct sampling of a full path. Information
bootstrapping is the typical mode of operation in classical
Bellman-Ford routing algorithms [1], as well as in derived

table-driven algorithms like DSDV, and some reinforcement
learning inspired approaches to routing, like Q-routing [3].

Compared to Monte Carlo sampling, bootstrapping is
more efficient in a stationary environment. However, in a
dynamic environment it can be unreliable, because wrong
information can arise from combining new and old esti-
mates, and because errors can easily propagate since esti-
mates are built up using other estimates. In AntHocNet, we
attempt to combine the best of both learning methods: the
Monte Carlo sampling of paths by ants is supported by a
lightweight information bootstrapping process which pro-
vides a second way of building up goodness estimates. This
bootstrapping process, which we call pheromone diffusion,
and its interaction with the Monte Carlo sampling process,
is described in detail in subsection 3.3.

3. DESCRIPTION OF THE ALGORITHM

AntHocNet’s design is inspired by ACO routing algorithms
for wired networks. It uses ant agents which follow and
update pheromone tables in a stigmergic learning process.
Data packets are routed stochastically according to the learned
tables. An important difference with other ACO routing al-
gorithms is that AntHocNet is a hybrid algorithm, in or-
der to deal better with the specific challenges of MANET
environments. It is reactive in the sense that nodes only
gather routing information for destinations which they are
currently communicating with, while it is proactive because
nodes try to maintain and improve routing information as
long as communication is going on. We make a distinc-
tion between the path setup, which is the reactive mech-
anism to obtain initial routing information about a desti-
nation at the start of a session, and path maintenance and
improvement, which is the normal mode of operation dur-
ing the course of a session to proactively adapt to network
changes. Path maintenance and improvement is supported
by the pheromone diffusion process mentioned in 2.3: the
routing information obtained via stigmergic learning is spread
between the nodes of the MANET in an information boot-
strapping process to provide secondary guidance for the learn-
ing agents. Link failures are dealt with using a local path
repair process or via notification messages. In the following
we provide a concise description of each of these compo-
nents. A more detailed description of the AntHocNet algo-
rithm can be found in [7, 9].

3.1. Pheromone tables

Paths are implicitly defined by the pheromone tables which
are kept locally at each node. An entry T i

nd ∈ R of the
pheromone table T i at node i contains a value indicating
the estimated goodness of going from i over neighbor n to
reach destination d. This goodness is a combined measure

of path end-to-end delay and number of hops. These are two
commonly used quality measures in MANETs. Combining
them is also a way to smooth out possibly large oscillations
in the time estimates gathered by the ants (e.g., due to local
bursts of traffic). Since AntHocNet only maintains informa-
tion about destinations which are active in a communication
session, and the neighbors of a node change continually, the
filling of the pheromone tables is sparse and dynamic.

3.2. Reactive path setup

When a source node s starts a communication session with
a destination node d, and it does not have routing informa-
tion for d available, it broadcasts a reactive forward ant. At
each node, the ant is either unicast or broadcast, according
to whether or not the current node has pheromone infor-
mation for d. If information is available, the ant chooses
its next hop n with the probability Pnd which depends on
the relative goodness of n as a next hop, expressed in the
pheromone variable T i

nd:

Pnd =
(T i

nd)
β

∑

j∈N i

d

(T i
jd)

β
, β ≥ 1, (1)

where N i
d is the set of neighbors of i over which a path

to d is known, and β is a parameter which controls the ex-
ploratory behavior of the ants. If no pheromone is available,
the ant is broadcast. Due to subsequent broadcasts, many
duplicate copies of the same ant travel to the destination. A
node which receives multiple copies of the same ant only
accepts the first and discards the other. This way, only one
path is set up initially. During the course of the communica-
tion session, more paths are added via the proactive path ex-
ploration and maintenance mechanism (see subsection 3.3)
to provide a mesh of multiple paths for data forwarding.

Each forward ant keeps a list P = [1, 2, . . . , d] of the
nodes it has visited. Upon arrival at the destination d, it
is converted into a backward ant, which travels back to the
source retracing P . At each intermediate node i ∈ P (i <

d), the backward ant reads a locally maintained estimate
T̂ i

i+1 of the time it takes to reach the neighbor i + 1 the
ant is coming from. The time T̂ i

d it would take a data packet
to reach d from i over P is calculated incrementally as the
sum of the local estimates T̂

j
j+1

gathered by the ant be-

tween i and d. This time estimate T̂ i
d is combined with

the number of hops h between i and d over P to calcu-
late the pheromone update value τ i

d. A pheromone value is
a goodness measure expressed as an inverted cost. It has
the dimension of an inverted time. Therefore, we use the
following formula to calculate τ i

d:

τ i
d =

(

T̂ i
d + hThop

2

)−1

, (2)

where Thop is a fixed value representing the time to take one
hop in unloaded conditions. The value of T i

nd is updated as
follows:

T i
nd = γT i

nd + (1 − γ)τ i
d, γ ∈ [0, 1]. (3)

Once the backward ant makes it back to the source, a full
path is set up and the source can start sending data. If the
backward ant does not arrive for some reason, a timer runs
out at the source, and the whole process is started again.

3.3. Proactive path maintenance and exploration

During the course of a communication session, source nodes
send out proactive forward ants to update the information
about currently used paths and to try to find new and bet-
ter paths. They follow pheromone and update routing tables
in the same way as reactive forward ants. Such continuous
sampling of paths and pheromone updating by ants is the
typical mode of operation in ant inspired routing algorithms.
However, in MANET environments, characterized by con-
stant changes, the needed ant sending frequency would be
quite high, so that the process would get in conflict with the
typically limited bandwidth in such networks. Moreover, to
find entirely new paths, too much blind exploration through
random walks or broadcasts would be needed, again leading
to excessive bandwidth consumption. Therefore, we intro-
duce at this point the supporting pheromone diffusion func-
tion which allows to spread pheromone information over the
network. This process provides a second way of updating
pheromone information about existing paths, and can give
information to guide exploratory behavior.

The pheromone diffusion is implemented using short
messages, broadcast periodically and asynchronously by the
nodes to all their neighbors. In these messages, the send-
ing node n places a list of destinations it has information
about, including for each of these destinations d the best
pheromone value T n

m∗d,m
∗ ∈ N n

d , which n has available for
d. A node i receiving the message from n first of all regis-
ters that n is its neighbor. Then, for each destination d listed
in the message, it derives an estimate of the goodness of go-
ing from i to d over n, combining the cost of hopping from
i to n with the reported pheromone value T n

m∗d. We call
the obtained estimate the bootstrapped pheromone variable
Bi

nd, since it is built up using an estimate which is non-local
to i (see subsection 2.3). This bootstrapped pheromone vari-
able can in turn be forwarded in the next message sent out
by n, giving rise to a bootstrapped pheromone field over the
MANET. This field is complementary to the field of regular
pheromone, learned via ant-based Monte Carlo sampling.

Bootstrapped pheromone is used directly for the mainte-
nance of existing paths. If i already has a regular pheromone
entry T i

nd in its routing table for destination d going over
neighbor n, Bi

nd is treated as an update of the goodness esti-
mate of this path, and is used directly to replace T i

nd. Due to

the slow multi-step forwarding of bootstrapped pheromone,
this information does not provide the most accurate view of
the current situation. However, it is obtained via a lightweight,
efficient process, and is complemented by the explicit path
updating done by the ants. In this way we have two updating
frequencies in the path maintenance process.

For path exploration, bootstrapped pheromone is used
indirectly. If i does not yet have a value for T i

nd in its rout-
ing table, Bi

nd could indicate a possible new path from i to d

over n. However, this path has never been sampled explic-
itly by an ant, and due to the slow multi-step pheromone
bootstrapping process it could contain undetected loops or
dangling links. It is therefore not used directly for data for-
warding. It is seen as a sort of virtual pheromone, which
needs to be tested. Proactive forward ants will use both the
regular and the virtual pheromone on their way to the des-
tination, so that they can test the proposed new paths. This
way, promising virtual pheromone is investigated, and can
be turned into a regular path which can be used for data.
This increases the number of paths available for data rout-
ing, which grows to a full mesh, and allows the algorithm to
exploit new opportunities in the ever changing topology.

3.4. Stochastic data routing

Nodes in AntHocNet forward data stochastically according
to the pheromone values. When a node has multiple next
hops for the destination d of the data, it randomly selects
one of them, with probability Pnd. Pnd is calculated like for
reactive forward ants, using equation 1. However, a higher
value for the exponent β is used in order to be greedy with
respect to better paths. According to this strategy, we do
not choose a priori how many paths to use: their number
is automatically selected in function of their quality. This
probabilistic routing strategy leads to data load spreading
according to the estimated quality of the paths. When a
path is worse than others, it is avoided, and its congestion
is relieved. Other paths get more traffic, leading to higher
congestion, which makes their delay increase. If estimates
are kept up-to-date, this leads to automatic load balancing.

3.5. Link failures

Nodes can detect link failures (e.g., a neighbor has moved
away) when unicast transmissions fail, or when expected
periodic pheromone diffusion messages were not received.
When a node i discovers the disappearance of a neighbor n,
it takes a number of actions. In the first place, i registers
that n is no longer a neighbor, and removes all associated
entries from its pheromone table. Next, i broadcasts a link
failure notification message. This message contains a list of
the destinations to which i lost its best path, and the new
best pheromone to this destination (if it still has entries for
the destination). All its neighbors receive the message and

update their pheromone table using the new estimates. If
they in turn lost their best or their only path to a destination,
they will pass the updated message on to their neighbors,
until all concerned nodes are notified of the new situation.

If i detected the link failure via the failed transmission
of a data packet, and it has no further paths available for
the destination of this packet, it starts a local route repair.
i broadcasts a route repair ant that travels to the involved
destination like a reactive forward ant: it follows available
routing information when it can, and is broadcast otherwise.
One important difference is that it has a restricted number
of broadcasts so that its proliferation is limited. If the lo-
cal repair fails, i broadcasts a new link failure notification
message to warn its neighbors.

4. EXPERIMENTAL RESULTS

We evaluate our algorithm in a number of simulation tests.
We compare its performance with AODV [16] (with local
route repair), a state-of-the-art MANET routing algorithm
and a de facto standard. As simulation software, we use
QualNet, a commercial simulation package [18].

We study the behavior of the algorithm in function of
a number of different properties of the network scenario.
All of the test scenarios are obtained by varying parame-
ters in a specific base scenario. In this base scenario, 100
nodes move in a flat, rectangular area of 3000 × 1000 m2.
Movement patterns are generated according to the random
waypoint mobility model (RWP) [13]: they choose a ran-
dom destination point and a random speed, move to the cho-
sen point with the chosen speed, and rest there for a fixed
amount of pause time before they choose a new destina-
tion and speed. The speed is chosen between 0 and 20 m/s,
and the pause time is 30 seconds. Each simulation runs for
900 seconds. 20 different Constant Bit Rate sources start
sending at a random time between 0 and 180 seconds and
keep sending till the end. At the Medium Access Control
layer, the IEEE 802.11b DCF protocol is used. As mea-
sures of performance, we use the average end-to-end delay
for data packets and the ratio of correctly delivered versus
sent packets. These are standard measures of effectiveness
in MANETs. We also report delay jitter, the average differ-
ence in inter-arrival time between packets. As measure of
efficiency, we consider routing overhead, in terms of num-
ber of control packets forwarded per successfully delivered
data packet.

We investigate AntHocNet’s performance for varying
levels of mobility and node density, for increasing network
sizes, and for different data traffic patterns. At the end of the
section, we also show results reporting the performance of
the algorithm at a smaller time scale: following the evolu-
tion of the end-to-end delay over the course of a simulation
session while some disruptive events take place, we attempt

to give an idea of the adaptivity of the algorithm.
To obtain scenarios with different levels of mobility, we

vary the pause time. Higher pause time means lower mobil-
ity, but also lower connectivity (due to specific properties of
RWP mobility, see [2]). The results are reported in figures 1
and 2. AntHocNet shows much better effectiveness than
AODV, in terms of average delay, delivery ratio, and jitter.
AODV has better efficiency, measured as routing overhead,
but the difference is rather small. The bad performance for
high pause times are due to the reduced connectivity.

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

0 15 30 60 120 240 480

A
ve

ra
ge

 e
nd

-t
o-

en
d

pa
ck

et
 d

el
ay

 (
se

c)

Pause time (sec)

AntHocNet
AODV

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

0 15 30 60 120 240 480

P
ac

ke
t d

el
iv

er
y

ra
tio

Pause time (sec)

AntHocNet
AODV

Figure 1. Average delay and delivery ratio for different lev-
els of mobility

Different node density levels are obtained by keeping the
area size constant and increasing the number of nodes. The
results of these tests are reported in figure 3. Again, An-
tHocNet performs better than AODV in terms of average
end-to-end delay and delivery ratio, and the difference in-
creases with the density. In terms of overhead, AntHocNet
is worse than AODV for low densities, but better for high
densities. Jitter was not reported here, nor for the remaining
tests, due to space limitations. It always follows more or
less the trend visible for delay and delivery ratio.

For different network sizes, we increase the number of
nodes (up to 800) and the area size together, keeping the
node density constant. The results are presented in figure 4.
AntHocNet’s advantage over AODV in terms of average de-
lay and delivery ratio grows with the size of the network.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0 15 30 60 120 240 480

A
ve

ra
ge

 d
el

ay
 ji

tte
r

(s
ec

)

Pause time (sec)

AntHocNet
AODV

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

0 15 30 60 120 240 480

R
ou

tin
g

ov
er

he
ad

Pause time (sec)

AntHocNet
AODV

Figure 2. Average jitter and overhead for different levels of
mobility

AntHocNet’s overhead grows less fast than that of AODV.
This is an important result which indicates that AntHocNet
is more scalable with respect to the number of nodes.

For all the previous tests the data traffic consisted of 20
randomly placed CBR sessions. In figure 5 we show results
of tests which use different traffic loads and patterns. We
did tests with 20 and 50 sessions. The sessions are orga-
nized around a number of hot spots: 20 (or 50) randomly
chosen CBR sources send to a limited number of differ-
ent destinations. This number of destinations was increased
from 1 up to the total number of sessions (corresponding
to the randomly placed traffic we used before). Organizing
traffic sessions around hot spots reflects the typical situation
where traffic is concentrated around a number of important
nodes. Again we observe an advantage for AntHocNet in
terms of average delay and delivery ratio. This advantage is
smaller for the easier scenarios where traffic is concentrated
on a low number of hot spots. For the tests with 20 ses-
sions, AntHocNet has higher overhead than AODV, while
for those with 50 sessions the picture is more balanced.

For the last test, we report the evolution of the end-to-
end delay over the course of a test run in which some im-
portant events take place. In this test, 10 randomly chosen
sources start to send to the same hot spot between 100 and
110 seconds after the start of the simulation, and keep on

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 50 75 100 125 150

A
ve

ra
ge

 e
nd

-t
o-

en
d

pa
ck

et
 d

el
ay

 (
se

c)

Number of Nodes

AntHocNet
AODV

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 50 75 100 125 150

P
ac

ke
t d

el
iv

er
y

ra
tio

Number of Nodes

AntHocNet
AODV

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 50 75 100 125 150

R
ou

tin
g

ov
er

he
ad

Number of Nodes

AntHocNet
AODV

Figure 3. Average delay, delivery ratio and overhead for in-
creasing node density

sending till the end. After 300 seconds, 20 new sources
start to send to a different hot spot. 200 seconds later they
stop sending again. All sources send four 64 byte packets
per second. Figure 6 shows for one communication session
how the end-to-end delay, averaged per 10 seconds, evolves
throughout the simulation. The arrival of 20 new sessions
after 300 seconds is clearly visible and leads to a long pe-
riod of unstable behavior: the congestion caused by the high
data load can cause strong fluctuations for the delay. An-
tHocNet’s behavior is much smoother than that of AODV
however. After the end of the 20 sessions, at second 500,
the situation stabilizes again, but faster for AntHocNet than
for AODV. The slow decrease of the delay under stable con-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 200 300 400 500 600 700 800

A
ve

ra
ge

 e
nd

-t
o-

en
d

pa
ck

et
 d

el
ay

 (
se

c)

Number of Nodes

AntHocNet
AODV

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 100 200 300 400 500 600 700 800

P
ac

ke
t d

el
iv

er
y

ra
tio

Number of Nodes

AntHocNet
AODV

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800

R
ou

tin
g

ov
er

he
ad

Number of Nodes

AntHocNet
AODV

Figure 4. Average delay, delivery ratio and overhead for in-
creasing network sizes

ditions (from 100 till 300 seconds, and from 500 till 850) is
due to normal topology changes inside the MANET.

5. CONCLUSIONS

In this paper we have described AntHocNet, a routing al-
gorithm for MANETs which was inspired by ideas from
Swarm Intelligence, and more specifically by the frame-
work of ACO. The algorithm combines reactive and proac-
tive behavior to deal with the specific challenges of MANETs
in an efficient way. Routing information is learned through
Monte Carlo sampling of paths using repeatedly and con-
currently generated ant agents, as is common in ACO rout-

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 e
nd

-t
o-

en
d

pa
ck

et
 d

el
ay

 (
se

c)

Number of Hot Spots

AntHocNet 20 Sessions
AntHocNet 50 Sessions

AODV 20 Sessions
AODV 20 Sessions

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30 35 40 45 50

R
ou

tin
g

ov
er

he
ad

Number of Hot Spots

AntHocNet 20 Sessions
AntHocNet 50 Sessions

AODV 20 Sessions
AODV 50 Sessions

Figure 5. Average delay, delivery ratio and overhead for an
increasing number of hot spots

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700 800 900

A
ve

ra
ge

 e
nd

-t
o-

en
d

pa
ck

et
 d

el
ay

 (
se

c)

Time (sec)

AntHocNet
AODV

Figure 6. Evolution of the end-to-end delay over the course
of a test run

ing algorithms. This learning process is supported by a sec-
ondary process, called pheromone diffusion. Pheromone
diffusion provides an alternative way to learn pheromone in-
formation, using an information bootstrapping mechanism
rather than Monte Carlo sampling. It is used to help up-
date pheromone on existing paths and to provide guidance
to ants in search of new paths.

We have evaluated the algorithm in an extensive set of
simulation tests. The tests were carried out in a commer-
cial simulator and comparisons were each time made with
AODV, a de facto standard in the community. AntHocNet
was shown to outperform AODV over the wide range of
tested scenarios in terms of delivery ratio, average end-to-
end delay and average jitter, while generating a compara-
ble amount of control overhead. An important observation
was that the advantage of AntHocNet over AODV grew for
larger networks, especially in terms of overhead, suggesting
that AntHocNet is more scalable than AODV.

6. REFERENCES

[1] D. Bertsekas and R. Gallager. Data Networks.
Prentice–Hall, Englewood Cliffs, NJ, USA, 1992.

[2] C. Bettstetter, G. Resta, and P. Santi. The node dis-
tribution of the random waypoint mobility model for
wireless ad hoc networks. IEEE Transactions on Mo-
bile Computing, 2(3):257–269, 2003.

[3] J.A. Boyan and M.L. Littman. Packet routing in di-
namically changing networks: A reinforcement learn-
ing approach. In J. D. Cowan, G. Tesauro, and J. Al-
spector, editors, Advances in Neural Information Pro-
cessing Systems 6 (NIPS6), pages 671–678. Morgan
Kaufmann, San Francisco, CA, USA, 1994.

[4] J. Broch, D.A. Maltz, D.B. Johnson, Y.-C. Hu, and
J. Jetcheva. A performance comparison of multi-hop
wireless ad hoc network routing protocols. In Proc. of
the 4th Annual ACM/IEEE Int. Conf. on Mobile Com-
puting and Networking (MobiCom98), 1998.

[5] G. Di Caro. Ant Colony Optimization and its appli-
cation to adaptive routing in telecommunication net-
works. PhD thesis, Faculté des Sciences Appliquées,
Université Libre de Bruxelles, Brussels, Belgium,
2004.

[6] G. Di Caro and M. Dorigo. AntNet: Distributed stig-
mergetic control for communications networks. J. of
Artificial Intelligence Research, 9:317–365, 1998.

[7] G. Di Caro, F. Ducatelle, and L.M. Gambardella. An-
tHocNet: an adaptive nature-inspired algorithm for
routing in mobile ad hoc networks. European Trans-
actions on Telecommunications, 2005. To appear.

[8] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant
algorithms for discrete optimization. Artificial Life,
5(2):137–172, 1999.

[9] F. Ducatelle, G. Di Caro, and L.M. Gambardella. Us-
ing ant agents to combine reactive and proactive strate-
gies for routing in mobile ad hoc networks. Interna-
tional Journal of Computational Intelligence and Ap-
plications (IJCIA), 2005. To appear.

[10] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pas-
teels. Self-organized shortcuts in the Argentine ant.
Naturwissenschaften, 76:579–581, 1989.

[11] Z.J. Haas. A new routing protocol for the reconfig-
urable wireless networks. In Proc. of the IEEE Int.
Conf. on Universal Personal Communications, 1997.

[12] IEEE 802.11 working group. ANSI/IEEE std. 802.11,
1999 edition: Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications. Tech-
nical report, ANSI/IEEE, 1999.

[13] D.B. Johnson and D.A. Maltz. Mobile Computing,
chapter Dynamic Source Routing in Ad Hoc Wireless
Networks, pages 153–181. Kluwer, 1996.

[14] J. Kephart and D. Chess. The vision of autonomic
computing. IEEE Computer magazine, 36(1), 2003.

[15] C. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing
(DSDV) for mobile computers. In ACM SIG-
COMM’94 Conference on Communications Architec-
tures, Protocols and Applications, 1994.

[16] C.E. Perkins and E.M. Royer. Ad-hoc on-demand dis-
tance vector routing. In Proc. of the 2nd IEEE Work-
shop on Mobile Computing Systems and Applications,
1999.

[17] E.M. Royer and C.-K. Toh. A review of current routing
protocols for ad hoc mobile wireless networks. IEEE
Personal Communications, 1999.

[18] Scalable Network Technologies, Inc., Culver City,
CA, USA. Qualnet Simulator, Version 3.6, 2003.
http://stargate.ornl.gov/trb/tft.html.

[19] R. Schoonderwoerd, O. Holland, J. Bruten, and
L. Rothkrantz. Ant-based load balancing in telecom-
munications networks. Adaptive Behavior, 5(2):169–
207, 1996.

[20] R.S. Sutton and A.G. Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998.

[21] G. Theraulaz and E. Bonabeau. A brief history of
stigmergy. Artificial Life, Special Issue on Stigmergy,
5:97–116, 1999.

	footer: 0-7803-8916-6/05/$20.00 ©2005 IEEE
	01: 76
	02: 77
	03: 78
	04: 79
	05: 80
	06: 81
	07: 82
	08: 83

