
Chapter 4

AntHocNet: an adaptive

routing algorithm for ad

hoc wireless multi-hop

networks

In this chapter, we describe AntHocNet, an adaptive routing algorithm for AH-
WMNs. AntHocNet is a hybrid routing algorithm, in the sense that it contains
elements from both reactive and proactive routing. Specifically, it combines a
reactive route setup process with a proactive route maintenance and improve-
ment process. AntHocNet was in the first place inspired by the ACO approach
to routing. This is evident in the way that it gathers, stores and uses routing in-
formation. Consequently, the terminology used in this chapter is mostly related
to the ACO routing literature. Nevertheless, AntHocNet also contains elements
from distance vector routing. In particular, the information gathering process
used in its proactive route maintenance and improvement process combines the
route sampling strategy from ACO routing with an information bootstrapping
process that is similar to the one used in distance vector routing algorithms.
The way both approaches are combined is novel and allows the algorithm to
get the best of both worlds. AntHocNet was in the first place developed for
MANETs and WMNs. Descriptions of the AntHocNet algorithm have been
published in [73–75,94,95,98].

The rest of this chapter is organized as follows. First, we give a general
overview of the AntHocNet routing algorithm. This includes a high level de-
scription of the algorithm in words, and a schematic representation. Then, we
give a detailed description of each of the algorithm’s components. Finally, we
provide further discussions on the presented material, such as an investigation
of the relations between AntHocNet and other AHWMN routing algorithms,
a discussion of how AntHocNet relates to the RL solution methods presented

81



in chapter 3, and a description of elements that were present in older versions
of AntHocNet. Evaluations of AntHocNet and experimental comparisons with
other routing algorithms will be provided in the following chapters.

4.1 General overview of the AntHocNet routing

algorithm

In this section, we give an overview of the algorithm. We start with a general
description in words. Then, we also provide a schematic representation in the
form of a finite state machine.

4.1.1 Algorithm description

AntHocNet is a hybrid algorithm, containing both reactive and proactive el-
ements. The algorithm is reactive in the sense that it only gathers routing
information about destinations that are involved in communication sessions. It
is proactive in the sense that it tries to maintain and improve information about
existing paths while the communication session is going on (unlike purely reac-
tive algorithms, which do not search for routing information until the currently
known routes are no longer valid). Routing information is stored in pheromone
tables that are similar to the ones used in other ACO routing algorithms. For-
warding of control and data packets is done in a stochastic way, using these
tables. Link failures are dealt with using specific reactive mechanisms, such
as local route repair and the use of warning messages. Below, we describe the
general working of the AntHocNet routing algorithm. Details will follow later
in section 4.2.

In AntHocNet, routing information is organized in pheromone tables, similar
to the ones used in other ACO routing algorithms such as the earlier described
AntNet (see subsection 3.2.3). Each node i maintains one pheromone table Ti,
which is a two-dimensional matrix. An entry T d

ij of this pheromone table con-
tains information about the route from node i to destination d over neighbor j.
This information includes the pheromone value τd

ij , which is a value indicating
the relative goodness of going over node j when traveling from node i to desti-
nation d, as well as statistics information about the path, and possibly virtual
pheromone (see later). Apart from a pheromone table, each node also maintains
a neighbor table, in which it keeps track of which nodes it has a wireless link to.
Details about the data structures maintained under AntHocNet are described
in subsection 4.2.1.

At the start of a communication session, the source node of the session con-
trols its pheromone table, to see whether it has any routing information available
for the requested destination. If it does not, it starts a reactive route setup pro-
cess, in which it sends an ant packet out over the network to find a route to
the destination. Such an ant packet is called a reactive forward ant. Each in-
termediate node receiving a copy of the reactive forward ant forwards it. This
is done via unicasting in case the node has routing information about the ant’s

82



destination in its pheromone table, and via broadcasting otherwise. Reactive
forward ants store the full array of nodes that they have visited on their way
to the destination. The first copy of the reactive forward ant to reach the des-
tination is converted into a reactive backward ant, while subsequent copies are
destroyed. The reactive backward ant retraces the exact path that was followed
by the forward ant back to the source. On its way, it collects quality informa-
tion about each of the links of the path. At each intermediate node and at the
source, it updates the routing tables based on this quality information. This
way, a first route between source and destination is established at completion of
the reactive route setup process. The full process is repeated later if the source
node falls without valid routing information for the destination of the session
while data still need to be sent. Details about the reactive route setup process
are provided in subsection 4.2.2.

Once the first route is constructed via the reactive route setup process, the
algorithm starts the execution of the proactive route maintenance process, in
which it tries to update, extend and improve the available routing informa-
tion. This process runs for as long as the communication session is going on.
It consists of two different subprocesses: pheromone diffusion and proactive
ant sampling. The aim of the pheromone diffusion subprocess is to spread
out pheromone information that was placed by the ants. Nodes periodically
broadcast messages containing the best pheromone information they have avail-
able. Using information bootstrapping, neighboring nodes can then derive new
pheromone for themselves and further forward it in their own periodic broad-
casts. Details about this process will be given later, in subsection 4.2.3. Here,
it is sufficient to know that the pheromone diffusion process is similar to the dy-
namic programming approach used in distance vector routing. As was pointed
out earlier in subsections 3.1.1 and 3.3.2, such approaches to gathering rout-
ing information are very efficient, but can be slow to adapt to dynamic situ-
ations, possibly temporarily providing erroneous information. Therefore, the
pheromone diffusion process can be considered as a cheap but potentially un-
reliable way of spreading pheromone information. Because of this potential
unreliability, the pheromone that is obtained via pheromone diffusion is kept
separate from the normal pheromone placed by the ants, and is called virtual
pheromone; the pheromone placed by the ants will in what follows be called
regular pheromone. The virtual pheromone is used to support the second sub-
process of proactive route maintenance, which is proactive ant sampling. In this
subprocess, all nodes that are the source of a communication session periodically
send out proactive forward ants towards the destination of the session. These
ants construct a path in a stochastic way, choosing a new next hop probabilisti-
cally at each intermediate node. Different from reactive forward ants, they are
never broadcast. When calculating the probability of taking a next hop, proac-
tive forward ants consider both regular and virtual pheromone. This way, they
can leave the routes that were followed by previous ants, and follow the (poten-
tially unreliable) routes that have emerged from pheromone diffusion. Once a
proactive forward ant reaches the destination, it is converted into a proactive
backward ant that travels back to the source and leaves pheromone along the

83



way (regular, not virtual pheromone), just like reactive backward ants. This
way, proactive ants can follow virtual pheromone and then, once they have ex-
perienced that it leads to the destination, convert it into regular pheromone.
One could say that pheromone diffusion suggests new paths and that proactive
ants check them out. The ant based full path sampling provides the reliability
that is lacking in the efficient information bootstrapping process. Details about
the proactive route maintenance process are given in subsection 4.2.3.

Data packet forwarding in AntHocNet is done similarly to other ACO routing
algorithms: routing decisions are taken hop-by-hop, based on the locally avail-
able pheromone. Only regular pheromone is considered, as virtual pheromone
is not considered reliable enough. Each forwarding decision is taken using a
stochastic formula that gives preference to next hops that are associated with
higher pheromone values. The formula is different from that used by the forward
ants, so that data packets can follow a less exploratory strategy. Via param-
eter tuning, it is possible to vary between spreading the data packets over all
possible available paths and deterministically sending them over the best path.
While the former can in principle provide higher throughput through the use
of multiple paths (see subsection 2.4.3), the latter allows greedy exploitation
of the learned information. Later, in chapter 5, we compare both strategies
empirically. Details about data packet forwarding in AntHocNet are provided
in subsection 4.2.4.

Link failures can be detected in AntHocNet via failed transmissions of data
or control packets, or through the use of hello messages. Hello messages are
short messages that are periodically sent out by all nodes in the network. The
reception of a hello message is indicative of the presence of a wireless link,
while the failure to receive such messages point to the absence of a link. In
practice in AntHocNet, the function of hello messages is fulfilled by the same
periodic messages that are used for pheromone diffusion. When a node detects
a link failure, it controls its pheromone table, to see which routes become invalid
due to the failure, and whether alternative routes are available for the affected
destinations. Then, it broadcasts a link failure notification message to warn
neighboring nodes about all relevant changes in its pheromone table. In case
the link failure was associated with a failed data packet transmission, the node
can also start a local route repair to restore the route to the destination of this
data packet. To this end, it sends out a repair forward ant. Repair forward
ants are similar to reactive forward ants, in the sense that they follow available
pheromone information where possible, and are broadcast otherwise, but they
have a limited maximum number of broadcasts, so that they cannot travel far
from the old failed route. Upon arrival at the destination, the repair forward
ant is converted into a repair backward ant that travels back to the node that
started the repair process and sets up the pheromone for the repaired route.
A last tool in dealing with link failures is the use of unicast warning messages.
These are needed when data packets for a lost destination still arrive at the
node after a link failure notification has already been broadcast. This can be
due to bad reception of the broadcast notification message. In this case, the
node unicasts a warning to the node it received the data from, in order to inform

84



Send reactive forward ant

Route data packets

Send repair forward ant

Repair timeout

Initial state

Process reactive forward ant

Process link failure notification

Process Hello

Process proactive forward ant

Process unicast warning

Process received control packet

Process repair forward ant

Process backward ant

Link failure notification

Backward ant

Repair forward ant

Proactive forward ant

Reactive forward ant

Hello message

Unicast warning

Final state

Send Hello

Receive control packetIdle state

Send unicast warning

No route at source Link failure

Send link failure notification

Receive data

No route at intermediate, data

No route at intermediate, no data

Hello timer

Reactive ant timeout

No route at source

No route at intermediate
Reactive ant timer

Repair ant timer

Adapt pheromone table

Send proactive ant

Proactive ant timer

Figure 4.1: A finite state machine representation of the AntHocNet routing
algorithm.

it that it can no longer forward data for this destination. Details about how
AntHocNet deals with link failures are described in subsection 4.2.5.

4.1.2 Schematic representation

Figure 4.1 gives a schematic representation of the AntHocNet routing algorithm.
It contains a finite state machine showing the most important components of
the algorithm. Below we explain the structure of the finite state machine. For
details about each of the components, we refer to section 4.2.

The algorithm is started up in its initial state, in which internal variables are
initialized. Then, it moves to its idle state, where it waits for events to happen.
The events that can take place are the arrival of a data packet, the arrival of a
control packet, the detection of a link failure, and a number of timer events.

In case of a data reception event, the algorithm tries to route the data.
Details about data forwarding are given in subsection 4.2.4. This might be
impossible, due to the lack of routing information about the destination. If the
current node is the source node of the data packet, the unavailability of routing

85



information can be because the data packet is the first of a new communication
session, or because it belongs to a session for which all routing information has
become invalid. In both cases, the node starts a reactive route setup process.
Details about this process are given in subsection 4.2.2. If the current node is
not the source of the data packet, it concludes that the upstream node of the
data has wrong routing information, and sends it a unicast warning message.
This is further explained in subsection 4.2.5, which talks about link failures.

In case of a control packet reception event, the algorithm checks which type
of control packet it is dealing with. In case it is a hello message, the node needs
to take note in its neighbor table that it has a wireless link with the packet’s
sender, and it needs to extract the routing information inside to update its own
virtual pheromone information. This is part of the proactive route maintenance
process described in subsection 4.2.3. In case it is a reactive, proactive or re-
pair forward ant, the node needs to execute the correct forwarding action, or,
if it is the final destination of the ant, create a backward ant and send it back
towards the source. In case the control packet is a backward ant (reactive,
proactive and repair backward ants have essentially the same behavior, and are
therefore collapsed here), the node needs to adapt its pheromone table, and
forward the ant if it is not its final destination. Details about the treatment
of reactive, proactive and repair forward and backward ants are given respec-
tively in subsections 4.2.2, 4.2.3 and 4.2.5. In case the control packet is a link
failure notification, the node needs to update its pheromone table, and possibly
forward the notification. Finally, if it is a unicast warning, it needs to update
its pheromone table, removing the erroneous route. Details about link failure
notifications and unicast warnings are given in subsection 4.2.5.

In case of a link failure event, the node first of all adapts the information
in its pheromone table to reflect the changed situation. Then, if destinations
have become unreachable due to the link failure, it needs to take action. If the
current node is the source of a session to one of the lost destinations, it starts a
reactive route setup process. If, on the other hand, it is an intermediate node on
the lost route, it controls whether the link failure event involved the unsuccessful
transmission of a data packet. If this is the case, it starts a local route repair
process. Otherwise, it broadcasts a link failure notification message. Details on
how link failures are dealt with are given in subsection 4.2.5.

The different timers are events that are scheduled by the node itself, in order
to plan delayed actions. Hello timer events are scheduled at regular intervals,
from the moment the node is switched on and for as long as it is up and running.
Reception of a hello timer event provokes the node to send a hello message, in
which it includes its best pheromone information. This is part of the proactive
route maintenance process described in subsection 4.2.3. Proactive ant timer
events are also scheduled at regular intervals, but only from the moment a session
is started, and until the end of it. Reception of a proactive ant timer event
leads the node to send out a proactive forward ant. Details about this are given
in subsection 4.2.3. Repair timer events are scheduled after a repair forward
ant has been sent out. At reception of a repair timer event, the node checks
whether a repair backward ant was received, and in case not, it broadcasts a

86



link failure notification. This is part of the process of dealing with link failures,
described in 4.2.5. Finally, reactive ant timer events are similarly sent out
after the transmission of a reactive forward ant. At reception of a reactive
ant timer event, the node controls whether it has already received a reactive
backward ant. In case not, it can send out a new reactive forward ant (in case
the maximum number of retransmissions has not yet been reached), or conclude
that the destination is currently unreachable, and drop queued data packets for
it. This is described in detail in subsection 4.2.2, which explains the reactive
route setup phase.

4.2 Detailed descriptions

In this section, we give a detailed description of the different components of
the AntHocNet routing algorithm. We follow the same structure as in subsec-
tion 4.1.1. First we describe the data structures that are maintained in each
node. Then, we give details about the reactive route setup process. Subse-
quently, we discuss the proactive route maintenance process. Next, we talk
about data packet forwarding. After that, we discuss the algorithm’s behavior
with respect to link failures. Finally, we talk about the routing metrics used in
AntHocNet.

4.2.1 Data structures in AntHocNet

Here, we describe the different data structures that are maintained by each of
the network nodes under AntHocNet. In particular, we talk about pheromone
tables and neighbor tables.

Pheromone tables

Under AntHocNet, each node i maintains a pheromone table Ti, which is a two-
dimensional matrix. An entry T d

ij of this matrix contains information about
the route from node i to destination d over neighbor j. This includes a regular
pheromone value τd

ij , a virtual pheromone value ωd
ij , and an average number of

hops hd
ij . The regular pheromone value τd

ij is an estimate of the goodness of
the route from i to d over j. Goodness is expressed as the inverse of a cost.
Exact values depend on the metric that is used to evaluate the cost of routes.
More about the use of different metrics will follow in subsection 4.2.6. Regular
pheromone is updated by backward ants. These can be reactive, proactive or
repair backward ants. Details about the updating process for regular pheromone
are given in subsection 4.2.2. The virtual pheromone value ωd

ij forms an alter-
native estimate of the goodness of the route from i to d over j. Differently from
τd
ij , it is obtained through information bootstrapping using goodness values re-

ported by neighbor nodes during the proactive route maintenance process. The
updating of virtual pheromone is discussed in subsection 4.2.3. The average
number of hops hd

ij is, like the regular pheromone, updated by backward ants.

87



This updating process is described in subsection 4.2.2. hd
ij is used when deciding

how long to wait for repair backward ants (see subsection 4.2.5).
Nodes do not necessarily always have values available for τd

ij , ωd
ij , and hd

ij

for each possible combination of destination and next hop. This is in the first
place because nodes do not maintain routing information about all possible des-
tinations in the network (they only gather routing information for destinations
which communication sessions are going on with), and because for a specific
destination, nodes do not necessarily have a route available over each of their
possible neighbors (for instance, during a reactive route setup phase only one
route is set up, so that the source node has exactly one outgoing next hop for the
involved destination). Also, since regular and virtual pheromone are obtained
through different processes, it is possible that a node has a value for τd

ij , but not

for ωd
ij , or vice versa. On the other hand, since τd

ij and hd
ij are both obtained

from backward ants, nodes that have a value for one of the two will also have a
value for the other.

Neighbor tables

Apart from the pheromone table, each node also maintains a neighbor table.
The neighbor table Ni kept by node i is a one-dimensional vector with one
entry for each of i’s neighbors. The entry Nij corresponding to i’s neighbor j

contains a time value thij indicating when i last heard from j. Node i uses this
time value to derive whether there is a wireless link with node j, and to detect
link failures. More on the detection and handling of link failures will follow later
in subsection 4.2.5.

4.2.2 Reactive route setup

The reactive route setup process is triggered whenever a node receives a data
packet that was locally generated (i.e., the current node is the packet’s source)
for a destination for which no routing information is available. This lack of rout-
ing information can happen either because the data packet in question is the
first of a new communication session, and no routing information for its destina-
tion is available from a different or previous session, or because the data packet
belongs to an ongoing session for which all routes have become invalid (e.g., due
to node movements). The reactive route setup process involves the sending of
a reactive forward ant from source to destination, and a reactive backward ant
from destination to source. Below, we discuss each of these separately.

Reactive forward ants

At the start of the reactive route setup process, the source node s creates a
reactive forward ant. This is a control packet that has as a goal to find a path
from s to an assigned destination d. At the start, the ant contains just the
addresses of s and d. Later, as it proceeds through the network, it collects a list
P = [1, 2, . . . , d − 1] of all the nodes that it has visited on its way from s to d.

88



After its creation at s, the reactive forward ant is broadcast, so that all of s’s
neighbors receive a copy of it. At each subsequent node, the ant is either unicast
or broadcast, depending on whether the current node has routing information
for d. If routing information is available, the node chooses a next hop for the ant
probabilistically, based on the different pheromone values associated with next
hops for d. Concretely, a node i chooses node n as next hop for the ant with
probability P d

in, as calculated by equation 4.1. In this equation, Nd
i is the set

of neighbors of i over which a path to d is known, and β1 is a parameter value
which can control the exploratory behavior of the ants. In our experiments, we
keep β1 relatively high, on 20. This is because we want to obtain the initial
route as fast as possible, and limit the time we spend on exploration at this
stage.

P d
in =

(τd
in)β1

∑

j∈Nd

i

(τd
ij)

β1

, β1 ≥ 1, (4.1)

In case the intermediate node i does not have routing information for d, it
broadcasts the reactive forward ant. Due to this broadcasting (and also the
initial broadcasting at s), a reactive forward ant can proliferate quickly over
the network, with different copies of the ant following different paths to the
destination. In order to limit the amount of overhead that is created this way,
nodes only forward the first copy of the ant that they receive. Subsequent copies
are simply discarded. In previous versions of AntHocNet, nodes were to some
extent allowed to forward multiple copies of the same ant, in order to improve
the creation of multiple paths (see also subsection 4.3.4). However, this lead to
a lot of overhead.

At the destination, the reactive forward ant is converted into a reactive
backward ant, which follows the list of nodes P visited by the forward ant
back to s. If more than one copy of the forward ant is received, only the first
is accepted and converted into a backward ant, while subsequent copies are
discarded. This way, only one route is set up during the reactive route setup
process. The reason is again to reduce overhead created during this procedure.
For the creation of multiple routes, AntHocNet relies on the proactive route
maintenance process, which extends the initially created route into a full mesh
of routes during the course of the communication session (see subsection 4.2.3).

Reactive backward ants

The reactive backward ant created by the destination node in response to a
reactive forward ant contains the addresses of the forward ant’s source node s

and destination node d, as well as the full list of nodes P that the forward ant
has visited. The reactive backward ant is unicast from d and between the nodes
of P back to s.

The aim of the reactive backward ant is to update routing information in
each of the nodes of P and in s. At each node i that it visits, it updates the
number of hops hd

in and the regular pheromone value τd
in in the pheromone table

89



entry T d
in, where n is the node that it visited before i on its way from d. The

updating of hd
in is done using a moving average, as shown in equation 4.2. In this

equation, h is the number of hops that the backward ant has traveled between
d and i, and α is a parameter regulating how quickly the formula adapts to new
information. In our experiments, α is always kept on 0.7.

hd
in ← αhd

in + (1 − α)h, α ∈ [0, 1] (4.2)

Updating of the regular pheromone τd
in is done based on the cost of the

route from i to d. This cost can be calculated using different metrics, such as
the number of hops, the end-to-end delay, etc.. Later on, in subsection 4.2.6,
we comment on different metrics used in AntHocNet. Here, we talk in terms of
a generic cost c, where cd

i is the cost of the route from i to d, and c
j
i is the cost

of the link from i to its neighbor j (it is the cost of a one-hop route). Under
AntHocNet, each node maintains a local estimate of the cost c

j
i to go to each of

its neighbors j. Details about how these local estimates are calculated depend
on the metric and are discussed in subsection 4.2.6. The reactive backward ant
reads at each node i the local estimate cn

i of the cost to go from i to the next
hop n that the ant is coming from. It adds this cost to the total cost cd

n of
the route from n to d (which it has been calculating on its way back from d),
which is stored inside the ant. The new cost cd

i is used to update the pheromone
value τd

in in node i, using the moving average formula of equation 4.3. In this
equation, γ is a parameter regulating the speed of adaptation of the pheromone
to new cost values. In our experiments, γ was kept on 0.7. The cost value cd

i

is inverted to calculate the pheromone value τd
ij , as pheromone indicates the

goodness of a route, rather than its cost.

τd
ij ← γτd

ij + (1 − γ)(cd
i )

−1, γ ∈ [0, 1] (4.3)

It is interesting to note that in terms of gathering route cost information,
there is an important difference here with the AntNet algorithm described in
subsection 3.2.3 and other ACO routing algorithms. Rather than relying on
the cost values experienced by the forward ants, AntHocNet uses the estimates
c
j
i calculated locally by the nodes. This is in order to improve reliability of

the measured values. Depending on the cost metric used, the high variability
of the wireless medium can cause large differences between values measured
by subsequent samples. For example, the delay incurred on a link can vary
strongly in case of congestion if IEEE 802.11 is used as a MAC layer protocol
(see subsection 2.3.3). Using local estimates that are based on more than one
sample can take away some of this variability.

4.2.3 Proactive route maintenance

The proactive route maintenance process serves to update and extend available
routing information. In particular, it allows to build a mesh of multiple routes
around the initial route created during the reactive route setup process. The
proactive route maintenance process consists of two subprocesses: pheromone

90



diffusion and proactive ant sampling. Pheromone diffusion is aimed at spreading
available pheromone information over the network through the use of periodic
update messages and information bootstrapping. Proactive ant sampling is
aimed at controlling and updating pheromone information through path sam-
pling using proactive forward ants. While proactive ant sampling is started by
the source node of a communication session at the start of the session and con-
tinues for as long as the session is going on, pheromone diffusion is executed by
all nodes throughout their whole lifetime, and is not particulary bound to the
occurrence of a single session. Below, we describe each of the two subprocesses
of proactive route maintenance separately.

Pheromone diffusion

The reactive route setup process described in subsection 4.2.2 leads to the avail-
ability of a single route from the source of a communication session to its des-
tination, indicated by regular pheromone values in the pheromone tables of the
nodes. Moreover, each neighbor node of the destination also has a one-hop route
to the destination. This is independent of the running session, and is simply due
to the fact that neighboring nodes are aware of each other’s presence, as is ex-
plained further in subsection 4.2.5. The aim of the pheromone diffusion process
is to spread all this pheromone information out, so that a field of pheromone
pointing towards the destination becomes available in the network. This field
of pheromone is indicated in the virtual pheromone values in the pheromone
tables of the nodes. The fact that pheromone is spread out is similar to the
normal diffusion of real pheromone in nature [185], which allows ants further
away to sense it. In the example of figure 4.2, a communication session is go-
ing on between node 1 and node 8. Regular pheromone is indicated by solid
arrows. It consists of a single route from 1 to 8 over the nodes 3, 6 and 7 that
is the result of reactive route setup, and a one-hop route from 5 to 8 that is
there independently of the running session, because 5 is aware of the presence
of its neighbor 8. The field of virtual pheromone that is the result of pheromone
diffusion is indicated with dashed arrows.

A crucial role in the pheromone diffusion process is played by hello messages.
These are short messages broadcast every thello seconds asynchronously by all
the nodes of the network throughout their whole lifetime. In AntHocNet, thello

is set to 1 second. Hello messages are used in many existing protocols, such
as ABR [257] and OLSR [61] (see subsection 2.4.2), to allow nodes to find out
which are their immediate neighbors, and to detect link failures. While also in
AntHocNet hello messages are used for this purpose (as is explained in subsec-
tion 4.2.5), they also serve a different goal, namely to carry information in the
pheromone diffusion process. They serve as the periodic update messages that
are needed in the information bootstrapping process of pheromone diffusion.
The idea to convey extra routing information inside hello messages has been
used in some other routing algorithms, such as the earlier mentioned OLSR.

Nodes include in each hello message that they send out routing information
they have available. In particular, a node i constructing a hello message consults

91



3

2

4

6

7

8

5

1

Figure 4.2: An example of available pheromone in an AHWMN. Node 1 is run-
ning a communication session with node 8 as destination. Regular pheromone
is indicated by solid arrows. The route over the nodes 3, 6 and 7 is the result
of a reactive route setup. The one-hop route from node 5 to node 8 is there
independent of the running session: node 5 is aware that node 8 is its neighbor
and therefore knows it has a one hop path to node 8. Virtual pheromone is
indicated by dashed arrows. It forms a field pointing towards the destination
node 8. Virtual pheromone is the result of the pheromone diffusion process.

its pheromone table, and picks a maximum number k of destinations it has
routing information for. k is normally kept on 10, but in chapter 5 we also
present results varying this parameter. If more than k destinations are available,
k of them are picked out randomly. For each one of these destinations d, the
hello message contains the address of d, the best pheromone value that i has
available for d, υd

i , and a bit flag. This best pheromone value υd
i is taken over all

possible values for regular pheromone τd
ij and virtual pheromone ωd

ij associated
with d in i’s pheromone table Ti. The bit flag is used to indicate whether the
reported value was originally regular or virtual pheromone. In the example of
figure 4.2, node 3 has the choice of reporting the regular pheromone value about
the route over node 6 to node 8, or reporting the virtual pheromone value about
the route over node 5 to node 8. In case the route cost metric in use is hop
count, it will prefer to send out the virtual pheromone, as it points to a better
route.

A neighboring node j receiving the hello message from i goes through the list
of reported destinations. For each listed destination d, it derives from the hello
message an estimate of the goodness of going from j to d over i, by applying
information bootstrapping: it combines the reported pheromone value υd

i , which
indicates the goodness of the best route from i to d, with the locally maintained
estimate of the cost ci

j of hopping from j to i. The exact formula is given in

equation 4.4. The inversions are needed first to convert the goodness value υd
i

92



into a cost value so that it can be added to the cost value ci
j , and then to convert

the total sum again into a goodness value. The result of the calculation is what
we call the bootstrapped pheromone value κd

ji. In the example of figure 4.2, node
3 receives a hello message from node 5 reporting the one hop route from 5 to
8. Node 3 extracts this reported pheromone and uses it to derive bootstrapped
pheromone for the route over node 5 to node 8.

κd
ji =

(

(υd
i )−1 + ci

j

)−1

(4.4)

With κd
ji, node j has obtained a new estimate for the goodness of the path

to d over i in a relatively cheap way. Thanks to the use of information boot-
strapping, all that was needed in terms of communication overhead was the
sending of the value υd

i from i to j. Moreover, since υd
i was piggybacked on top

of a hello message, which i needed to send out anyway in order to support link
failure detection, the overhead is limited to a few extra bytes in transmission.
In AHWMNs, this is an important detail, since a major part of the cost of data
transmission is formed by channel access control activities (see subsection 2.3.3),
which only need to be executed once for each packet, making the transmission of
one large packet favorable compared to the transmission of several small pack-
ets. On the downside, the cheap procedure to obtain κd

ji comes at a price, in

the form of reliability: since κd
ji is derived from the estimate υd

i reported by i,

it is only correct as long as υd
i is correct. This can be problematic in a highly

dynamic environment like AHWMNs, where routing information can get out
of date quickly, and especially if the value υd

i reported by i was in itself the
product of pheromone diffusion (i.e., if the value reported by i was originally
virtual pheromone). We have provided discussions on the reliability of informa-
tion bootstrapping and dynamic programming approaches in subsections 3.1.1
and 3.3.2. Since we do not adopt any additional mechanisms to ensure the relia-
bility of the bootstrapped pheromone (in order to keep the system simple), and
since the bootstrapping process is relatively slow using the periodic hello mes-
sages (in order to keep it efficient), we have to be aware that the bootstrapped
pheromone value κd

ji is potentially unreliable. This influences the way node j

can use κd
ji to update its pheromone table.

As described earlier in subsection 4.2.1, node j maintains in its pheromone
table entry T d

ji two distinct pheromone values for the route over its neighbor i to

destination d: the regular pheromone value τd
ji and the virtual pheromone ωd

ji.

Of these, only the virtual pheromone value ωd
ji is normally updated with the

new bootstrapped pheromone value κd
ji. This way, the pheromone obtained via

the pheromone diffusion process is kept separate from the regular pheromone,
which is the product of ant based route sampling and is therefore considered
more reliable. The updating is done by replacing ωd

ji by κd
ji. In the exam-

ple of figure 4.2, node 3 would use the earlier derived bootstrapped pheromone
about the route over node 5 to node 8 to update its virtual pheromone. The
approach of keeping virtual and regular pheromone separate means that boot-
strapped pheromone is not used directly for the forwarding of data packets,

93



since data packets only consider regular pheromone when choosing a next hop
(see subsection 4.2.4). Virtual pheromone is used when forwarding proactive
forward ants towards their destination (more on this follows below, when we
talk about proactive ant sampling). When reaching the destination, proactive
forward ants are converted into proactive backward ants, which do deposit reg-
ular pheromone, which in turn is used for routing data packets. So, in this way,
bootstrapped pheromone influences data forwarding indirectly. One could say
that the potentially unreliable bootstrapped pheromone provides hints about
possible routes, which are then explored and verified by the proactive forward
ants.

There is one situation that forms an exception to this normal mode of oper-
ation, in which we do allow the bootstrapped pheromone value κd

ji to be used

for updating the regular pheromone value τd
ji and influencing data forwarding

directly. This is the case when the following two conditions are fulfilled: a) j

already has a non-zero value for the regular pheromone τd
ji, and b) the boot-

strapped pheromone κd
ji was derived from a reported pheromone value υd

i that
was based on regular pheromone in i, rather than virtual pheromone (remember
that i indicates this in a bit flag in its hello message). In the example of the
network of figure 4.2, the described situation arises for instance when node 3
receives a hello message from node 6 reporting the regular pheromone value of
the path from node 6 to node 8 going over node 7: node 3 already has non-zero
regular pheromone for the route over node 6 to node 8, and the hello message
received from node 6 reports regular pheromone. Under these conditions, we
know that there is a reliable route from j to d over i, since the presence of
regular pheromone indicates that this route has been sampled by ants in the
past. Also, we know that κd

ji reflects information about this reliable route that

is available in the next hop i, since it was based on a value υd
i that reflects

regular pheromone about d available in i. This means that the bootstrapped
pheromone is in fact a one step update of the routing information about this
specific route. So, under these strict conditions, we consider it reliable enough to
update regular pheromone: we replace τd

ji directly by κd
ji. This way, pheromone

on current paths is kept up-to-date.

Proactive ant sampling

The proactive ant sampling process is started by the source node of a session at
the moment the first data packet of a new session is received, and continues for
as long as the session is going on. The aim of the process is to use ant based sam-
pling to gather routing information for ongoing sessions. To this end, proactive
forward ants are generated. These ants can follow regular pheromone, which is
routing information placed by previous ants, or virtual pheromone, which is the
result of the pheromone diffusion process described above. While the former
leads the ants to update goodness estimates of existing routes, the latter allows
them to find new routes based on the hints provided by the pheromone diffu-
sion process. This way, the single route that was initially constructed in the
reactive route setup process is extended to a full mesh of multiple paths. In the

94



example of figure 4.2, a proactive forward ant arriving in node 3 can follow the
regular pheromone over node 6 to node 8, or the virtual pheromone indicating
the shorter route over node 5 to node 8.

Each node which is the source of a communication session periodically (nor-
mally, we use a period of thello seconds, but we have also done tests with other
values; see subsection 5.3.3) schedules the transmission of a proactive forward
ant towards the session’s destination. In order to improve efficiency, the actual
sending of a proactive forward ant is conditional to the availability of good new
virtual pheromone: only if the best virtual pheromone is significantly better
(in our experiments: at least 10% better) than the best regular pheromone, a
proactive forward ant is sent out. The aim of the proactive forward ant is to find
a route towards the destination, and to store the list of nodes P that it visits on
the way. The proactive forward ant takes a new routing decision at each inter-
mediate node i, using the formula of equation 4.5 to calculate the probability
of choosing each possible next hop n. In this formula, the function max(a, b)
takes the maximum of the two values a and b, and β2 is a parameter that defines
the exploratory character of the ants. Like for reactive forward ants, β2 is nor-
mally kept on 20, but in chapter 5 we also compare results using different values
for β2. As can be seen from the equation, unlike reactive forward ants, proac-
tive forward ants rely both on regular and virtual pheromone for their routing
decisions: they use the maximum between regular and virtual pheromone to
calculate the probability of each next hop. Also different from reactive forward
ants is that proactive forward ants are never broadcast: when they arrive at a
node that does not have any routing information for their destination, they are
discarded.

P d
in =

[max(τd
in, ωd

in)]β2

∑

j∈Nd

i

[max(τd
ij , ω

d
ij)]

β2

, β2 ≥ 1, (4.5)

When a proactive forward ant arrives at its destination, it is converted into
a proactive backward ant, which is sent back to the source. Proactive backward
ants have the same behavior as reactive backward ants: they follow the exact
path P recorded by their corresponding forward ant back to the source, and
update regular pheromone entries at intermediate nodes and at the source. For
details about this behavior, we refer to the description of reactive backward ants
in subsection 4.2.2.

An important aspect to note here is that while the proactive forward ants
can follow both regular and virtual pheromone, proactive backward ants always
deposit regular pheromone. This way, the proactive ant sampling process can
investigate promising virtual pheromone, and if the investigation is successful
turn it into a regular route that can be used for data. In the example of fig-
ure 4.2, a proactive forward ant following the virtual pheromone from node 3
over node 5 to node 8 is at its arrival in 8 converted into a backward ant, which
deposits regular pheromone on the link from node 3 to node 5. The process
of proactive ant sampling increases in this way the number of routes available
for data routing, which can grow to a full mesh, and allows the algorithm to

95



exploit new routing opportunities in the ever changing AHWMN topology. As
stated earlier, the proactive ants provide through their full path sampling the
necessary control to verify the reliability of new routes obtained through the
information bootstrapping process of pheromone diffusion.

4.2.4 Data packet forwarding

Data packets are forwarded from their source to their destination in hop-by-
hop fashion, taking a new routing decision at each intermediate node. Routing
decisions for data packets are based only on regular pheromone. This means that
they only follow the reliable routes that are the result of ant based sampling,
and leave the virtual pheromone information that is the result of information
bootstrapping out of consideration. The combination of the reactive route setup
and the proactive route maintenance processes leads to the availability of a full
mesh of such reliable routes between the source and destination of each session.

Nodes in AntHocNet forward data packets stochastically, based on the rel-
ative values of the different regular pheromone entries they have available for
the packet’s destination. The probability P d

in for a node i to pick next hop n

when forwarding a packet with destination d is given in the formula of equa-
tion 4.6. This formula is very similar to the one used for reactive forward ants
(see equation 4.1), but uses a different parameter, β3, for the power function
of the pheromone values. This way, the relative preference for the best routes
can be adapted separately for data and for ants (as is common practice in ACO
routing algorithms, see section 3.2).

Pnd =
(τd

in)β3

∑

j∈Nd

i

(τd
ij)

β3

, β3 ≥ 1 (4.6)

By adapting the β3 parameter, one can make data forwarding less or more
greedy with respect to the best available routes. By setting β3 low, data is
spread over multiple routes, considering also low quality ones. Using multiple
routes for data forwarding can improve throughput, as the data load is spread
more evenly over the available network resources (see also subsection 2.4.3). By
setting β3 high, on the other hand, data is concentrated on the best routes.
This can also be a good choice, since the routes that according to the ant
sampling give the best performance, are exploited as much as possible. In our
experiments, we normally keep β3 on 20, which is relatively high and only allows
data load spreading when there are several good routes of more or less equal
quality. In chapter 5, we also compare results when using different values for
β3.

4.2.5 Link failures

In AHWMNs, link failures can occur due to physical changes such as the move-
ment or disappearance of a node, or due to changes that influence the connec-
tivity of the wireless communication, such as an increase of radio interference or

96



a decrease in the used transmission power. Since AHWMNs are usually highly
dynamic, such events are expected to occur frequently, and AHWMN routing
algorithms should be prepared to deal with them effectively. The components
of AntHocNet described so far already offer some basic protection against link
failures. The reactive route setup process allows source nodes to rebuild entire
routes if needed, and the proactive route maintenance process offers protec-
tion in a proactive way through the creation of new paths, which can serve as
backup routing possibilities. In this subsection, we outline further mechanisms
in AntHocNet that are specifically aimed at dealing with link failures.

The first step in dealing with link failures is their detection. In AntHocNet,
link failures are detected if lower layer protocols report the failure of the unicast
transmission of a control or data packet, or if a node fails to receive periodic
hello messages from its neighbors. Once a failure is detected, the next step is
to take action to neutralize its effect. In AntHocNet, the action to be taken
depends on the way the failure was detected. If the detection was through
the failed transmission of a control packet or through the missed reception of
hello messages, the node that detected the link failure broadcasts a link failure
notification message, in which it warns downstream nodes about changed routes.
If the detection was through the failed transmission of a data packet, the node
starts a local route repair process in order to repair the route to the destination
of the failed data packet. A final action that can be taken is the sending of
a unicast warning message. These are messages that are used when an earlier
broadcast link failure notification message got lost. Below, we first discuss the
detection of link failures, then the use of link failure notification messages, next
the process of local route repair, and finally the use of unicast warning messages.

Detecting link failures

Link failures can be detected through the failed unicast transmission of control
or data packets, or via the use of hello messages. Detection through a failed
unicast transmission is straightforward. MAC layer protocols usually have mech-
anisms that inform it about the success or failure of a unicast transmission. For
instance, the IEEE 802.11 DCF protocol, which is often used in AHWMNs (see
subsection 2.3.3), requires receiving nodes to send an acknowledgement upon
successful reception of a unicast transmission. AntHocNet gives MAC layer
protocols the possibility to report the failure of a transmission, and assumes in
that case that the corresponding link has failed.

Relying solely on this mechanism to detect link failure is not satisfactory
however. First of all, it does not allow to detect a link failure in advance, but
only at the moment that it causes damage. Second, on a more technical note,
many implementations of MAC layer protocols do not include the possibility
to warn higher layers about a failed transmission. Therefore, AntHocNet also
uses hello messages to detect link failures. These are messages that are sent
out by all the nodes of the network asynchronously at a fixed interval of thello

seconds. When a node i receives a hello message from a new node j, it can
assume that j is its neighbor, and create an entry Nij for j in its neighbor

97



table, indicating in it the last time that it has heard from j. It also makes an
entry T

j
ij in its pheromone table, indicating that there is a one-hop route from

i to j over next hop j. After this, i expects to receive a message from j at least
every thello seconds. If i does not hear from j for a certain number of thello

second intervals (set to 2 intervals here), i assumes that the wireless connection
to j has disappeared.

In AntHocNet, hello messages are not only used to detect link failures, but
also to carry pheromone information in the pheromone diffusion process (see
subsection 4.2.3). This means that hello messages in AntHocNet are larger than
those used in many other routing algorithms (such as e.g. in AODV [213], see
subsection 2.4.2). For link failure detection, this can actually be an advantage.
It has been pointed out in [56] that since hello messages are usually smaller
than data packets, they can more easily be received correctly over shaky wireless
connections, and therefore give a false image of link availability for data packets.
The authors propose exactly the use of larger hello messages to get a better
image of the real network topology.

Link failure notifications

When a node i detects that the link with a neighboring node j is lost, it removes
j from its neighbor table. Then, it updates its pheromone table Ti, building a
link failure notification message in the process. It scans its pheromone table to
control which destinations d have a non-zero regular pheromone value τd

ij (i.e.,
for which destinations d neighbor node j is used as a next hop from i). For
each such destination, i sets τd

ij to 0. Furthermore, it checks whether the lost

pheromone τd
ij was the best or only regular pheromone value available for d. If

this is the case, it adds the address of the destination d to the link failure noti-
fication message, together with the new best regular pheromone it has available
for d. If τd

ij was the only non-zero regular pheromone entry for d, this is also
indicated in the link failure notification message.

Once the link failure notification message is fully constructed, it is broadcast.
All of i’s neighbors receive the message, and update their routing tables for
the routes going over i to the involved destinations, using the new estimates
reported in the message. To this end, they use the same formula that is applied
for information bootstrapping in the pheromone diffusion process, as given in
equation 4.4. In case they in turn loose their best or only route to one of the
involved destinations due to the reported failure, they in turn construct their
own link failure notification message, in the same way as i did, and broadcast
it further. This way, all involved nodes eventually get warned and can update
their pheromone tables.

Local route repair

When a node i detects a link failure through the failed transmission of a data
packet, and i does not have any alternative routing information available for
the destination d of this data packet, i does not include d in the link failure

98



notification it sends out. Instead, it starts a local route repair process to try to
repair the route to d, so that the data packet can still be delivered.

At the start of the local route repair process, i creates a repair forward ant.
Repair forward ants are identical to reactive forward ants, and are forwarded in
the same way: they are broadcast when no routing information is available, and
are otherwise unicast to a stochastically chosen next hop using the formula of
equation 4.1. The only real difference with reactive forward ants is that repair
forward ants can only be broadcast a limited maximum number of times (we
set this number to 2). Therefore, they can only travel far if they are unicast
over existing pheromone. Concretely, this means that repair forward ants need
to stay close to existing routes in order to reach the destination, so that they
really focus on the repair of the lost route. Upon arrival at the destination d,
the repair forward ant is converted into a repair backward ant, which travels
back to the node i that launched the local route repair process. It does so in
exactly the same way as a reactive backward ant traveling back to its source
(see subsection 4.2.2), updating regular pheromone entries on the way. Once
the repair backward ant is back at the original node i, this node can send its
stored data packet to d.

Node i uses a timer to decide how long to wait for a repair backward ant.
The value of this timer is an estimate of the time it takes to go from i to d and
come back, and is calculated as shown in equation 4.7. In this equation, thop is a
fixed delay value per hop (set to 50 milliseconds), and hd

ij is the number of hops
to the destination as reported by the backward ants and stored in i’s pheromone
table (see subsections 4.2.1 and 4.2.2). The multiplication with 2 is to account
for the way to go to the destination and come back. If no backward ant has
been received before the timer runs out, i discards the stored data packet, and
broadcasts a link failure notification about destination d.

timer = 2 ∗ thop ∗ hd
ij (4.7)

Unicast warning messages

A final aspect of dealing with link failures in AntHocNet is the use of unicast
warning messages. These are emergency messages that are needed when link
failure notification messages are not delivered correctly. This can happen be-
cause link failure notifications are broadcast. The IEEE 802.11 DCF MAC layer
protocol, which is very often used in AHWMNs, does not provide any guaran-
tees for the delivery of broadcast messages. This makes broadcast transmission
a lot less reliable than unicast transmissions, which are supported with extra
mechanisms to improve reliability (see subsection 2.3.3). Suppose now that a
node i has lost its only route to a destination d due to a link failure, and warns
other nodes about this in a link failure notification message as described above.
If a neighboring node n, which has a route to d using i as next hop, does not
receive this message correctly, it will continue sending data packets for d to i.
At this point, i cannot forward the data packets. It therefore answers to the
data packet by unicasting a short warning message to n, indicating that it has

99



no routing information for d. Upon reception of this message, n removes the
erroneous routing information from its pheromone table.

4.2.6 Routing metrics

So far, we have not given any details about how paths are evaluated in Ant-
HocNet, and have instead talked in terms of a generic cost value. In principle,
this generic cost value can be replaced by any possible route cost metric. Con-
cretely, we have explored the use of the following ones: the number of hops,
the end-to-end delay, a combination of hops and end-to-end delay, and a met-
ric based on the signal-to-interference-and-noise ratio of links along the route.
While the calculation of the number of hops is trivial, the other three are a
bit more complicated. Therefore, we explain in what follows for each of these
metrics how a node i locally estimates the cost c

j
i of the link to its neighbor

j. How local estimates of link costs are then combined into full route costs has
been explained earlier in the description of the working of reactive backward
ants (see subsection 4.2.2). In the experimental results reported in chapters 5
and 6, we normally use the signal-to-interference-and-noise ratio metric, as this
gave the best results. Comparisons with versions of AntHocNet using the other
metrics will also be reported in chapter 5.

End-to-end delay

When using the end-to-end delay cost metric, the cost estimate c
j
i maintained

locally by node i reflects the expected delay incurred by a data packet when
following the wireless link from i to its neighbor j. Concretely, c

j
i is calculated by

the formula given in equation 4.8. In this formula, qi
mac is the number of packets

that are currently in queue at the node to be sent, and t̂imac is an estimate of the
time it takes to send one packet via unicasting. t̂imac is calculated as a moving
average of the time elapsed between the arrival of a packet at the MAC layer and
the end of a successful transmission, which is indicated by an acknowledgement
received from the next hop. This is shown in equation 4.9, where timac is the
latest observed send time, and η is a parameter defining how quickly the moving
average adapts to new observations (η is kept on 0.7).

c
j
i = (qi

mac + 1)t̂imac (4.8)

t̂imac ← ηt̂imac + (1 − η)timac, η ∈ [0, 1] (4.9)

As can be seen from equations 4.8 and 4.9, the calculation of c
j
i here is in

fact independent of j. This is because we assumed network nodes that have
only one wireless interface which is an omnidirectional antenna. In this case,
the data traffic for all next hops needs to go over the same outgoing queue, and
needs to access the same wireless channel, so that a packet queuing to be sent
to a node j might need to wait behind packets for any other neighboring node,
experiencing also their delays.

100



End-to-end delay combined with number of hops

We also considered the possibility to combine the end-to-end delay with the
number of hops. While the end-to-end delay is adaptive to the local traffic
situation, it can be quite unstable, showing large oscillations due to variations
in the quality of the wireless channel and local interference. The number of
hops, on the other hand, is not adaptive, but is a stable metric. The goal of
combining both is to have a metric that is both adaptive and stable.

The formula for the calculation of c
j
i using the combined metric is given in

equation 4.10. The first part of this formula corresponds to the calculation of
the delay, and is identical to the formula of equation 4.8. The second part of
the formula reflects the number of hops. While the number of hops to reach
neighbor j from node i is obviously always 1, here we use a different constant
value, namely thop. This is a fixed estimate of the time needed to take one hop in
unloaded conditions (we kept thop on 0.003 sec). Using the constant thop, rather
than 1, allows to scale the number of hops to the same order of magnitude as
the time estimation.

c
j
i = (qi

mac + 1)t̂imac + thop (4.10)

Signal-to-interference-and-noise ratio

The signal-to-interference-and-noise ratio (SINR) between a node i and a node
j is the ratio between the strength of the signal received by node i from node j

and the general noise and interference from other radio signals present around i.
This value can be calculated at the physical layer of the node. SINR is a crucial
factor defining the success of a wireless reception. When SINR is high, reception
has a high probability of being successful, whereas when it is low, reception is
impossible. In between there is a range for which reception is possible with some
probability. Note that also factors other than SINR can influence reception, so
that it is sometimes also possible to have bad reception when SINR is high (see
e.g. [15]). Nevertheless, SINR is an important indicator of link quality.

When using SINR to define c
j
i in AntHocNet, we are not interested in fine

variations in the SINR level, but rather in a coarse grained distinction between
“good” and “bad” wireless links: we want to capture the difference between
links on which reception has a high probability of being successful, and links on
which reception is possible but with a lower probability of success. Therefore,
we apply a simple approach using a critical SINR value SINRc as threshold, in
which links with an SINR value lower than SINRc are penalized. Concretely,
we use the formula of equation 4.11, where c

j
i is set to 1 for links with SINR

higher than SINRc (this corresponds to using normal hop count as a metric),
and to a constant value cconst > 1 for links with SINR lower than SINRc. In
simulation tests using IEEE 802.11b radios sending at 2Mbps, we empirically
set SINRc to 17dB and cconst to 3. The value of 17dB for SINRc is in line
with critical values of SINR found in empirical research on wireless LANs using
the same radio technology [200].

101



c
j
i =

{

1, if SINR > SINRc

cconst, if SINR ≤ SINRc
(4.11)

4.3 Further Discussions

In this section, we provide further discussions related to the AntHocNet rout-
ing algorithm. First, we consider AntHocNet in the light of the RL framework
presented in chapter 3, and discuss its particular strategies for information gath-
ering from this point of view. Then, we take a look at the different challenges
for AHWMN routing that were pointed out in chapter 2, and investigate qual-
itatively how AntHocNet deals with these. Next, we discuss how AntHocNet
relates to other existing routing algorithms. In particular, we search in how
far components of AntHocNet are also used elsewhere. Finally, we write a few
words about mechanisms that were present in older versions of AntHocNet, and
about why they were discarded.

4.3.1 AntHocNet and reinforcement learning

In chapter 3 we have described RL, an important class of problems in machine
learning, and we have explained how the problem of routing fits into this frame-
work. Then, we have discussed two basic solution methods for RL problems,
namely dynamic programming and Monte Carlo sampling, each with their own
advantages and disadvantages, and we have shown how existing routing algo-
rithms relate to them, with distance vector routing being a direct implemen-
tation of dynamic programming, and ACO routing relying mainly on Monte
Carlo sampling. Subsequently, we have also described a more advanced learn-
ing method, temporal difference learning, which combines elements of both basic
methods, and we have shown the Q-routing algorithm that was based on it. In
what follows, we investigate how the AntHocNet routing algorithm proposed in
this chapter relates to all of this. In particular, we describe how AntHocNet uses
both the Monte Carlo sampling and dynamic programming learning methods,
but combines them in a way that is different from temporal difference learning.

Monte Carlo sampling is used extensively in AntHocNet, since it is the learn-
ing method applied in ACO routing, which was the main source of inspiration
of our algorithm. This is most evident in the proactive ant sampling subprocess
of the proactive route maintenance process (see subsection 4.2.3). In this sub-
process, ants are regularly sent out by the source node of each session in order
to sample a path towards the destination of the session. This is very much in
line with the continuous path sampling done in other ACO routing algorithms.
Apart from this, also the reactive route setup process (see subsection 4.2.2)
and the local route repair process (see subsection 4.2.5) use a form of Monte
Carlo sampling: the reactive and repair forward ants used in these processes
each take a single sample of a path through the network, and use it to set up a
new route. As was explained earlier in subsection 3.3.2, this approach of using
Monte Carlo sampling by taking a single sample of a path through the network

102



is also applied in many existing reactive routing algorithms. An important point
to note here is that AntHocNet is more consistent in its use of sampling, since
both reactive and repair forward ants always go all the way till the destination.
In most existing reactive routing algorithms, including the AODV and DSR
protocols described in subsection 2.4.2, this is not the case: RREQ messages
that are searching for a path to the destination can be returned by intermediate
nodes that have routing information about the destination available. At that
point, the obtained routing information relies on the estimate provided by the
intermediate node, so that a form of information bootstrapping is applied.

The most important advantage of using Monte Carlo sampling here is that
it provides a high level of reliability. This is because all routing information is
the result of direct experiences, giving a certain guarantee about its correctness.
A disadvantage is that it can be inefficient. The need to send sampling packets
from source to destination can lead to high levels of overhead. The use of IEEE
802.11 DCF as MAC layer mechanism can deteriorate this problem, because
this protocol creates a lot of overhead for each sent packet, making the trans-
mission of multiple small packets particulary problematic. Traditional reactive
routing algorithms deal with the efficiency issue by using just a single sample.
AntHocNet, on the other hand, improves efficiency by combining Monte Carlo
sampling with a supporting dynamic programming process.

AntHocNet uses dynamic programming in the pheromone diffusion subpro-
cess of its proactive route maintenance process (see subsection 4.2.3). This
subprocess works more or less in the same way as distance vector routing al-
gorithms do, using information bootstrapping in each node to derive routing
information from estimates calculated by neighboring nodes. Such an approach
has as an advantage that it is highly efficient, as the information obtained by
each node is optimally reused in the calculation of the information needed by
other nodes. In AntHocNet, this efficiency is further increased by piggyback-
ing routing updates on top of hello messages, which avoids the transmission of
multiple small control packets. An important disadvantage of using dynamic
programming and information bootstrapping is that it can lead to processes
that are slow to converge, so that routing information can be temporarily unre-
liable. This is especially a problem in dynamic situations. In existing distance
vector routing algorithms for AHWMNs, such as DSDV (see subsection 2.4.2),
extra techniques are applied to ensure reliability in the face of the highly dy-
namic network environment. Unfortunately, these techniques introduce extra
overhead, and can severely reduce the efficiency of the process. Therefore, in
AntHocNet, we have chosen a different strategy: the dynamic programming
part of AntHocNet is kept very simple and lightweight, and is not expected to
provide information that is 100% reliable. This way, we focus maximally on
its efficiency, and do not worry about its unreliability. Instead, we are aware
that the information produced by the process can contain errors and therefore
we do not use it directly for routing. We use it as a guideline for the Monte
Carlo sampling of the proactive ant sampling subprocess. Using this guideline,
the ants do not have to explore the whole network, but can concentrate on
routes that are suggested by pheromone diffusion. This reduction in the need

103



for exploration makes the sampling process more effective, so that less ants are
needed, leading to better efficiency. This way, we obtain an adaptive algorithm
that combines the efficiency of dynamic programming with the reliability and
robustness of Monte Carlo sampling.

Note that the way Monte Carlo sampling and dynamic programming are
combined here is very different from temporal difference learning methods. In
n-step temporal difference learning (see subsection 3.3.3), the learning agent
takes a sample of a few steps, after which it arrives in an intermediate state
i, where it reads the local value estimate, which it uses to bootstrap on. This
approach can be highly efficient, but does not avoid the potential unreliability
of dynamic programming, since it still uses information bootstrapping. It is
interesting to see that the temporal difference learning approach to information
gathering is similar to the returning of RREQ messages by intermediate nodes in
reactive routing algorithms as described above: the RREQ samples a path till an
intermediate node that has routing information available about the destination,
at which point it bootstraps on this information and returns to the source. In
AntHocNet, we aimed to be more consistent, and keep sampling and information
bootstrapping strictly separate.

4.3.2 Challenges for routing in AHWMNs

In chapter 2, we have defined a number of challenges for routing in AHWMNs.
These included adaptivity, robustness, efficiency and scalability. Here, we in-
vestigate qualitatively how AntHocNet is equipped to deal with each of these.

Adaptivity is very important in AHWMNs, as the dynamic network environ-
ment constantly presents the routing algorithms with new changes. Adaptivity
is in AntHocNet provided in two different ways. On the one hand, the algo-
rithm has a wide range of reactive mechanisms at its disposal. These include
the reactive route setup process and the different mechanisms to deal with link
failures, such as link failure notifications, local route repair, and unicast warn-
ing messages. These provide the algorithm with tools to react immediately in
case a disruptive event takes place. On the other hand, AntHocNet applies also
proactive mechanisms, in its proactive route maintenance process. These allow
the algorithm to take adaptive actions without the need for being prompted by
an event. Proactive actions can avoid problems with disruptive events in the
future, by providing backup routes, or exploit new possibilities that arise from
the changes in the environment.

Robustness is in general obtained from the extensive use of ant based full
path sampling, a practice that is taken over from ACO routing. As was explained
in chapter 3, using full path sampling as a method to gather routing information
leads to increased robustness in two ways. First of all, each individual sample is
unimportant, so that the loss of control packets only has a marginal effect, not
immediately leading to erroneous routing information. Second, since ants always
sample full paths, they provide a certain guarantee that the path actually exists
and the reported information is correct. This is in contrast with distance vector
routing and link state routing, which are both in principle more vulnerable in

104



a highly dynamic environment.
Efficiency is taken care of in AntHocNet in two ways. First of all, the algo-

rithm’s hybrid architecture combining reactive and proactive components allows
to concentrate on the routing information that is most needed. Second, the use
of a highly efficient dynamic programming approach, which uses piggybacking
on top of hello messages, as a way to guide ant based sampling in the proactive
route maintenance process allows to improve efficiency during the gathering of
routing information.

Good scalability is expected to arise from the provided efficiency, adaptivity
and robustness. We refer here to the empirical results in chapter 5 that show
the scalability of the algorithm compared to other, state-of-the-art routing al-
gorithms for AHWMNs.

4.3.3 AntHocNet related to other routing algorithms

In this subsection we take a look at routing algorithms that are related to Ant-
HocNet. We isolate mechanisms that are used in AntHocNet, and investigate
to what extent they are also applied in other AHWMN routing algorithms. In
particular we will talk about multipath routing, the use of path sampling, and
the approach to combine reactive route setup with proactive route improvement.

Multipath routing is used in many AHWMN routing algorithms. An overview
has been given earlier in subsection 2.4.3. The main objectives when using mul-
tipath routing is to improve failure resilience by providing backup paths, and to
improve throughput. The former is inherent to all algorithms that set up multi-
ple paths. The latter can only be obtained when data traffic is spread over the
multiple paths. In AntHocNet, this is possible by choosing a low value for the
parameter β3 in equation 4.6, which leads to a stochastic spreading of the data
load according to the relative quality of the different available paths. Such an
approach is typical for ACO routing algorithms, and can therefore also be found
in some of the other algorithms that apply ACO routing for AHWMNs, such
as ARA [119] and Termite [225] (nevertheless, many ACO routing algorithms
also forward data deterministically over the best path; see subsection 3.2.6 for
an overview). Outside the area of ACO routing, adaptive data load spreading is
far less common. Most algorithms that do spread data over multiple paths do
so in a simple, even way (see e.g. [164]). A few algorithms explore the idea of
adaptive data load spreading depending on the estimated quality of the paths
(e.g. [108,269]). Stochastic data load spreading is to the best of our knowledge
unexplored outside the area of ACO routing.

The use of path sampling as a strategy for obtaining routing information has
been discussed amply in chapter 3 and in subsection 4.3.1. AntHocNet applies
sampling both reactively, using a single sample to set up a route between source
and destination, and proactively, using repeated samples to update existing
routing information and explore new possibilities. As was mentioned before,
reactive use of single path samples is quite common in AHWMNs. It is at the
basis of the working of some important algorithms, such as AODV [213] and
DSR [140] (see subsection 2.4.2). Proactive use of repeated path sampling is

105



far less common. Some algorithms apply it in a limited way, using sampling to
get up-to-date information about existing routes, but not to explore new ones.
This is the case in [108, 269], and in many of the ACO routing algorithms for
AHWMNs (see subsection 3.2.6). The use of sampling to proactively find new
routing information is quite rare in AHWMNs, even for ACO routing algorithms.
Exceptions are the Termite [225] and EARA [177] algorithms, in which ants (or
in the case of Termite any kind of packets) can take random routing decisions,
so that they leave existing routes, and start exploring new ones. Such random
exploration is quite blind. A system where the exploration is guided such as
in AntHocNet’s proactive route maintenance process has to our knowledge not
been explored outside the work presented in this thesis.

A hybrid strategy of combining reactive route setup with proactive route
improvement like the one used in AntHocNet is not very common in AHWMN
routing. It is applied in some ACO routing algorithms such as Termite and
EARA through the use of random exploration decisions during the path sam-
pling process, as is explained above. Outside the area of ACO routing, the
approach can to some extent be found in the reactive routing protocol DSR. As
was explained in subsection 2.4.2, DSR uses source routing, which means that
each data packet carries the full route from its source to its destination, as a
list of addresses. Nodes that are not on this route can overhear the data packet,
and extract the routing information it is carrying. This allows these nodes to
discover new routes. Unlike AntHocNet, however, DSR does not include any
mechanism to verify the reliability of these new routes, and in experiments this
mechanism has often been found ineffective, as it allows erroneous routing in-
formation to be copied by other nodes, leading to a quick “pollution” of routing
tables throughout the network. Nevertheless, DSR’s approach to route improve-
ment has recently been taken over in two new routing algorithms: LQSR [92,93]
and Srcr [30]. Quite interestingly, both algorithms have been developed specif-
ically for use in real WMN deployment projects: LQSR for Microsoft’s MCL
architecture, and Srcr for MIT’s Roofnet project. A very different approach to
proactive route improvement is found in the LUNAR algorithm [259], which is
in essence a reactive algorithm in which improvements are obtained by repeat-
ing the route setup phase every 3 seconds. For efficiency reasons, the algorithm
is limited to networks of maximally 3 hops. Like LQSR and Srcr, also LUNAR
was developed based on experiences with a real WMN deployment project. The
fact that proactive route improvement was chosen as the approach in several
WMN deployment studies is an indication of its usefulness in realistic settings.

4.3.4 Older versions of AntHocNet

In the first papers about AntHocNet [73, 74], an older version of the algorithm
was described. This version contains some important differences compared to
the version described in this chapter. Specifically, it uses different mechanisms in
the reactive route setup process and in the proactive route maintenance process.
Here, we describe these different mechanisms, and explain why we dropped
them.

106



The main difference in the reactive route setup process of the older version
of AntHocNet is that not one but multiple routes are set up. To this end, nodes
that receive multiple reactive forward ants belonging to the same route setup
process do not immediately discard these duplicate ants. Instead, they compare
the path traveled by each ant to that of the previously received ants of this
route setup. If the number of hops and travel time of a newly received ant are
both within an acceptance factor a1 of those of the best previously received
ant of the same route setup, the new ant is accepted and forwarded; otherwise,
it is discarded. a1 is set quite low (to 0.9), in order to only allow the best
ants through and avoid too much proliferation of forward ants in the network.
The multiple reactive forward ants arriving in the destination are converted
into backward ants, which return to the source, so that a number of multiple,
good paths are set up simultaneously. A problem with the approach is that due
to the use of strict acceptance criteria when comparing to the best previously
received ant (using the low acceptance factor a1), the process can lead to a
situation where the different resulting paths are all just small variations of the
best one. In general, it is better to have more disjoint paths, as this gives better
protection in case of link failures. To boost the creation of disjoint paths, a
different mechanism is applied, which takes into account the first hop taken by
each ant. If this first hop is different from those taken by previously accepted
ants, we apply a higher (less restrictive) acceptance factor a2 than in the case
the first hop was already seen before (a2 was set to 2). A similar strategy can
be found in [186].

The strategy of setting up multiple routes during the reactive route setup
process has as an obvious advantage that multiple routes are available from the
start of the communication session, so that the session is better protected against
link failures and can start data load spreading immediately. However, through
experiments we experienced that it is hard to get a good balance between the
number of routes that are obtained and the overhead that is created. High levels
of overhead were often experienced. Therefore, we decided to restrict reactive
route setup to the creation of just one single route, and to rely on proactive
route maintenance to obtain multiple routes.

The proactive route maintenance process of the older version of AntHocNet
is considerably different from the new one. It consists of only the proactive ant
sampling subprocess, and does not apply pheromone diffusion. Proactive for-
ward ants can be forwarded through unicasting or through broadcasting. The
unicasting is done in the same way as in the current version of AntHocNet:
a next hop is chosen probabilistically according to available pheromone infor-
mation. However, since no pheromone diffusion is done, no virtual pheromone
is spread out, and the only available pheromone information for the proactive
forward ants is regular pheromone. This means that through pheromone guided
unicasting, ants can check out existing routes, but not explore new ones. This is
where the broadcasting comes into play. At each node, proactive forward ants
have a small probability (set to 10%) of being broadcast. After such a broadcast
the ant arrives in all the neighbors of the broadcasting node. This way, it can
leave the currently existing paths and start the exploration of new ones. It is

107



possible that in these neighbors it does not find pheromone pointing towards
the destination, in which case it is broadcast again. The ant will then quickly
proliferate and flood the network, like reactive forward ants do. In order to
avoid this, the number of broadcasts is limited to nb (nb was set to 2). If the
ant does not find routing information within nb hops, it is deleted.

Compared to the route exploration done in the current version of AntHoc-
Net, this older mechanism has some important shortcomings. First of all, its
exploration is completely blind: the broadcasts are done randomly, without
using any information about whether it would be possible to find new good
routes there. Second, it creates a lot of overhead. Due to the nb possible
broadcasts, each proactive forward ant can multiply quickly, leading to a lot
of extra control packets in the network. Therefore, nb needs to be kept quite
low. As a consequence, however, exploration is more limited, and the number of
exploratory moves cannot be more than nb. The proactive route maintenance
process adopted in the current version of AntHocNet is both more effective and
more efficient.

4.4 Conclusion

In this section we have presented the AntHocNet routing algorithm for AH-
WMNs. AntHocNet is a hybrid algorithm that combines a reactive route setup
process with a proactive route maintenance process. The reactive route setup is
carried out at the start of a communication session or whenever the source of a
current session has no more routing information available for the destination. It
creates a single route for the session. The proactive route maintenance is run for
the entire duration of the session. Its aim is to keep information about existing
routes up to date and to explore new routes. Under impulse of this process,
the initial single route created during reactive route setup is extended to a full
mesh, and improved to exploit new possibilities in the changing AHWMN en-
vironment. Other features of AntHocNet are the possibility to do probabilistic
data load spreading, and the use of a number of reactive components to deal
with link failure, such as the transmission of failure notification messages and
the possibility to execute local route repair.

Considered from a machine learning point of view, AntHocNet relies on two
distinct strategies for information gathering, namely Monte Carlo sampling and
dynamic programming. The Monte Carlo sampling approach is inherited from
ACO routing, which was the main source of inspiration for AntHocNet. It is
applied extensively throughout the different components of the algorithm. Col-
lecting routing information through the sampling of full paths leads in general to
reliable routing information. Dynamic programming is only used during proac-
tive route maintenance. It is the basis of the pheromone diffusion subprocess,
which uses information bootstrapping to spread earlier obtained routing infor-
mation over the network. Using a dynamic programming approach allows to
gather routing information in an efficient way. However, it can sometimes tem-
porarily lead to erroneous information. Therefore, it is in AntHocNet combined

108



with full path sampling in order to improve reliability. The way ideas from
dynamic programming and Monte Carlo sampling are combined in AntHocNet
is novel in the area of machine learning.

The different mechanisms used in AntHocNet help the algorithm to deal with
some of the important challenges of AHWMN routing that were pointed out in
chapter 2, such as adaptivity, robustness and efficiency. Adaptivity is on the
one hand provided by the availability of reactive algorithms such as the reactive
route setup and the different mechanisms to deal with link failures, which make
sure that disruptive events can always be dealt with. On the other hand, the use
of proactive route maintenance allows to adapt to change in the environment
before they cause disruptions. Robustness is in general provided through the use
of full path sampling to establish routes for data traffic. Efficiency is obtained
by combining the path sampling with a dynamic programming approach which
allows to spread routing information in an efficient way.

109


