
978-1-4244-2575-4/08/$20.00 c©2008 IEEE

A New Approach for Integrating Proactive and Reactive Routing in MANETs

Frederick Ducatelle∗, Gianni A. Di Caro and Luca M. Gambardella

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland

{frederick, gianni, luca}@idsia.ch

Abstract

We propose a new approach to integrate proactive and

reactive routing in mobile ad hoc networks. Our work de-

ploys a lightweight proactive algorithm that runs in the

background offering a basic routing service, and a reac-

tive algorithm that can be called on demand offering a

connection-oriented service. The reactive algorithm uses

the routing information from the proactive algorithm in its

working, so that there is a synergy between the two parts of

the system. An important property of our system is that it al-

lows the choice between proactive and reactive routing to be

made for each session individually, by their source nodes.

This gives network nodes a very fine-grained level of con-

trol over the routing process, and allows them to exploit the

complementary properties of proactive and reactive routing,

e.g. by matching the choice of the routing approach to the

needs of individual sessions. In a range of simulation tests,

we evaluate the validity of our approach.

1. Introduction

Routing algorithms for mobile ad hoc networks

(MANETs) are typically classified as either proactive or re-

active [13]. Proactive algorithmsmaintain routing informa-

tion between all nodes in the network at all times. Examples

are DSDV [11] and OLSR [4]. Reactive algorithms take a

different approach: they only gather information for nodes

between which data sessions are going on (in this paper we

use the terms “session” and “flow” interchangeably). Ex-

amples include DSR [9] and DYMO [3]. Both approaches

∗Corresponding author. This work was partially supported by the Swiss

National Science Foundation through project 200021-108007 “Routing

problems with objective functions of increasing complexity” and by the

SWARMANOID project, funded by the Future and Emerging Technolo-

gies programme (IST-FET) of the European Commission under grant IST-

022888. The information provided is the sole responsibility of the authors

and does not reflect the European Commission’s opinion. The European

Commission is not responsible for any use that might be made of data ap-

pearing in this publication. The authors would like to thank Liliana Carrillo

for useful input and fruitful discussions.

have their advantages. Proactive algorithms usually deliver

packets with lower end-to-end delay, as routing informa-

tion is always available and updated, but might cause large

amounts of overhead and incur high packet loss when they

are not able to keep up with all changes in the network. Re-

active algorithms, on the contrary, often cause less overhead

and obtain higher packet delivery ratios, but can suffer from

larger delays due to their on-demand nature.

The complementary nature of proactive and reactive

strategies makes it difficult to choose a single algorithm

for all scenarios. Hence, standardization efforts in the

MANET working group of the IETF [1] focus on two dif-

ferent algorithms: a proactive one (OLSR) and a reactive

one (DYMO). This way, an individual choice can be made

for each network deployment. Nevertheless, since the rel-

ative advantages of proactive and reactive routing are only

understood in an approximative way, it is still difficult to

make this choice even with a specific scenario in mind.

Moreover, the situation might change during deployment,

requiring to switch algorithms. One solution is to combine

proactive and reactive routing in one system, as is done in

hybrid and multi-mode routing (see Section 2). Also within

the MANET working group, this possibility is kept open,

“if significant commonality [between the proactive and re-

active routing algorithms] is observed” [1].

We present a novel approach for combining proactive

and reactive routing, called Integrated Routing Algorithm

(IRA). It consists of a proactive algorithm that runs in the

background and offers a best effort routing service, and a

reactive algorithm that can be called on-demand and offers

a connection-oriented service. A synergy between both al-

gorithms exists because the reactive algorithm relies for its

working as much as possible on the proactive routing infor-

mation, e.g. during route maintenance and repair, so that

the proactive system remains useful even when all data are

routed reactively (this strategy was inspired by earlier work

on the AntHocNet routing algorithm [6]). The most im-

portant property of IRA compared to existing work is that

it allows nodes to choose between proactive and reactive

routing for each data session individually, rather than ex-

pecting a single decision per node or for the whole network

together. This allows for a fine-grained and on-line tun-

ing of the routing process. Such detailed adaptive control

can be advantageous in a number of scenarios. For ex-

ample, nodes can adapt their routing behavior to react to

changes in the properties of the network, such as data traffic

load or network mobility. Another appealing application

is Quality-of-Service (QoS) provisioning, whereby nodes

adapt their routing choices based on the requirements of in-

dividual sessions (e.g., a session requiring low delay can be

routed proactively, while a session requiring low packet loss

can be routed reactively). Here, we only describe the mech-

anisms applied in IRA for integrating proactive and reactive

routing on a per-session basis, leaving the integration with

QoS routing frameworks for future work.

The rest of this article is organized as follows. First, we

discuss related work. Then we present the IRA algorithm in

detail, and after that we show results of simulation tests.

2. Related work

The fact that proactive and reactive routing each have

their advantages and that these are complementary has been

recognized since some time [13]. There has therefore al-

ways been an interest in systems that let both approaches

work together. Early work was focused on hybrid algo-

rithms. These combine elements from proactive and reac-

tive routing in a single algorithm. One example is ZRP [7],

in which nodes maintain proactive routing information for

destinations in their immediate neighborhood and use reac-

tive routing for destinations further away. Another exam-

ple is SHARP [12], which is based on the same ideas but

is more adaptive. A related line of research is multi-mode

algorithms, where nodes switch between proactive and re-

active routing adaptively. In [14], the authors present an al-

gorithm that uses proactive routing for a subset of all nodes,

namely those that are reachable over stable links and those

that are likely destinations of new sessions, and uses reac-

tive routing for all other nodes. In [8] a system is proposed

in which nodes individually decide whether to get involved

in a proactive routing process or not, based on measured

statistics about the network. Only data packets for which

both the source and destination participate in the proactive

process can use proactive routing. All other packets are

routed reactively. Finally, in [10] the authors propose an

approach in which all nodes run the same algorithm, which

is chosen from a set of proactive and reactive algorithms.

The article proposes mechanisms that let the nodes switch

between routing algorithms simultaneously.

Compared to our work, none of the approaches above of-

fers the same fine-grained level of control for the decision

between proactive and reactive routing: they allow deci-

sions on a per-node basis or for the whole network together,

while our approach supports decisions on a per-flow basis.

3. An Integrated Routing Algorithm

In what follows, we first give a general overview of the

IRA algorithm (Section 3.1). After that, we give details

about the working of the proactive part (Section 3.2) and

then about the reactive part (Section 3.3). We end with a

short discussion about data forwarding (Section 3.4).

3.1. Overview of the system

The working of IRA relies on a proactive algorithm that

runs continuously in the background, and a reactive algo-

rithm that can be activated when needed. Data packets are

tagged to follow either proactive or reactive routes.

The proactive algorithm periodically disseminates its

routing information via locally broadcast update messages,

which also serve as beacon messages. These messages are

limited in size, and no extra messages are sent in response

to disruptive events. As a consequence, the overhead cre-

ated by each node is constant with respect to the rate of

change of the network, the amount of data sent, and the size

of the network. The downside of this design is that the per-

formance of the algorithm can degrade, especially in very

large or highly dynamic networks. The proactive algorithm

can therefore only offer a best-effort routing service.

The reactive algorithm offers a connection-oriented ser-

vice, primarily focused on limiting data packet loss. It can

be used whenever the best-effort service of the proactive

routing information is not sufficient. The algorithm relies

on a route setup to create an initial route at the start of a

session. During the course of the session, it performs route

improvement and route repair operations.

The reactive algorithm makes extensive use of the infor-

mation provided by the proactive algorithm. It does so dur-

ing route setup, route improvement and route repair. The

use of the proactive information makes the reactive algo-

rithm more effective and efficient, as is shown in the evalu-

ation in Section 4. This means that the proactive algorithm

running in the background always gives a contribution to

the system, even when all data is routed reactively.

3.2. The proactive algorithm

Our proactive algorithm implements a multi-path version

of Bellman-Ford routing [2]. Since it needs to function as

a lightweight background process, it is designed to work

efficiently under all circumstances. In what follows, we first

describe the general working of the algorithm, and then give

details about the routing information update process and the

loop avoidance mechanism.

3.2.1. General working of the proactive algorithm

The basic working of the algorithm is as follows:

1. Each node i in the network maintains a routing table
Ti, with an entry tdij for each known destination d and

each next hop j. tdij contains an estimate c
d
ij of the cost

of the route towards d over next hop j (estimations of
link and route costs are based on the number of hops

and the signal strength over the links, see [5]).

2. At periodic intervals (set to 1 s), node i broadcasts an
update message containing for maximumm of the des-
tinations in its routing table the best routing estimate

ĉd
i = minj∈Ni

(cd
ij) taken over all next hops j in its set

of neighbors Ni (if it does not have a routing estimate

to a previously known destination, it indicates a cost of

infinity). m is a constant that limits the size of update
messages (set to 20 in our tests). If there are less than

m destinations, they are all are included in each mes-
sage. Otherwise, update messages include subsets of

m destinations selected in a round-robin fashion.

3. Each neighbor k of node i receives the update message,
and uses it to calculate for each of the destinations d its
own new estimate cd

ki for the cost of the route over next

hop i to d. It does so by adding the estimate ĉd
i received

from i to the estimated cost of going from k to i.

3.2.2. The routing information update process

The main difference between our proactive algorithm

and other Bellman-Ford routing algorithms (such as e.g.

DSDV [11]) lies in the way routing updates are spread.

We only use periodic update messages that are limited in

size. This means that routing overhead is not influenced

by the occurrence of disruptive events, as no extra rout-

ing information is generated to deal with them (contrary to

DSDV, where substantial changes are broadcast faster). It

also means that routing overhead is not dependent on the

network size: if the number of destinations exceeds m, in-
formation about them is spread over multiple subsequent

update messages. In terms of implementation, routing up-

date messages are piggy-backed on top of beacon messages.

These are short messages that are broadcast periodically by

all nodes to inform neighboring nodes about their presence.

They are commonly used in MANETs to support link mon-

itoring. Including the update messages inside beacon mes-

sages has as a main advantage that the total number of con-

trol packets is reduced. This is important because MANETs

usually rely on contention based MAC layer algorithms,

whereby channel access is costly.

The downside of the proposed mechanism is that routing

information is spread slowly over the network. While this

does not mean that the algorithm does not converge to cor-

rect routing information, it does entail that this convergence

can be slow, so that routing estimates can temporarily in-

dicate erroneous routes. Data packets following erroneous

routes can encounter three possible scenarios. The first is

that they are delivered over a sub-optimal path, the second

is that they are dropped because they reach a dead end (a

node that has no route for their destination), and the third

is that they go in a loop. The first two scenarios lead to a

degradation of performance: longer delivery times or packet

loss. This is related to a design choice: we want to keep the

proactive algorithm lightweight and efficient, and are pre-

pared to accept that its performance degrades under certain

conditions. The third scenario, of packets going in loops, is

more problematic, as it can lay a heavy burden on the lim-

ited resources of the MANET. Therefore, we implemented

a mechanism to avoid loop formation.

3.2.3. Loop avoidance

The loop avoidance mechanism is based on sequence num-

bers, similar to DSDV. However, since DSDV is a single

path algorithm while ours is multi-path, we use sequence

numbers in a different way. The main idea is to have all

destination nodes issue sequence numbers and spread these

together with the routing information, and to let data pack-

ets only follow routes of increasing sequence numbers or

decreasing costs. The general working is as follows:

1. Each node i maintains a local sequence number si.

It also maintains in each routing table entry tdij a se-

quence number sd
ij , which is the last sequence number

received for destination d over next hop j. Finally, it
maintains for each destination d a sequence number
sd

i , which is the highest sequence number i has broad-
cast for d in its update messages, and a cost value cd

i ,

which is the lowest cost broadcast for d related to this
sequence number.

2. For each periodic routing update message, i incre-
ments the local sequence number si by 1 and includes

it in the message. Then, it adds the best routing infor-

mation for each destination d to the update message (as
described earlier), and adds to this the sequence num-

ber sd
ij related to the best next hop j towards d. Finally,

it updates sd
i , its local record of the highest sequence

number it has broadcast for destination d, and the as-
sociated lowest cost cd

i as follows: if s
d
i < sd

ij , s
d
i is

set to sd
ij and cd

i is set to cd
ij ; otherwise, if s

d
i = sd

ij and

cd
i > cd

ij , c
d
i is set to cd

ij .

3. A node j receiving an update message from i stores
the sequence number si in its routing table entry tiji as

si
ji, the last sequence number received for destination

i over next hop i. Then, for each destination d men-
tioned in the update message, it sets sd

ji to the received

sequence number.

4. Data packets arriving in a node i for a destination d
are only forwarded to a next hop j if sd

ij > sd
i (the

sequence number for d related to j in i is higher than
the highest that i has broadcast for d), or if sd

ij = sd
i

and cd
ij ≤ cd

i (the sequence number for j is the same as
the highest i has broadcast and the cost for j is equal
or lower than the lowest i has broadcast for this same
sequence number).

To understand how this mechanism ensures loop

freedom, consider a packet following a path P =
{1, . . . , h, i, j, . . . , n}. We indicate by sn

i and cn
i the highest

sequence number and lowest cost broadcast for destination

n by a node i along the packet’s path, and by sn
ij and cn

ij

the sequence number and cost stored in i for destination n
over the outgoing link to j, which is followed by the data
packet. From step 2 we know that sn

hi < sn
i , or s

n
hi = sn

i

and cn
hi > cn

i (we use > rather than ≥ because the update
of cn

hi in node h involves adding the cost of going from h
to i, which is greater than 0). From step 4 we know that
sn

i < sn
ij , or sn

i = sn
ij and cn

i >= cn
ij . Now, suppose

the hop from i to j closes a loop, i.e. node j is the same
as a node f that comes before i. Then, we must have that
sn

ij ≤ sn
j , s

n
j = sn

f , and sn
f ≤ sn

ij . This is only possible if

all of these sequence numbers are equal, but then we should

have cn
ij > cn

j , c
n
j = cn

f , and cn
f > cn

ij , which is impossible.

3.3. The reactive algorithm

The reactive algorithm provides a connection-oriented

routing service. At the start of a data session, it executes

a route setup to build an initial route. During the course

of the session, it applies route improvement mechanisms to

adapt the current route to changes in the MANET. Finally,

it has mechanisms to deal with link failures. The reactive

algorithm makes as much as possible use of the information

provided by the proactive algorithm, in order to get a syn-

ergy between both components of the IRA system. Below,

we discuss each aspect of the reactive algorithm in detail.

3.3.1. Route setup

The route setup process constructs an end-to-end route be-

tween the source and destination of a session. It is used at

the start of a new session, or whenever the source of an on-

going session falls without route. If a route setup process

fails (i.e., no answer is received within a certain time), it is

restarted. Each route setup gets maximally three attempts.

To initiate a route setup, the source node s creates a route
setup message. The aim of this message is to find a path to-

wards a destination d. At any node i (including s), the mes-
sage can be forwarded in two possible ways. The first is by

using the proactive routing information related to d, i.e. the
message is forwarded to next hop j = argminj∈Ni

(cd
ij).

The second way is by broadcasting. During the first attempt

of a route setup, nodes use proactive information when it

is available, and broadcast otherwise. Forwarding over the

routes indicated by the proactive information can improve

efficiency, as it limits the spreading of the route setup mes-

sage compared to broadcasting. However, when the proac-

tive information is inaccurate, it can lead the route setup

message in a wrong direction. Therefore, if the first route

setup attempt fails and a second and third are needed, only

broadcasting is used for forwarding. Nodes receiving mul-

tiple copies of the same route setup message only process

the first and discard all others.

On its way from s to d, the route setup message collects
a list P = [s, . . . , i, . . . , d] of all visited nodes. After reach-
ing d, it returns to s retracing P . On its way back, it sets up
reactive routing information in each of the nodes i ∈ P and
in s. This information consists of a reactive next hop nd

i for

destination d and a reactive cost rd
i related to it.

3.3.2. Route improvement

Route improvement takes place during the whole duration

of a reactively routed data session. Its aim is to adapt the

session’s route to changing conditions in the network.

Each node s that is the source of a reactively routed ses-
sion checks at regular intervals (set to 1 s) whether there

is proactive routing information for the destination d of the
session that is better than the currently available reactive

route cost, i.e. minj∈Ni
(cd

ij) < rd
i . If this is the case, it is

an indication that a better reactive route might be possible,

and the route improvement process is started. s creates a
route improvement message, which is routed towards d fol-
lowing proactive routing information: in each node i, the
message is forwarded to next hop j = argminj∈Ni

(cd
ij).

Route improvement messages are never broadcast; if they

arrive in a node where no proactive routing information is

available, they are discarded (to limit overhead). Once the

message reaches d, it behaves like a route setup message:
it traces its path back to s and updates in each node i the
reactive next hop nd

i and cost r
d
i .

3.3.3. Dealing with link failures

When a node i detects the failure of a link (through link
layer feedback or the failed reception of periodic beacon

messages) to a neighboring node j, it removes any entries
related to next hop j from its proactive and reactive routing
information. Then, if the link failure lead to the failure of

reactively maintained routes, it takes further actions, which

depend on the specific situation. If i is the source of a failed
reactive route, it starts a new route setup process. If, on the

other hand, i is an intermediate node for a reactive route, it
reacts with a route repair message if it currently has data to

send to the destination of the failed route, and with a route

failure message otherwise. A route repair message is simi-

lar to a route setup message, as it follows proactive routing

information whenever possible and is broadcast otherwise.

The main differences between the two types of messages are

that the maximum number of broadcasts for repair messages

is limited (to 2), in order to reduce generated overhead, and

that only one attempt is possible. A route failure message

contains a list of all destinations that i lost a reactive route
to, and is broadcast to all i’s neighbors. A neighbor j of i
receiving the message checks whether it had a route over i
to any of the mentioned destinations, and, if this is the case,

removes this route and creates its own route failure mes-

sage. If j is the source of any of the lost routes, it starts a
new route setup process.

3.4. Data forwarding

When a new data session is started, its source node de-

cides whether it will be routed proactively or reactively.

Every packet of the session is subsequently classified ac-

cording to this decision, and all nodes in the network for-

ward it along either proactive or reactive routes based on

this classification. To mark a packet’s classification, we use

the type of service (ToS) field of the IP header. We fore-

see two possibilities: either we use the precedence bits of

the ToS field, or we use one of the unused bits at the end

of the field. When we use the precedence bits, we mark

proactively routed packets with bit pattern 000 (“routine”

traffic according to the IP precedence classification) , and

reactively routed packets with pattern 001 (“priority” traf-

fic). The precedence bits of the ToS field also influence

queueing and drop priorities, so that reactively routed pack-

ets get an improvement of their QoS experience compared

to proactively routed packets. This is useful when we want

to use IRA in combination with QoS provisioning. If this

is not desired, we can instead make use of the last bit of

the ToS field, which is unused and therefore has no con-

sequences for queueing and dropping. We set this bit to 1

to indicate reactive routing, and to 0 to indicate proactive

routing. In the tests of Section 4, we use the first method.

4. Experimental evaluation

We carried out a number of experiments to evaluate the

IRA algorithm. All of these are done in simulation, using

QualNet 4.0. We deploy a MANET of 100 nodes in a rect-

angular, open area of 2400×800 m2. The nodes move ac-

cording to the random waypoint (RWP) mobility model [9].

We vary the maximum speed from 1 up to 20 m/s, to get
scenarios of increasing difficulty. We use a minimum speed

of 1 m/s (in order to avoid problems of decreasing aver-
age speeds in RWP [15]) and a pause time of 30 s. Each

experiment lasts 1800 s, whereby during the first 900 s no

 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o
n
 o

f
d
e
liv

e
re

d
 d

a
ta

 p
a
c
k
e
ts

Reactive 100%
Proactive 100%

Reactive 50%
Proactive 50%

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 20 15 10 5 1

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 d

e
la

y
 (

s
)

Maximum node speed (m/s)

Reactive 100%
Proactive 100%

Reactive 50%
Proactive 50%

Figure 1. Delivery ratio and average delay for
IRA under different routing scenarios.

communication takes place, so that the node distribution can

get to a steady state. Each experiment is repeated 10 times

with different node positions. Data traffic is generated by 20

constant bit rate sessions running between randomly cho-

sen nodes. Sessions start between 900 and 1000 s after the

beginning of the simulation, and run till the end. Each ses-

sion generates 4 packets of 64 bytes per second. For the

simulation of radio propagation, we use the two-ray signal

propagation model. At the physical layer, we use the IEEE

802.11 protocol operating at 2Mbit/s. The estimated radio
range is 250 m. At the MAC layer, we use the IEEE 802.11

DCF protocol. At the transport layer, we use UDP.

In what follows, we first investigate the performance in

terms of delivery ratio and end-to-end delay of the proac-

tive and reactive modes of operation of IRA, and how this

relates to per-session service differentiation. Then, we com-

pare IRA to existing reference routing algorithms. Next, we

focus on the overhead, to evaluate efficiency. Finally, we

investigate the synergy between proactive and reactive rout-

ing, i.e., in how far the reactive routing algorithm profits

from the availability of proactive routing information.

To evaluate the performance offered by IRA to proac-

tively and reactively routed sessions, we study the packet

delivery ratio and the average end-to-end delay in a number

of scenarios. The results are shown in Figure 1. We distin-

guish between scenarios where all 20 sessions are sent reac-

tively (“Reactive 100%” in the figure), scenarios where all

session are sent proactively (“Proactive 100%”), and mixed

 0

 0.2

 0.4

 0.6

 0.8

 1
F

ra
c
ti
o
n
 o

f
d
e
liv

e
re

d
 d

a
ta

 p
a
c
k
e
ts

Reactive 100%
Reactive/Proactive 50%

Proactive 100%
DYMO
OLSR

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 20 15 10 5 1

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 d

e
la

y
 (

s
)

Maximum node speed (m/s)

Reactive 100%
Reactive/Proactive 50%

Proactive 100%
DYMO
OLSR

Figure 2. Delivery ratio and average delay for
IRA, DYMO and OLSR.

scenarios where 10 sessions are sent reactively and the other

10 proactively (here, we show separate performance graphs

for reactively routed sessions, “Reactive 50%”, and proac-

tively routed sessions, “Proactive 50%”). It is clear that the

algorithm’s ability to use either proactive or reactive rout-

ing for each individual session results in a differentiation of

the service provided to the sessions: reactively routed ses-

sions receive a higher delivery ratio (lower loss rate) than

proactively routed sessions, but also a higher delay. The dif-

ference in delivery ratio remains stable as the network gets

more dynamic, while the difference in delay grows. When

we compare the performances between the mixed scenarios

and the other ones, we can see that reactively routed ses-

sions get better performance when less than 100% of the

traffic is sent reactively, while proactively routed sessions

get worse performance when less than 100% of the traf-

fic is sent proactively. This is because the reactively sent

data packets get priority in queueing and forwarding (see

Section 3.4), and therefore an increase in the number of re-

actively routed data sessions increases the competition for

resources in the network.

To evaluate the competitiveness of our approach, we

compare to DYMO and OLSR (version 2). Implementa-

tions of these algorithms are provided in QualNet 4.0. The

results are shown in Figure 2. Here we use a single graph for

the performance of the reactive and proactive sessions in the

mixed test case (indicated by “Reactive/Proactive 50%”).

In terms of delivery, IRA’s reactive algorithm outperforms

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

O
v
e
rh

e
a
d
 r

a
ti
o
 i
n
 p

a
c
k
e
ts

Reactive 100%
Reactive/Proactive 50%

Proactive 100%
DYMO
OLSR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 20 15 10 5 1

O
v
e
rh

e
a
d
 r

a
ti
o
 i
n
 b

y
te

s

Maximum node speed (m/s)

Reactive 100%
Reactive/Proactive 50%

Proactive 100%
DYMO
OLSR

Figure 3. Overhead ratio, in packets and

bytes, for IRA, DYMO and OLSR.

DYMO, while its proactive algorithm outperforms OLSR.

In terms of delay, both DYMO and OLSR do worse than

the different modes of operation of IRA. Moreover, the per-

formance of DYMO degrades faster than that of IRA’s re-

active algorithm. The interesting aspect here is that IRA in

reactive mode gives better performance than the reference

reactive algorithm, and IRA in proactive mode gives better

performance than the reference proactive algorithm. More-

over, different from these algorithms, IRA also gives the

possibility to switch between reactive and proactive routing.

In these same scenarios, we also tested ZRP, a hybrid rout-

ing protocol, using the implementation provided in QualNet

4.0, but obtained very bad results for it.

We also investigate the overhead ratio, both in terms of

packets and bytes (calculated as the amount of control pack-

ets/bytes forwarded divided by the number of data pack-

ets/bytes generated). The results are given in Figure 3.

The overhead created by the proactive algorithm can be ob-

served by looking at the test case where all sessions are

routed proactively. It is constant w.r.t. node mobility, which

was a design objective of the system. The overhead created

by the reactive algorithm can be observed in the case where

all sessions are routed reactively, by subtracting the over-

head created by the proactive algorithm. This overhead is

relatively small, and increases slowly with node mobility.

OLSR produces more overhead than our approach in all its

different modes of operation. DYMO produces more over-

head than IRA in terms of packets. In terms of bytes, the

 0

 0.2

 0.4

 0.6

 0.8

 1
F

ra
c
ti
o
n
 o

f
d
e
liv

e
re

d
 d

a
ta

 p
a
c
k
e
ts

Reactive with proactive support
Reactive without proactive support

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 20 15 10 5 1

A
v
e
ra

g
e
 e

n
d
-t

o
-e

n
d
 d

e
la

y
 (

s
)

Maximum node speed (m/s)

Reactive with proactive support
Reactive without proactive support

Figure 4. Delivery ratio and average delay for
reactively routed sessions with and without
proactive routing information.

overhead produced by DYMO is lower, but it grows faster

with node mobility. As pointed out in Section 3.2, limiting

the overhead in number of packets is important in MANETs

when a contention based MAC layer is used.

Finally, we investigate to what extent the reactive algo-

rithm profits from the availability of proactive routing infor-

mation. We consider the case where all sessions are routed

reactively, and compare the performance of the full IRA

system with that of IRA without the proactive algorithm

running in the background. In Figure 4, we show results

for delivery ratio and end-to-end delay. For both measures,

the reactive algorithm does much better when it has the sup-

port of proactive information. Also, it is interesting to see

that the difference in performance grows for increasing lev-

els of node mobility, even though the delivery ratio of the

proactive algorithm shows a decrease in this case (see Fig-

ure 1).

5. Conclusions

We have described a new approach to integrate proac-

tive and reactive routing. The system consists of a proac-

tive algorithm that runs in the background offering a best-

effort routing service, and a reactive algorithm that offers a

connection-oriented service. A synergy between the two is

created since the reactive algorithm makes use of the proac-

tive routing information whenever possible. The choice be-

tween proactive and reactive routing is made autonomously

by the nodes, and can be different for each session. In a

range of tests, we show that our algorithm gives good per-

formance, that it can give different types of service to indi-

vidual sessions according to the chosen routing approach,

that it is efficient, and that the synergy between reactive and

proactive routing pays off. Future work will focus on the

inclusion of a monitoring module to give nodes feedback

about the performance of proactive and reactive routing and

support adaptive decisions, and on the integration with a

framework for QoS provisioning.

References

[1] The internet engineering task force mobile ad-hoc network-

ing page (MANET). http://www.ietf.org/html.

charters/manet-charter.html.
[2] R. Bellman. On a routing problem. Quarterly of Applied

Mathematics, 16(1):87–90, 1958.
[3] I. Chakeres and C. Perkins. Dynamic MANET On-demand

Routing Protocol. IETF, February 2008. Internet Draft.
[4] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler,

A. Qayyum, and L. Viennot. Optimized link state routing

protocol. In Proceedings of IEEE INMIC, 2001.
[5] F. Ducatelle. Adaptive Routing in Ad Hoc Wireless Multi-

hop Networks. PhD thesis, Università della Svizzera Italiana

(USI), Istituto Dalle Molle di Studi sull’Intelligenza Artifi-

ciale (IDSIA), 2007.
[6] F. Ducatelle, G. A. Di Caro, and L. M. Gambardella. Using

ant agents to combine reactive and proactive strategies for

routing in mobile ad hoc networks. Int. J. of Computational

Intelligence and Applications (IJCIA), 5(2), 2005.
[7] Z. J. Haas. A new routing protocol for the reconfigurable

wireless networks. In Proceedings of IEEE ICUPC, 1997.
[8] J. Hoebeke, I. Moerman, B. Dhoedt, and P. Demeester.

Adaptive multi-mode routing in mobile ad hoc networks. In

Proceedings of PWC, 2004.
[9] D. B. Johnson and D. A. Maltz. Mobile Computing, chap-

ter Dynamic Source Routing in Ad Hoc Wireless Networks.

Kluwer, 1996.
[10] S. Nanda, Z. Jiang, and D. Kotz. A combined routing

method for wireless ad hoc networks. Technical Report

TR2007-588, Dartmouth College, 2007.
[11] C. Perkins and P. Bhagwat. Highly dynamic destination-

sequenced distance-vector routing (DSDV) for mobile com-

puters. In Proceedings of ACM SIGCOMM, 1994.
[12] V. Ramasubramanian, Z. J. Haas, and E. G. Sirer. Sharp: A

hybrid adaptive routing protocol for mobile ad hoc networks.

In Proceedings of MobiHoc, 2003.
[13] E. M. Royer and C.-K. Toh. A review of current routing pro-

tocols for ad hoc mobile wireless networks. IEEE Personal

Communications, 1999.
[14] C. Santivanez and I. Stavrakakis. A framework for a multi-

mode routing protocol for manet networks. In Proceedings

of IEEE WCNC, 1999.
[15] J. Yoon, M. Liu, and B. Noble. Random waypoint consid-

ered harmful. In Proceedings of IEEE INFOCOM, 2003.

