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Abstract— We use a Katana robotic arm to teach an iCub
humanoid robot how to perceive the location of the objects
it sees. To do this, the Katana positions an object within the
shared workspace, and tells the iCub where it has placed it.
While the iCub moves it observes the object, and a neural
network then learns how to relate its pose and visual inputs
to the object location. We show that satisfactory results can
be obtained for localisation. Furthermore, we demonstrate that
this task can be accomplished safely using collision avoidance
software to prevent collisions between multiple robots in the
same workspace.

I. INTRODUCTION
Currently the vast majority of robotic systems are used in

industrial applications. In these settings robots have mainly
been used as programmable machines, solving automation
tasks with with pre-defined, pre-programmed actions in static
environments. In recent years however the field has been
moving towards extending the use of robots in other areas.
A main hurdle is that a predefined, static environment can
not be assumed in almost all interesting settings in daily life
coexisting and helping humans. Proposed applications range
from household tasks, helping in a hospital, to elderly care,
grocery shopping, etc.

For a robot to be able to work in these ‘unstructured’
environments, and extend its applications from industrial to
domestic settings, it needs to be able to perceive and under-
stand its surroundings, as the state of the workspace and the
objects in it can not be known a priori. The robot therefore
has to rely on its sensory feedback to build a model of the
scenery. To do so it needs to identify and localise objects
autonomously and robustly. This spatial understanding is
crucial for motion planning, obstacle avoidance and finally
interacting with these environments and the objects therein.

We aim to provide the (low precision) humanoid robot
with a technique to estimate positions of objects relative to
itself in 3D Cartesian space. Our humanoid platform is the
iCub robot [1], an open-system robotic platform, providing
a 41 degree-of-freedom (DOF) upper-body, comprising two
arms, a head and a torso (see Fig. 1). The iCub is generally
considered an interesting experimental platform for cognitive
and sensorimotor development and embodied Artificial Intel-
ligence (AI) [2], and is particularly well suited for learning
object manipulation experiments. A high precision robotic
arm, in our case a 5 DOF Katana arm by Neuronics [3], is
used to position an object in the shared workspace to provide
the humanoid with the information to learn from.
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Fig. 1. The iCub humanoid robot reaching for a block mounted on the
Katana manipulator (foreground) in a shared workspace.

II. SHARING THE WORKSPACE

Multiple robots sharing the same workspace, may it be
in cooperation or competition, have been investigated pre-
viously. The research is usually focused on mobile robotics
for exploration scenarios [4], as area coverage is seen as one
of the canonical problems. Cooperating mobile robots have
been researched for diverse applications, such as, cleaning
[5], indoor surveillance [6], and space exploration [7].

Recently cooperation has also become of interest for
humanoid robots and robotic helpers at home. A dual-
robot setup was shown by TUM using their PR2 James
and humanoid robot Rosie (similar to DLR’s Justin [8])
making pancakes [9]. In their setup the workspace of the
two robots is only overlapping during a very little part of
the demonstration and therefore collision avoidance between
robots can be ignored.

Our aim is for the iCub to learn to interact in this
environment, act out pre-defined tasks, and adapt to changes
in the environment, introduced by the Katana manipulator
arm. The setup, in which the robots are facing each other
can be seen in Fig. 3.

An obvious challenge in the multi-robot scenario is to
prevent the robots from colliding with each other, or indeed,
with themselves or the environment. Collisions are likely to
lead to damage to either the robot or the environment, leading
to time-consuming maintenance.

One approach to tackle this problem of multiple robots
interfering and colliding while in the same workspace is
to plan ahead of time. Algorithms that take this approach



are generally called ‘Path Planning’ or ‘Motion Planning’
algorithms, as they plan and validate feasible motions, which
can later be passed to the robot as reference trajectories. A
vast literature exists on these topics, the interested reader is
referred to the recent text book by LaValle [10]. For multi-
robot settings a good and thorough introduction to collision
avoidance and detection problems has been published by
Gill [11].

Previous work [12] investigated collision-free trajectory
coordination, in industrial applications, where the trajectories
of the (homogenous) robots were predefined and known and
coordinating these was the main issue. Multiple robot arms
and generation of non-colliding paths while, e.g. passing it
from one arm to another were explored by Koga et al. [13].

Alternatively the robot can react to impending collisions
as they are predicted. Previous work by Frank et al. [14]
introduced Virtual Skin, an open-source framework, allowing
the monitoring of the state of physical robots in real-time
and providing easy to adapt ‘reflex’ behaviours. These reflex
behaviours are invoked when a possible collision is detected
and return the robot to a safe pose. We extend this framework
to a multi-robot configuration.

Surprisingly little work has been done on multi-robot
setups with humanoids. The main focus is towards shared
workspaces with humans. This field of human robot inter-
action (HRI) is growing, the interested reader is referred to
a recently published book [15]. In the last years the work
on humanoids, while controlling both arms to, e.g. perform
bimanual grasping, has become more prominent. In [16] a
roadmap approach for path planning using both arms of the
DLR Justin robot [8] was presented. It allows to plan object
manipulation motions, based on decomposing the system
into kinematically independent parts, without the two arms
colliding or interfering with each other.

III. OBJECT LOCALISATION

Developing an approach to object localisation that is robust
enough to be deployed on a real humanoid robot is necessary
to provide the necessary inputs for on-line motion planning
and object manipulation tasks. The current state-of-the-art
approach to solving the object localisation is using a variety
of different time-of-flight sensors, such as, LASER range
finders. Recently the use of active vision increased due to
the availability of cheap and robust sensors, such as, the
Microsoft Kinect.

The iCub though has no such sensors, and therefore the
localisation has to rely, similarly to human perception, on
stereo vision.As the cameras are mounted in the head of the
robot the method for localisation must be able to cope with
motion to work while the robot is controlling its gaze and
upper body for reaching. More theoretically, the fundamental
matrix will vary as a function of pan and vergence of the
eyes, and the position and orientation of the stereo camera
unit (the head) will vary as a function of the state of the
torso and neck.

Stereo Vision describes the extraction of 3D information
out of digital images and is similar to the biological process

of stereopsis in humans. Its basic principle is the comparison
of images taken of the same scene from different viewpoints.
To obtain a distance measure the relative displacement of
a pixel between the two images is used. In the following
discussion, CSL and CSR refer to the local reference frames
of the left and right cameras of the iCub respectively, while
CSK is the local reference frame of the Katana manipulator,
and CSWorld denotes the common reference frame for the
workspace, in which we seek to express object locations (see
Fig. 2).

The cameras provide two different 2D projections of
the same 3D scene. To triangulate the 3D position back
from the two images, the ‘intrinsic parameters’, specifying
each camera’s projection from 3D to 2D, as well as the
‘fundamental matrix’, that is the rigid-body transformation
between CSL and CSR need to be known. For a thorough
review of approaches in stereo vision, we refer the interested
reader to the textbook by Hartley & Zisserman [17].

While traditional stereo vision approaches, based projec-
tive geometry, have been proven effective under carefully
controlled experimental circumstances, they are not ideally
suited to most robotics applications. Intrinsic camera param-
eters and the fundamental matrix may be unknown or time
varying, and this requires the frequent repetition of lengthly
calibration procedures, wherein known, structured objects
are viewed by the stereo vision system, and the required
parameters are estimated by numerical algorithms.

Assuming a solution to the standard stereo vision problem,
applying it to a real physical robot to facilitate object manip-
ulation remains a challenge. In many robotics applications,
it is inconvenient to express the environment with respect to
a camera.

From a planning and control standpoint, for example, the
most logical choice of coordinate system is CSWorld, the
reference frame at the base of the iCub, which is stationary
with respect to the environment. In order to transform coordi-
nates from CSL or CSR to CSWorld, such that we can model
objects and control the robot in the same frame of reference,

Fig. 2. The object localisation problem, illustrated according to the
kinematic model of the iCub humanoid robot, is to process images from
cameras located at the origin of CSL and CSR to express the position of
objects with respect to CSWorld. CSK denotes the reference frame for the
Katana manipulator.



an accurate kinematic model of the robot is necessary. In the
case of the Katana arm this model is available and therefore
the location of the end effector, in CSK is known with high
precision (in millimetre range).

We present a learning technique which does not require,
nor tries to explicitly build a model of the robot or the cam-
eras. Only one calibration, learning on the collected dataset,
is needed, to estimate the location of objects placed in-front
of the robot. The herein presented localisation techniques
enables the iCub to successfully estimate object positions
in cartesian space, based on a training set collected with
the help of a Katana robotic arm. This is a prerequisite for
reaching for an object (and eventually manipulate it).

For the iCub platform several different localisation sys-
tems have previously been developed, One of these methods
is a biologically inspired approach that mimics the retina
of the human eye. Camera images are projected by a log-
polar transform before typical stereo vision depth estimation
algorithms are used to analyse this view. The currently
available implementation on the humanoid only supports a
static iCub head, putting the object position in the CSR or
CSL coordinate frame. A full review of log-polar techniques
for robotics applications can be found in [18].

The ‘Cartesian controller module’, available in the iCub
software repositories, also provides basic 3D position esti-
mation functionality [19]. This module works well on the
simulated iCub, however it is not yet supported on the
hardware platform, and therefor does not perform well. One
reason for this is its need for an accurate robot model and
camera parameters, which necessitates a thorough configu-
ration before using this module on the hardware.

The most accurate currently available localisation module
for the iCub exists in the ‘stereoVision’ module. It provides
accuracy in the range of a few centimeters, but with high
variance depending on where the object is placed in the
camera frame. Unlike the presented log-polar approach, this
current, state-of-the art module for 3D localisation1 works
with the entire iCub kinematic model, providing a position
estimate in the CSWorld coordinate frame. The module
requires the previously mentioned ‘Cartesian controller’ and
uses tracking of SIFT [20] and SURF [21] features to im-
prove the kinematic model of the camera pair by estimating
a new fundamental matrix, for moving eyes, head and torso.
SIFT and SURF analysis is however quite computationally
expensive and therefore is not suitable for some embodied
applications.

The precision of all of these approaches depends upon
an accurate kinematic model of the iCub. A very accurate
model, or estimation of the model, is therefore necessary.

To our knowledge no module currently exists to estimate
the kinematics of the iCub, this is partly due to the openly
available CAD models and thorough calibration procedures
that need to/should be applied regularly. For other robotic

1The documentation for this code which can be found in the
iCub source code repository hosted at SourceForge is available at
http://eris.liralab.it/iCub/contrib/dox/html/group_
_icub__stereoVision.html

platforms machine learning has been used to estimate the
kinematic model, for example, Bongard et al. used sensory
feedback to learn the model [22]. Their method uses no high-
dimensional sensory information, as provided by camera
images. A genetic programming approach has previously
been shown to evolve basic hand-eye coordination on a
simple humanoid robot [23].

IV. IMPLEMENTATION OF
COLLISION AVOIDANCE

Virtual Skin is a module for YARP [24] providing collision
detection and avoidance behaviours for the iCub robot, with
an approximate complexity of the computation of O(n2m),
where n is the number of objects in the robot model and m
the number of objects in the environment. For this detection
the Software Library for Interference Detection (SOLID)
[25] is used. It, provides highly optimised code for geometric
computations (supporting primitives, Minkowski sums, and
polyhedra).

YARP is a popular open source robotics middleware,
comparable to ROS [26], which was the middleware used for
the previously mentioned TUM work on their cooperating
robots. It allows to create distributed systems of loosely
coupled modules and provides standardised interfaces. As
a YARP module, Virtual Skin can easily be used with any
robot, as long as YARP drivers have been implemented. The
iCub drivers are included in the standard version of YARP
but for the Katana, we had to add this functionality. The
basic driver was developed previously [27] and was adapted
to work with the current YARP version. Due to the open-

Fig. 3. iCub and Katana arm models loaded into the VirtualSkin [14] (top)
to perform collision detection for both robots while working in a shared
workspace. The lower pictures shows the real scene.



source design this could be done rather modular building
on various wrappers for the Katana API. We are confident
that our drivers for the Katana manipulator will be added to
future YARP releases.

Virtual Skin is intended to enable machine learning re-
search on real robotic systems. It has a similar design
philosophy to YARP and also aims for transparency and
modularity in its subsystems. This allowed us to extend the
behaviour to our multi-robot setup.

The Virtual Skin module consists of three primary com-
ponents [14]:

1) A kinematic model of the robot and workspace system.
2) A port filter that allows Virtual Skin to act as a proxy

between an arbitrary control module and the robot.
3) A collision response behaviour.

The system works the following: A controller, connects
to the proxy created at runtime (instead of the direct YARP
interfaces of the robot) and can then start controlling the
robot. Virtual Skin uses the state messages arriving from the
real hardware to update the kinematic model and performs
real-time collision detection computations based on these.
When an impeding collision is detected the robot is stopped
and the proxy is closed. Then the defined reflexive collision
behaviour is triggered and the controller module is notified.
Once the the system is recovered from the dangerous con-
figuration the reflex stops and the controller can continue to
use the robot.

To allow for our setup to be using the Virtual Skin
software, we needed to adapt two out of these three building
blocks, namely we needed to:

• add a kinematic model of the Katana arm
• allow to load two models side by side and
• add a collision response for the second robot

In Virtual Skin the robot model can be specified via an
XML configuration file, using the “Zero Position Displace-
ment Notation” [28], which is significantly less complex
and more intuitive than the popular Denavit-Hartenberg
convention [29].

Due to the fact of the lower complexity of the Katana
arm the XML file is short and easy to read. The loaded file
together with the loaded iCub model is shown in Fig. 3. The
reflex behaviour was a bit tricker to modify, mainly because
the parameters used for the two robots had to be tuned to
be synchronous. The parameters are defining how long the
history of stored poses is and how much delay is needed
between firing consecutive position move commands to the
hardware.

V. TRANSFERRING SPATIAL PERCEPTION
USING MACHINE LEARNING

To transfer the spatial information we are using a ma-
chine learning approach. This supervised learning requires
a dataset which includes the inputs and the outputs to be
learned (ground truth), i.e. the measured positions in 3D
Cartesian space as provided by the Katana.

More formally, the task here is to estimate the position of
an object p ∈ R3 in the robot’s reference frame (CSWorld in
Fig. 2) given an input, also called feature vector, x.

The features used are the state of the robot, described by
9 encoder values representing the 9 DOF, and the observed
position of the object in the image plane, defined by XY
coordinates in both the left and the right image. To facilitate
the learning additional features, the bounding box of the
object, specified by the XY coordinates of the upper left
corner and its width and height, were added.

To extract this visual information from the stream of both
camera images simultaneously a vision module [30] using
the OpenCV [31] library was used to precisely detect the
object. The images are segmented and a bounding box over
the segmentation is added to provide more features to learn
from. A typical segmentation is shown in Fig. 4, with the
bottom showing the object and its bounding box, defining
the 6 features to be added for both the left and right camera
image. After adding these we can define x ∈ R21 as input
vector.

The output vector p is taken from the Katana arm, which
provides its end effector position with high precision (in mm
accuracy) in Katana’s reference frame (CSK in Fig. 2). These
are easily translated into CSWorld as these are aligned and
only have an offset in one axis.

Feed-forward artificial neural networks (ANN) are used
to estimate the position p given the input x. The ANNs are
using a multi-layer perceptron architecture and were trained
applying a standard error back-propagation [32] method on
the dataset collected. The neural network approach requires
a pre-processing step, in which the dataset (input vector) is
scaled down to provide values in the range [−1,+1]. The
limits are based on to the maximum image size for the first
12 values, and the joint limits (and range of motion used

Fig. 4. The upper row shows both camera images (left and right) perceived
at the iCub (Note: while the camera images are shown in grayscale here the
technique presented uses the raw RGB images provided by the iCub YARP
interfaces). The lower one shows the results after processing. The object is
segmented out and a bounding box is calculated (shown in bright grey).
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Fig. 5. The prediction errors by the neural networks for the X, Y, and Z axis.

in the stochastic controller) of the robot, for the robot state
(encoder) values.

Each network consists of one input layer (with dimension
21), a hidden layer, and an output layer. The network uses
bias terms and is fully connected. The values presented to
the input neurons of the neural network are the 21 elements
of the feature vector x scaled using the limits. The hidden
layer consists of 10 neurons, which use a sigmoidal activation
function of the form σ(u) = 1

1+e−u . Finally the output layer
is a single neuron representing the estimated position along
one axis and needs to be rescaled.

Separate networks were trained offline for the estimation
in the X, Y and Z direction, each using using a standard error
back-propagation algorithm implemented in PyBrain [33].
The errors are stemming from the difference between the
estimation (output neuron) and ground truth (the measured
outputs provided by the Katana arm) The learning rate is
set to 0.35 and a momentum of 0.1 is used. For training the
network was using a training set (80% of the data), and a test
set (the remaining 20%) to allow verifying that the results
obtained via learning are not over-fitting.

A dataset of reference points was collected in order to
learn the 3D positions of objects as a function of the camera
images and encoder positions. To collect the dataset both
robots moved to randomly selected poses allowing for a

Fig. 6. This image shows the placement of a cup within the world model
of the iCub. The evolved formula is used to calculate the position on the
table based on the input images and the current encoder positions. Note: The
cup is placed directly under the arm, due to the parameters of the camera
and the different perspective this is hard to see.

random sampling of the configuration space. Once the robots
reach their poses, camera images and the encoder positions
of the iCub are read out and stored together with the position
information from the Katana arm to complete the raw entry in
the dataset. The iCub then continued to another random pose
to collect the next datapoint. After iterating thru some poses
also the Katana was moved to another randomly selected
pose. In this first experiment we collected a dataset with
1036 points.

VI. RESULTS

The trained neural networks allow to estimate the position
of the object in 3D space, with a high enough accuracy to
allow for grasping experiments. The average error on the
dataset is for the X-axis 15.9 mm, for the Y-axis 43.1 mm
and for the Z-axis 37.3 mm. This is also in the same range
of error as current localisation methods on the iCub provide.

Fig. 5 shows three plots, one per axis, visualising the
prediction error per sample in the dataset. A few outliers
can be seen which might result from errors when collecting
the data points.

We tested the learnt localisation by reaching for the red
block held up by the Katana manipulator (Fig. 3), as well
as, trying to reach for a cup placed on the table, as shown
in Fig. 6.

VII. CONCLUSIONS

Allowing our iCub to interact with other robots opens up
a range of potential research avenues. In this paper we have
demonstrated how our iCub can learn from a teaching robot.
The accuracy of the learnt localisation is sufficient to allow
the iCub to reach and grasp objects.

A key component in the success of this work was the use
of the Virtual Skin software, which we extended to allow
both robots to safely work in the same workspace. Without
this, the iCub would only be able to learn about objects that
were far away, or in a constrained region – such as on the
surface of a table [34].

In future work we will investigate improving the training
by teaching the iCub with different object types. The accu-
racy of the localisation may be improved by having object-
specific localisation approaches.



REFERENCES

[1] N. G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,
L. Righetti, J. Santos-Victor, A. J. Ijspeert, M. C. Carrozza, and D. G.
Caldwell, “iCub: the design and realization of an open humanoid
platform for cognitive and neuroscience research,” Advanced Robotics,
vol. 21, pp. 1151–1175, Jan. 2007.

[2] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von
Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and
L. Montesano, “The iCub humanoid robot: An open-systems platform
for research in cognitive development,” Neural Networks, vol. 23, no.
8-9, pp. 1125–1134, Oct. 2010.

[3] Neuronics AG, “Katana user manual and technical description.”
[4] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated

multi-robot exploration,” IEEE Transactions on Robotics, vol. 21,
no. 3, pp. 376–386, 2005.

[5] J. Forlizzi and C. DiSalvo, “Service robots in the domestic envi-
ronment: a study of the roomba vacuum in the home,” in ACM
SIGCHI/SIGART Conference on Human-Robot-Interaction, 2006, pp.
258–265.

[6] M. Moors, T. Rohling, and D. Schulz, “A probabilistic approach to co-
ordinated multi-robot indoor surveillance,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2005,
pp. 3447–3452.

[7] J. Leitner, “Multi-robot formations for area coverage in space appli-
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