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Abstract We present a Bayesian approach for making statistical inference about
the accuracy (or any other score) of two competing algorithms which have been
assessed via cross-validation on multiple data sets. The approach is constituted by
two pieces. The first is a novel correlated Bayesian t-test for the analysis of the cross-
validation results on a single data set which accounts for the correlation due to
the overlapping training sets. The second piece merges the posterior probabilities
computed by the Bayesian correlated t-test on the different data sets to make
inference on multiple data sets. It does so by adopting a Poisson-binomial model.
The inferences on multiple data sets account for the different uncertainty of the
cross-validation results on the different data sets. It is the first test able to achieve
this goal. It is generally more powerful than the signed-rank test if ten runs of
cross-validation are performed, as it is anyway generally recommended.

1 Introduction1

A typical problem in machine learning is to compare the accuracy of two competing2

classifiers on a data set D. Usually one measures the accuracy of both classifiers via3

k-folds cross-validation. After having performed cross-validation, one has to decide4

if the accuracy of the two classifiers on data set D is significantly different. The5

decision is made using a statistical hypothesis test which analyzes the measures6

of accuracy yielded by cross-validation on the different folds. Using a t-test is7

however a naive choice. The t-test assumes the measures of accuracy taken on the8

different folds to be independent. Such measures are instead correlated because of9

the overlap of the training sets built during cross-validation. As a result the t test10

is not calibrated, namely its rate of Type I errors is much larger than the nominal11
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size1 α of the test. Thus the t-test is not suitable for analyzing the cross-validation12

results (Dietterich, 1998; Nadeau & Bengio, 2003).13

A suitable approach is instead the correlated2 t-test (Nadeau & Bengio, 2003),14

which adjusts the t-test accounting for correlation. The statistic of the correlated15

t-test is composed by two pieces of information: the mean difference of accuracy16

between the two classifiers (computed averaging over the different folds) and the17

uncertainty of such estimate, known as the standard error. The standard error18

of the correlated t-test accounts for correlation, differently from the t-test. The19

correlated t-test is the recommended approach for the analysis of cross-validation20

results on a single data set (Nadeau & Bengio, 2003; Bouckaert, 2003).21

Assume now that the two classifiers have assessed via cross-validation on a22

collection of data sets D = {D1, D2, . . . , Dq}. One has to decide if the difference of23

accuracy between the two classifiers on the multiple data sets of D is significant.24

The recommended approach is the signed-rank test (Demšar, 2006). It is a non-25

parametric test. As such it is derived under mild assumptions and is robust to26

outliers. A Bayesian counterpart of the signed-rank test (Benavoli et al., 2014)27

has been also recently proposed. However the signed-rank test considers only the28

mean difference of accuracy measured on each data set, ignoring the associated29

uncertainty.30

Dietterich (1998) pointed out the need for a test able to compare two classifier31

on multiple data sets accounting for the uncertainty of the results on each data32

set. Tests dealing with this issue have been devised only recently. Otero et al.33

(2014) proposes an interval-valued approach to considers the uncertainty of the34

cross-validation results on each data set. When working with multiple data sets,35

the interval uncertainty is propagated. In some cases the interval becomes wide,36

preventing to achieve a conclusion.37

The Poisson-binomial test (Lacoste et al., 2012) performs inference on multiple38

data sets accounting for the uncertainty of the result on each data set. First it39

computes on each data set the posterior probability of the difference of accuracy40

being significant; then it merges such probabilities through a Poisson-binomial41

distribution to make inference on D. Its limit is that the posterior probabilities42

computed on the individual data sets assume that the two classifiers have been43

compared on a single test set. It does not manage the multiple correlated test44

sets produced by cross-validation. This limits its applicability, since classifiers are45

typically assessed by cross-validation.46

To design a test able to perform inference on multiple data sets accounting for47

the uncertainty of the estimates yielded by cross-validation is a challenging task.48

In this paper we solve this problem. Our solution is based on two main steps.49

First we develop a Bayesian counterpart of the correlated t-test (its posterior prob-50

abilities are later exploited to build a Poisson-binomial distribution). We design a51

generative model for the correlated results of cross-validation and we analytically52

derive the posterior distribution of the mean difference of accuracy between the53

two classifiers. Moreover, we show that for a particular choice of the prior over the54

parameters, the posterior distribution coincides with the sampling distribution of55

1 Consider performing many experiments in which the data are generated under the null
hypothesis. A test executed with size α is correctly calibrated if its rate of rejection of the null
hypothesis is not greater than α.

2 Nadeau & Bengio (2003) refer to this test as the corrected t-test. We adopt in this paper
the more informative terminology of correlated t-test.
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the correlated t-test by Nadeau & Bengio (2003). Under the matching prior the56

inferences of the Bayesian correlated t-test and of the frequentist correlated t-test57

are numerically equivalent. The meaning of the inferences is however different. The58

inference of the frequentist test is a p-value; the inference of the Bayesian test is a59

posterior probability. The posterior probabilities computed on the individual data60

sets can be combined to make further Bayesian inference on multiple data sets.61

After having computed the posterior probabilities on each individual data set62

through the correlated Bayesian t-test, we merge them to make inference on D,63

borrowing the intuition of the Poisson-binomial test (Lacoste et al., 2012). This is64

the second piece of the solution. We model each data set as a Bernoulli trial, whose65

possible outcomes are the win of the first or the second classifier. The probability of66

success of the Bernoulli trial corresponds to the posterior probability computed by67

the Bayesian correlated t-test on that data set. The number of data sets on which68

the first classifier is more accurate than the second is a random variable which69

follows a Poisson-binomial distribution. We use this distribution to make inference70

about the difference of accuracy of the two classifiers on D. The resulting approach71

couples the Bayesian correlated t-test and the Poisson-binomial approach; we call72

it the Poisson test.73

It is worth discussing an important difference between the signed-rank and the74

Poisson test. The signed rank test assumes the results on the individual data sets75

to be i.i.d. The Poisson test assumes them to be independent but not identically76

distributed, which can be advocated as follows. The different data sets D1, . . . , Dq77

have different size and complexity. The uncertainty of the cross-validation result is78

thus different on each data set, breaking the assumption of the results on different79

data sets to be identically distributed.80

We compare the Poisson and the signed-rank test through extensive simula-81

tions, performing either one run or ten runs of cross-validation. When we perform82

one run of cross-validation, the estimates are affected by important uncertainty.83

In this case the Poisson behaves cautiously and it is less powerful than the signed-84

rank test. When we perform ten runs of cross-validation, the uncertainty of the85

cross-validation estimate decreases. In this case the Poisson test is generally more86

powerful than the signed-rank test. To perform ten runs rather than a single one87

run of cross-validation is anyway recommended to obtain robust cross-validation88

estimates (Bouckaert, 2003). The signed-rank test does not account for the uncer-89

tainty of the estimates and thus its power is roughly the same whether one or ten90

runs of cross-validation are performed.91

Under the null hypothesis, the Type I errors of both test are correctly calibrated92

in all the investigated settings.93

The paper is organized as follows: Section 2 presents the methods for inference94

on a single data set; Section 3 presents the methods for inference on multiple data95

set; Section 4 presents the experimental results.96

2 Inference from cross-validation results on a single data set97

2.1 Problem statement and frequentist tests98

We want to statistically compare the accuracy of two classifiers which have been99

assessed via m runs of k-folds cross-validation. We provide both classifiers with100
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the same training and test sets and we compute the difference of accuracy be-101

tween the two classifiers on each test set. This yields the differences of accuracy102

x = {x1, x2, . . . , xn}, where n = mk. We denote the sample mean and the sample103

variance of the differences as x and σ̂2.104

A statistical test has to establish whether the mean difference between the two105

classifier is significantly different from zero, analyzing the vector of results x. Such106

results are correlated because of the overlapping training sets. Nadeau & Bengio107

(2003) prove that there is no unbiased estimator of such correlation. They assume108

the correlation to be ρ = nte
n , where nte, ntr and ntot denote the size of the training109

set, of the test set and of the whole available data set. Thus ntot = ntr + nte. The110

statistic of the correlated t-test is:111

t =
x

√

σ̂2( 1
n + ρ

1−ρ )
=

x
√

σ̂2( 1
n + nte

ntr
)
. (1)

Its sampling distribution is a Student with n − 1 degrees of freedom. The corre-112

lation heuristic has proven to be effective and the correlated t-test is much closer113

to a correct calibration than the standard t-test (Nadeau & Bengio, 2003). The114

correlation heuristic of Nadeau & Bengio (2003) is derived assuming random se-115

lection of the instances which compose the different training and test sets used116

in cross-validation. Under random selection the different test sets overlap. The117

standard cross-validation yields non-overlapping test sets. This is also the setup118

we consider in this paper. The correlation heuristic of Nadeau & Bengio (2003) is119

anyway effective also with the standard cross-validation (Bouckaert, 2003).120

The denominator of the statistics is the standard error, namely the standard121

deviation of the estimate of x. The standard error increases with σ̂2, which typically122

increases on smaller data sets. On the other hand the standard error decreases with123

n = mk. Previous studies (Kohavi, 1995) recommend to set the number of folds124

to k=10 to obtain a reliable estimate from cross-validation. This has become a125

standard choice. Having set k=10, one can further decrease the standard error126

of the test by increasing the number or runs m. Indeed Bouckaert (2003) and127

(Witten et al., 2011, Sec.5.3) recommend to perform m=10 runs of ten folds cross-128

validation.129

The correlated t-test has been originally designed to analyze the results of a130

single run of cross-validation. Indeed its correlation heuristic models the correla-131

tion due to overlapping training sets. When multiple runs of cross-validation are132

performed, there is an additional correlation due to overlapping test sets. We are133

unaware of approaches able to represent also this second type of correlation, which134

is usually ignored.135

2.2 Bayesian t-test for uncorrelated observations136

Before introducing the Bayesian t-test for correlated observations, we briefly dis-
cuss the Bayesian inference in the uncorrelated case. Assume we have a vec-
tor of independent and identically distributed observations of a variable X, i.e.,
x = {x1, x2, . . . , xn}, and that we aim to test if the mean of X is positive. In the
Bayesian t-test we assume that the likelihood of the observations is Normal with
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unknown mean µ and and unknown precision ν (the precision is the inverse of
variance ν = 1/σ2):

p(x|µ, ν) =
n
∏

i=1

N(xi;µ, 1/ν). (2)

Our aim is to compute the posterior of µ (here ν is a nuisance parameter). A
natural prior for µ, ν is the Normal-Gamma distribution (Bernardo & Smith, 2009,
Chap.5), which is conjugate with the likelihood model:

p(µ, ν|µ0, k0, a, b) = N

(

µ;µ0,
k0
ν

)

G (ν; a, b) = NG(µ, ν;µ0, k0, a, b).

It is the product of a Normal distribution over µ (with precision ν/k0 proportional
to ν) and a Gamma distribution over ν and depends on four parameters µ0, k0, a, b.
Updating the prior-normal gamma with the normal likelihood, one obtains a pos-
terior normal-gamma joint distribution with updated parameters (µn, kn, an, bn),
whose values are reported in first column of Table 1 (see also (Murphy, 2012,
Chap.4)). Marginalizing out the precision from the Normal-Gamma posterior one
obtains the posterior marginal distribution of the mean, which follows a Student
distribution:

p(µ|x, µ0, k0, a, b) = St

(

µ; 2an, µn,
bnkn
an

)

.

Then, the Bayesian t-test for the positiveness of µ is:137

P (µ > 0|x, µ0, k0, a, b) =

ˆ ∞

0

St

(

µ; 2an, µn,
bnkn
an

)

dµ = T2an





µn
√

bnkn
an



 > 1− α,

(3)
where T2an(z) denotes the cumulative distribution of the standardized Student138

distribution with 2an degrees of freedom computed at z. By choosing α = 0.05, we139

can assess the positivity of µ with posterior probability 0.95. If the prior parameters140

are set as follows: {µ0 = 0, k0 → ∞, a = −1/2, b = 0}, from Eqn.(3) it follows141

that P (µ > 0|x, µ0, k0, a, b) = 1− p, where p is the p-value of the frequentist t-test.142

See (Murphy, 2012, Chap.4) for further details on the correspondence between143

frequentist and Bayesian t-tests. In fact, for these values, the posterior reduces to144

St
(

µ;n− 1, x, σ2/n
)

, as shown also in the second column in Table 1. Therefore,145

if we consider this matching (improper) prior, the Bayesian and frequentist t-test146

coincide.147

2.3 A novel Bayesian t-test for correlated observations148

Assume now that the observations of the variable X, x = {x1, x2, . . . , xn}, are149

identically distributed but dependent. In particular, consider the case in which the150

observations have the same mean µ, the same precision ν and are equally correlated151

with each other with correlation ρ > 0. This is for instance the case in which the152
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Parameter Analytical expression Under matching prior

µn
µ0/k0+nx

1
k0

+n
x

kn
1

1
k0

+n
1
n

an a+ n
2

n−1
2

bn b+ 1
2

∑n
i=1(xi − x)2 +

1
k0

n(x−µ0)
2

2( 1
k0

+n)
1
2

∑n
i=1(xi − x)2

Table 1 Posterior parameters for the uncorrelated case.

n observations are the n differences of accuracy among two classifiers yielded by153

cross-validation. The data generating process can be modelled as follows:154

x = Hµ+ v (4)

whereHn×1 is a vector of ones (Hn×1 = 1n×1) and v is a noise vector with zero mean
and covariance matrix Σn×n patterned as follows: each diagonal elements equals
σ2 = 1/ν; each non-diagonal element equals ρσ2. This is the so-called intraclass

covariance matrix (Press, 2012). We define Σ = σ2M , where M is the (n × n)
correlation matrix. As an example, with n = 3 we have:

Σ =





σ2 ρσ2 ρσ2

ρσ2 σ2 ρσ2

ρσ2 ρσ2 σ2



 M =





1 ρ ρ

ρ 1 ρ

ρ ρ 1



 (5)

To allow for Σ to be invertible and positive definite, we require σ2 > 0 and155

0 ≤ ρ < 1. The correlation among the cross-validation results is positive anyway156

(Nadeau & Bengio, 2003). These two conditions define the admissibility region of157

the parameters.158

In the Bayesian t-test for correlated observations, we assume the noise vector159

v to be follow a multivariate Normal distribution: v ∼ MVN(0,Σ). The likelihood160

corresponding to (4) is:161

p(x|µ,Σ) =
exp(− 1

2(x−Hµ)TΣ−1(x−Hµ))

(2π)n/2
√

|Σ|
. (6)

Equation (6) reduces to equation (2) in the uncorrelated case (ρ = 0). As in162

the previous section, our aim is to test the positivity of µ. To this end, we need to163

estimate the model parameters: µ, σ2 and ρ.164

Theorem 1 The maximum likelihood estimator of (µ,σ2,ρ) from the model (6) is not165

asymptotically consistent: it does not converge to the true value of the parameters as166

n → ∞.167

The proof is given in Appendix. By computing the derivatives of the likelihood168

w.r.t. the parameters, it shows that the maximum likelihood estimate of µ,σ2 is169

µ̂ = 1
n

∑n
i=1 xi and, respectively, σ̂

2 = tr(M−1Z), where Z = (x−Hµ̂)(x−Hµ̂)T .170

Thus σ̂2 depends on ρ through M . By plugging these estimates into the likelihood171
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and computing the derivative w.r.t. ρ, we show that the derivative is never zero172

in the admissibility region. The derivative decreases with ρ and does not depend173

on the data. Hence, the maximum likelihood estimate of ρ is ρ̂ = 0 regardless the174

observations. When the number of observations n increases, the likelihood gets175

more concentrated around the maximum likelihood estimate. Thus the maximum176

likelihood estimate is not asymptotically consistent whenever ρ 6= 0. This will also177

be true for the Bayesian estimate, since the likelihood dominates the conjugate178

prior for large n. This means that we cannot consistently estimate all the three179

parameters (µ,σ2,ρ) from data.180

Introducing the correlation heuristic181

To enable inferences from correlated samples we renounce estimating ρ from data.182

We adopt instead the correlation heuristic of (Nadeau & Bengio, 2003), setting183

ρ = nte
ntot

, where nte and ntot are the size of test set and of the entire data set.184

Having fixed the value of ρ, we can derive the posterior marginal distribution of185

µ.186

Theorem 2 Choose p(µ, ν|µ0, k0, a, b) = NG(µ, ν;µ0, k0, a, b) as joint prior over µ, ν.187

Update it with the likelihood of Eqn. (6). The posterior distribution of the parameters188

is p(µ, ν|x, µ0, k0, a, b, ρ) = NG(µ, ν; µ̃n, k̃n, ãn, b̃n) and the posterior marginal over µ189

is a Student distribution:190

p(µ|x, µ0, k0, a, b, ρ) = St

(

µ; 2ãn, µ̃n,
b̃nk̃n
ãn

)

. (7)

The expression of the parameters and their values are reported in Table 2.191

Param. Analytical expression Under matching prior

µ̃n

HTM−1x+ µ0

k0

HTM−1H + 1
k0

∑n
i=1 xi

n

k̃n
1

HT M−1H+ 1
k0

1
HT M−1H

ãn a+
n

2

n− 1

2

b̃n

1
2

(

(x−Hµ̂)TM−1(x−Hµ̂) + 2b − µ2
0

k0

−µ̂2HTM−1H+ µ̃2
(

HTM−1H+ 1
k0

)) 1
2
(x−Hµ̂)TM−1(x −Hµ̂)

Table 2 Posterior parameters for the correlated case

Corollary 1 Under the matching prior (µ0 = 0, k0 → ∞, a = −1/2, b = 0), the192

posterior marginal distribution of µ simplifies as:193

St

(

µ;n− 1, x̄,

(

1

n
+

ρ

1− ρ

)

σ̂2
)

(8)
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where x̄ =
∑n

i=1
xi

n and σ̂2 =
∑n

i=1
(xi−x̄)2

n−1 and, therefore,194

P [µ > 0|x, µ0, k0, a, b, ρ] = Tn−1





x̄

σ̂
√

1
n + ρ

1−ρ



 (9)

The proof of both the theorem and corollary are given in Appendix. Under the195

matching prior the posterior Student distribution (9) coincides with the sampling196

distribution of the statistic of the correlated t-test by Nadeau & Bengio (2003).197

This implies that given the same test size α, the Bayesian correlated t-test and the198

frequentist correlated t-test take the same decisions. In other words, the posterior199

probability P (µ > 0|x, µ0, k0, a, b, ρ) equals 1 − p where p is the p-value of the200

correlated t-test.201

3 Inference on multiple data sets202

Consider now the problem of comparing two classifiers on q different data sets, after203

having assessed both classifiers via cross-validation on each data set. The mean204

difference of accuracy on each data set are stored in vector x = {x1, x2, . . . , xq}.205

The recommended test to compare two classifiers on multiple data sets is the206

signed-rank test (Demšar, 2006).207

The signed-rank test assumes the xi’s to be i.i.d. and generated from a sym-208

metric distribution. The null hypothesis is that the median of the distribution is209

M . When the test accept the alternative hypothesis it claims that the median of210

the distribution is significantly different from M .211

The test ranks the xi’s according to their absolute value and then compares
the ranks of the positive and negative differences. The test statistic is:

T+ =
∑

{i: xi≥0}

ri(|xi|) =
∑

1≤i≤j≤n
T+
ij ,

where ri(|xi|) is the rank of |xi| and

T+
ij =

{

1 if xi ≥ xj ,

0 otherwise.

For a large enough number of samples (e.g., q>10), the sampling distribution of212

the statistic under the null hypothesis is approximately normal with mean 1/2.213

Being non-parametric, the signed-rank test does not average the results across data214

sets. This is a sensible approach since the average of results referring to different215

domains is in general meaningless. The test is moreover robust to outliers.216

A limit of the signed-rank test is that does not consider the standard error217

of the xi’s. It assumes the samples to be i.i.d and thus all the xi’s to have equal218

uncertainty. This is a questionable assumptions. The data sets typically have dif-219

ferent size and complexity. Moreover one could have performed a different number220

of cross-validation runs on different data sets. For these reasons the xi’s typically221

have different uncertainties; thus they are not identically distributed.222
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3.1 Poisson-binomial inference on multiple data sets223

Our approach to make inference on multiple data sets is inspired to the Poisson-224

binomial test (Lacoste et al., 2012). As a preliminary step we perform cross-225

validation on each data set and we analyze the results through the Bayesian cor-226

related t-test. We denote by pi the posterior probability that the second classifier227

is more accurate than the first on the i-th data set. This is computed according228

to Eqn.(9): pi = p(µi > 0|xi, µ0, k0, a, b, ρ). We consider each data set as an inde-229

pendent Bernoulli trial, whose possible outcome are the win of the first or of the230

second classifier. The probability of success (win of the second classifier) of the231

i-th Bernoulli trial is pi.232

The number of data sets in which the second classifier is more accurate than the233

first classifier is a random variableX which follows a Poisson-binomial distribution234

(Lacoste et al., 2012). The Poisson-binomial distribution is a generalization of the235

binomial distribution in which the Bernoulli trials are allowed to have different236

probability of success. This probabilities are computed by Bayesian correlated237

t-test and thus account both for the mean and the standard error of the cross-238

validation estimates. The probability of success is different on each data set, and239

thus the test does not assume the results on the different data sets to be identically240

distributed.241

The cumulative distribution function of X is:242

P (X ≤ k) =
k
∑

i=0

ξ(i) =
k
∑

i=0





∑

A∈Fi

∏

i∈A

pi
∏

i∈Ac

(1− pi)



 (10)

where ξ(i) = P (X = i), Fi is the set of all subsets of i integers that can be243

drawn from {1, 2, 3, . . . , q} and Ac is the complement of A: Ac = {1, 2,3, , q}\A.244

Hong (2013) discusses several methods to exactly compute the Poisson-binomial245

distribution. We adopt a sampling approach. We simulate q biased coin, one for246

each data set. The bias of the i-th coin is pi. We simulate the q coins 100,000247

times. We count the proportion of times in which x = 1, x = 2, .., X = q out of248

the 100,000 trials. This yields a numerical approximation of the Poisson-binomial249

distribution.250

The Poisson binomial test declares the second classifier significantly more ac-251

curate than the first classifier if P (X > q/2) > 1− α, namely if the probability of252

the second classifier being more accurate than the first on more than half the data253

sets is larger than 1− α.254

3.2 Example255

In order to understand the differences between the Poisson test and the Wilcoxon256

signed-rank test, consider the artificial example of Table 3.257

In case 1, classifier A is more accurate than classifier B on five data sets.258

Classifier B is more accurate than classifier A on the remaining five data sets.259

Parameter µi and σi represent the mean and the standard deviation of the actual260

difference of accuracy among the two classifiers on each data set. The absolute261

value of µi is equal on all data sets and σi is equal on all data sets.262
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Datasets µi σi

Case 1
D1, . . . , D5 0.1 0.05
D6, . . . ,D10 -0.1 0.05

Case 2
D1, . . . , D5 0.1 0.05
D6, . . . ,D10 -0.1 0.15

Table 3 Example of comparison of two classifiers in multiple datasets

In case 2, the mean differences µi are the same as in case 1, but the standard
deviation in D6, . . . , D10 is three times larger. We have generated observations as
follows

xji ∼ N(µi, σ
2
i ),

for i = 1, . . . , 10 (10-fold cross-validation) and for the j = 1, . . . , 10 datasets (here263

ρ = 0 but the results are similar if we consider a correlated model). Figure 1 shows264

the distribution of P (X > q/2) (classifier A is better than B) for the Poisson265

test and the distribution of the p-values for the Wilcoxon signed-rank test in the266

two cases (computed for 5000 Monte Carlo runs). It can be observed that the267

distribution for Wilcoxon signed-rank test is practically unchanged in the two268

cases, while the distribution of the Poisson test is very different. The Poisson test269

is thus able to distinguish the two cases: it takes into account the variance of the270

mean accuracy in the 10-fold cross-validation of each dataset, while the Wilcoxon271

signed-rank test does not.272
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(a) Wilcoxon case 1 (b) Wilcoxon case 2
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(c) Poisson case 1 (d) Poisson case 2

Fig. 1 Distribution of P (X > q/2) for the Poisson test and distribution of the p-values for
the Wilcoxon signed-rank test in the two cases

4 Experiments273

The calibration and the power of the correlated t-test have been already extensively274

studied by (Nadeau & Bengio, 2003; Bouckaert, 2003) and we refrain from doing it275
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here. The same results apply to the Bayesian correlated t-test, since the frequentist276

and the Bayesian correlated t-test take the same decisions. The main result of such277

studies is that the rate of Type I errors of the correlated t-test is considerably closer278

to the nominal test size α than the rate of Type I error of the standard t-test. In279

the following we thus present results dealing with the inference on multiple data280

sets.281

4.1 Two classifiers with known difference of accuracy282

We generate the data sets sampling the instances from the Bayesian network C →283

F , where C is the binary class with states {c0, c1} and F is a binary feature with284

states {f0, f1}. The parameters are: P (c0)=0.5; P (f0|c0) = θ; P (f0|c1) = 1−θ with285

θ > 0.5. We refer to this model with exactly these parameters as BN.286

Notice that if the BN model is used both the generate the instances and to287

issue the prediction, its expected accuracy is3 θ.288

Once a data set is generated, we assess via cross-validation the accuracy of289

two classifiers. The first classifier is the majority predictor also known as zeroR. It290

predicts the most frequent class observed in the training set. If the two classes are291

equally frequent in the training set, it randomly draws the prediction. Its expected292

accuracy is thus 0.5.293

The second classifier is B̂N , namely the Bayesian network C → F with param-294

eters learned from the training data. The actual difference of accuracy between295

the two classifiers is thus approximately δacc = θ − 0.5. To simulate the difference296

of accuracy δacc between the two classifiers we set θ = 0.5+ δacc in the parameters297

of the BN model. We repeat experiments using different values of δacc.298

We perform the tests in a one-sided fashion: the null hypothesis is that zeroR is299

less or equally accurate than B̂N . The alternative hypothesis is that B̂N is more300

powerful than zeroR. We set the size of both the signed rank and the Poisson301

tests to α=005. We measure the power of a test as the rate of rejection of the null302

hypothesis when δacc > 0.303

We present results obtained with m=1 and m=10 runs of cross-validation.304

4.2 Fixed difference of accuracy on all data sets305

As a first experiment, we set the actual difference of accuracy δacc among the two306

classifiers as identical on all the q data sets. We assume the availability of q=50307

data sets. This is a common size for a comparison of classifiers. We consider the308

following different values of δacc: {0, 0.01,0.02, . . . , 0.1}.309

For each value of δacc we repeat 5,000 experiments as follows. We allow the310

various data sets to have different size s = s1,s2,. . .,sq. We draw the sample size311

of each data set uniformly from S = {25, 50,100,250,500,1000}. We generate each312

data set using the BN model; then we assess via cross-validation the accuracy of313

3 The proof is as follows. Consider the instances with F=f0. We have that P (c0|f0) = θ >
0.5, so the model always predicts c0 if F=f0. This prediction is accurate with probability
θ. Regarding the instances with F=f1, the most probable class is c1. Also this prediction is
accurate with probability θ. Overall the classifier has probability θ of being correct.
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both zeroR and B̂N . We then compare the two classifiers via the Poisson and the314

signed-rank test.315

The results are shown in Fig. 2(a). Both tests yield Type I error rate lower316

than 0.05 when δacc = 0; thus they are correctly calibrated. The power of the tests317

can be assessed looking at the results for strictly positive values of δacc. If one run318

of cross-validation is performed, the Poisson test is generally less powerful than319

the signed-rank test. However if ten runs of cross-validation are performed, the320

Poisson is generally more powerful than the signed rank. The signed-rank does321

not account for the uncertainty of the estimates and thus its power is roughly the322

same regardless whether one or ten runs of cross-validation have been performed.323

The same conclusions are confirmed in the case q=25.324

0 .02 .04 .06 .08 1
0

0.2

0.4

0.6

0.8

1

(a) Difference of accuracy (δacc)

P
ow
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δacc equal on all data sets

0 1 2 3 4 5

·10−2

0

0.2

0.4

0.6

0.8

1

(b) Mean difference of accuracy (δacc)

P
ow
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Cauchy-distributed δacc

Poisson (m=10)

signed-rank (m=1)

signed-rank (m=10)

Poisson (m=1)

Fig. 2 Power and calibration of the tests over multiple data sets. The plots share the same
legend. The Poisson test has squared marks. The signed-rank test has circle marks. Dashed
lines refer to one run of cross-validation, solid lines refer to ten runs of cross-validation. The
plots refer to the case q=50.

4.3 Difference of accuracy sampled from the Cauchy distributions325

We remove the assumption of δacc being equal for all data sets. Instead for each326

data set we sample δacc from a Cauchy distribution. We set the median and the327



A Bayesian approach for comparing cross-validated algorithms on multiple data sets 13

scale parameter of the Cauchy to a value δacc > 0. A different value of δacc de-328

fines a different experimental setting. We consider the following values of δacc:329

{0, 0.01,0.02, . . . , 0.05}. We run 5,000 experiments for each value of δacc. We as-330

sume the availability of q=50 data sets.331

Sampling from the Cauchy one sometimes obtains values of δacc whose absolute332

value is larger than 0.5. It is not possible to simulate difference of accuracy that333

large. Thus sampled values of δacc larger than 0.5 or smaller than -0.5 are capped334

to 0.5 and -0.5 respectively.335

The results are given in Fig. 2(b). Both tests are correctly calibrated for δacc =336

0. This is noteworthy since values sampled from the Cauchy are often aberrant337

and can easily affect the inference of parametric tests.338

Let us analyze the power of the tests for δacc > 0. If one run of cross-validation339

is performed, the Poisson test is slightly less powerful than the signed-rank test. If340

ten runs of cross-validation are performed, the Poisson test is more powerful than341

the signed-rank test.342

Such findings are confirmed by repeating the simulation with a number of data343

sets q=25.344

4.4 Application to real data sets345

We consider 54 data sets4 from the UCI repository. We consider five different346

classifiers: naive Bayes, averaged one-dependence estimator (AODE), hidden naive347

Bayes (HNB), J48 decision tree and J48 grafted (J48-gr). All the algorithms are348

described in (Witten et al., 2011). On each data set we run ten runs of ten-folds349

cross-validation using the WEKA5 software.350

We then compare each couple of classifiers via the signed-rank and the Poisson351

test.352

We sort the data sets alphabetically and we repeat the analysis three times.353

The first time we compare the classifiers on data sets 1–27; the second time we354

compare the classifiers on data sets 28–54; the third time we compare the classifiers355

on all data sets. The results are given in Table 4. The zeros and the ones in Table 4356

indicate respectively that the null or the alternative hypothesis has been accepted.357

The Poisson test detects seven significant differences out of the ten comparison358

in all the three experiments. It consistently detects the same seven significances359

in all the three experiments. The signed-rank test is less powerful. It detects only360

three significances in the first and in the second experiment. When all data sets361

are available its power increases and it detects three further differences, arriving to362

six detected differences. Overall the Poisson test is both more powerful and more363

replicable.364

The detected differences are in agreement with what is known in literature:365

both AODE and HNB are recognized as significantly more accurate than naive366

Bayes, J48-gr is recognized as significantly more accurate than both naive Bayes367

and J48. The two tests take different decisions when comparing couples of high-368

performance classifiers such as HNB, AODE and J48-gr.369

4 Available from http://www.cs.waikato.ac.nz/ml/weka/datasets.html.
5 Available from http://www.cs.waikato.ac.nz/ml/weka.
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Data sets 1–27

naive Bayes J48 J48-gr AODE HNB

naive Bayes – 1/0 1/0 1/1 1/1
J48 – – 1/1 1/0 0/0
J48-gr – – – 1/0 0/0
AODE – – – – 0/0

Data sets 28–54

naive Bayes J48 J48-gr AODE HNB

naive Bayes – 1/0 1/0 1/1 1/1
J48 – – 1/1 1/0 0/0
J48-gr – – – 1/0 0/0
AODE – – – – 0/0

Data sets 1–54

naive Bayes J48 J48-gr AODE HNB

naive Bayes – 1/0 1/0 1/1 1/1
J48 – – 1/1 1/1 0/1
J48-gr – – – 1/0 0/1
AODE – – – – 0/0

Table 4 Comparison of the decision of the Poisson and the signed-rank test on real data
sets. The entries of the table have the following meaning: <Poisson decision>/ <signed-rank
decision>. The decision is about the classifier of the current column being significantly more
accurate than the classifier of the current row. For instance the entry 1/0 means that only the
Poisson test claims the difference to be significant.

4.5 Software370

At the link www.idsia.ch/~giorgio/poisson/test-package.zip we provide both371

the Matlab and the R implementation of our test. They can be used by a researcher372

who wants to compare any two algorithms assessed via cross-validation on multiple373

data sets. The package also allows reproducing the experiments of this paper.374

The procedure can be easily implemented also in other computational environ-375

ments. The standard t-test is available within every computational package. The376

frequentist correlated t-test can be implemented by simply changing the statistic377

of the standard t-test, according to Eq.(1). Under the matching prior, the poste-378

rior probability of the null computed by the Bayesian correlated t-test correspond379

to the p-value computed by the one-sided frequentist correlated t-test. Once the380

posterior probabilities are computed on each data set, it remains to compute the381

Poisson-binomial probability distribution. The Poisson-binomial distribution can382

be straightforwardly computed via sampling, while exact approaches (Hong, 2013)383

are more difficult to implement.384

5 Conclusions385

To our knowledge, the Poisson test is the first test which compares two classifiers on386

multiple data sets accounting for the correlation and the uncertainty of the results387

generated by cross-validation on each individual data set. The test is usually more388

powerful than the signed-rank if ten runs of cross-validation are performed, which389
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is anyway common practice. A limit of the approach based on the Poisson-binomial390

is that its inferences refer to the sample of provided data sets rather than to the391

population from which the data sets have been drawn. A way to overcome this392

limit could be the development a hierarchical test able to make inference on the393

population of data sets.394
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Appendix429

Proof of Theorem 1430

Preliminaries431

The symmetry of the correlation matrix M implies that M−1 is symmetric too. Assuming
n=3 as an example, its structure is:

M =





1 ρ ρ
ρ 1 ρ
ρ ρ 1



 M−1 =
1

|M |
Adj(M) =

1

|M |





α β β
β α β
β β α





where α, β are the entries of the adjugate matrix.432

We get:

HTM−1H =
nα+ n(n− 1)β

|M |
=

n(α+ (n− 1)β)

|M |
(11)

HTM−1x =

∑n
i=1(α+ (n− 1)β)xi

|M |
(12)

Moreover,433

xTΣ−1H = HTΣ−1x =
1

σ2|M |
[α+ (n− 1)β]

∑

i

xi. (13)

Estimating µ434

From (6), the log-likelihood is:

L(µ, σ2, ρ) = −1

2
(x −Hµ)TΣ−1(x−Hµ) − n

2
log(2π) − 1

2
log(|Σ|).

Its derivative w.r.t. µ is:

∂

∂µ

(

−1

2
xTΣ−1(x−Hµ) +

1

2
HTµΣ−1(x −Hµ)

)

=
∂

∂µ

(
1

2
xTΣ−1Hµ +

1

2
HTµΣ−1x− 1

2
HTµΣ−1Hµ

)

=
1

2
xTΣ−1H+

1

2
HTΣ−1x− µHTΣ−1H = HTΣ−1x− µHTΣ−1H

where in the last passage we have used the first equality in (13).435

Substituting Σ with σ2M , equating the derivative to 0 and using equations (11) and (12)
we get:.

µ =
HTΣ−1x

HTΣ−1H
=

n∑

i=1
xi

n
,

which is the traditional maximum likelihood estimator of the mean. It does not depend on σ2
436

or ρ.437
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Estimating σ2
438

Recalling that Σ = σ2M and thus |Σ| =
(
σ2
)n |M |, the log-likelihood is:

L(µ, σ2, ρ) = − 1

2σ2
(x−Hµ)TM−1(x−Hµ) − 1

2
log
(
(σ2)n|M |

)
− n

2
log(2π)

= − 1

2σ2
(x−Hµ)TM−1(x−Hµ) − 1

2
log
(
(σ2)n

)
− 1

2
log(|M |)− n

2
log(2π)

︸ ︷︷ ︸

not depending on σ2

.

Only the first two terms of the above expression are relevant for the derivative. Thus, by439

replacing µ with µ̂ and by equating to zero the derivative. we obtain440

∂

∂σ2
L(µ̂, σ2, ρ) =

1

2(σ2)2
(x−Hµ̂)TM−1(x−Hµ̂)− 1

2

1

(σ2)n
n(σ2)n−1 = 0

Finally, we get:

σ̄2 =
(x−Hµ̂)TM−1(x−Hµ̂)

n

The product (x−Hµ̂)T1×nM
−1
n×n(x−Hµ̂)n×1 yields a scalar. The trace of a scalar is the scalar

itself. The trace is invariant under cyclic permutations: tr(ABC) = tr(BCA). We thus have:

(x−Hµ̂)TM−1(x−Hµ̂) = tr[(x−Hµ̂)TM−1(x−Hµ̂)] =

tr[M−1(x−Hµ̂)(x−Hµ̂)T ] = tr(M−1Z)

where Z = (x−Hµ̂)(x −Hµ̂)T and so441

σ̄2 =
tr(M−1Z)

n
(14)

Thus σ̄2 depends on the correlation ρ through M .442

Useful lemmas for estimating ρ443

Lemma 1 The determinant of M is: (1 + (n− 1)ρ)(1 − ρ)n−1.444

Proof Consider the i-th and the j-th (i 6= j) row of matrix Mn×n, containing elements445

{mi1, mi2, . . . ,min} and {mj1, mj2, . . . ,mjn} respectively. The value of |M | does not change446

if we substitute each element of the i-th row as follows:447

mik ← mik + b ·mjk ∀k ∈ {1, 2, . . . , n}

where b is any scalar weight and in particular for b = 1. Then, consider the matrix N obtained
by adding the second row to the first row (b = 1), then the third row to the first row, ... then
the n-th row to the first row:

M =

∣
∣
∣
∣
∣
∣
∣

1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
. . . . . . . . . . . . . . .
ρ ρ ρ . . . 1

∣
∣
∣
∣
∣
∣
∣

N =

∣
∣
∣
∣
∣
∣
∣

1 + (n− 1)ρ 1 + (n− 1)ρ 1 + (n− 1)ρ . . . 1 + (n− 1)ρ
ρ 1 ρ . . . ρ
. . . . . . . . . . . . . . .
ρ ρ ρ . . . 1

∣
∣
∣
∣
∣
∣
∣

Consider now matrix O defined as follows:

O =

∣
∣
∣
∣
∣
∣
∣

1 1 1 . . . 1
ρ 1 ρ . . . ρ
. . . . . . . . . . . . . . .
ρ ρ ρ . . . 1

∣
∣
∣
∣
∣
∣
∣
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Then, |M | = |N | = (1 + (n− 1)ρ) · |O|. Consider now adding the elements of the first row of
|O| to the second row of |O|, using the scalar weight b=−ρ. Then add −ρ times the first row
to the third, to the fourth, ... to the n-th row of |O|. This yields matrix P , with |P | = |O|:

P =

∣
∣
∣
∣
∣
∣
∣

1 1 1 . . . 1
0 1− ρ 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1− ρ

∣
∣
∣
∣
∣
∣
∣

We have |P | = (1 − ρ)n−1 and thus:448

|M | = |N | = (1 + (n− 1)ρ)|O| = (1 + (n− 1)ρ)|P | = (1 + (n− 1)ρ)(1 − ρ)n−1

Lemma 2 The entries of M−1 are α = (1 + (n− 2)ρ)(1 − ρ)n−2 and β = −ρ(1 − ρ)n−2.449

Proof By definition of adjugate matrix, α is the determinant of each principal minor of M .450

Consider the principal minor obtained by removing the first row and the first column from451

M . This sub-matrix has the same structure of M , but with dimension (n − 1) × (n − 1). Its452

determinant is thus (1 + (n − 2)ρ)(1 − ρ)n−2, which gives the value of α. The same result is453

obtained considering any other principal minor.454

Parameter β corresponds instead to the determinant of any non-principal minor of M ,
multiplied by −1i+j , where i and j are respectively the index of the row and the column
removed from M to obtain the minor. Consider the minor obtained by removing the first row
and the second column:

Q =

∣
∣
∣
∣
∣
∣
∣

ρ ρ ρ . . . ρ
ρ 1 ρ . . . ρ
ρ ρ 1 . . . ρ
ρ . . . . . . ρ 1

∣
∣
∣
∣
∣
∣
∣

By subtracting the first row (i=1) from the second row (j=2), the first row from the third
row, the first row from the n-th row we get:

R =

∣
∣
∣
∣
∣
∣
∣

ρ ρ ρ . . . ρ
0 1− ρ 0 . . . 0
0 0 1− ρ . . . 0
0 . . . . . . 0 1− ρ

∣
∣
∣
∣
∣
∣
∣

whose determinant is (1− ρ)n−2ρ. The value of β is thus −ρ(1− ρ)n−2, the minus sign being455

due to the sum of i and j being an odd number. The same result is obtained considering any456

other principal minor.457

Estimating ρ458

The log-likelihood evaluated in µ̂, σ̄2 is:

L(ρ, µ, σ2)
∣
∣
µ̂,σ̄2 = − 1

2σ̄2
(x−Hµ̂)TM−1(x−Hµ̂)− n

2
log(2π) − 1

2
log
(
(σ̄2)n|M |

)

= − µ̂2

2σ̄2
Tr(M−1Z)− n

2
log(2π) − 1

2
log
(
(σ̄2)n|M |

)

= −nµ̂2

2
− n

2
log(2π)

︸ ︷︷ ︸

not depending on ρ

−1

2
log
(
(σ̄2)n|M |

)

where in the last passage we have exploited that σ̄2 = Tr(M−1Z)/n as shown in (14).459
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The derivative w.r.t. ρ is:

∂

∂ρ
L(µ, σ2, ρ)

∣
∣
∣
∣
µ̂,σ̄2

=
∂

∂ρ

(

−1

2
log((σ̄2)n|M |)

)

=
∂

∂ρ

(

−1

2
log

[(
Tr(M−1Z)

n

)n

|M |
])

=
∂

∂ρ

(

−1

2
n log

(
Tr(M−1Z)

n

)

− 1

2
log|M |

)

=
∂

∂ρ

(

−1

2
n log

(
Tr(M−1Z)

)
+

1

2
n log (n)− 1

2
log|M |

)

= −1

2

∂

∂ρ

(
n log

(
Tr(M−1Z)

))
− 1

2

∂

∂ρ
(log|M |)

= −1

2

n

Tr(M−1Z)

∂

∂ρ

(
Tr(M−1Z)

)
− 1

2

1

|M |
∂

∂ρ
(|M |)

Let us now consider Tr
(
M−1Z

)
= 1

|M |
Tr (Adj(M) Z) and define S = Adj(M) Z. Let us460

denote the difference between an observation and the maximum likelihood mean as δi = xi−µ̂i.461

The i-th diagonal element of S is462

sii = αδ2i + β




∑

i6=j

δiδj





Notice that δ2i +
(∑

i6=j δiδj
)

= 0, due to the following relation:

δ2i +




∑

i6=j

δiδj



 = δi



δi +
∑

i6=j

δj



 = δi

(
∑

i

xi − nµ̂

)

= 0

We can then rewrite sii = (α − β)δ2i . Summing over all the elements of the diagonal, we get:463

Tr
(
M−1Z

)
=

(α− β)
∑n

i=1 δ
2
i

|M |
=

(α− β)f(x)

|M |

where f(x) =
∑n

i=1 δ
2
i depends only on the data.464

By equating to zero the derivative of the log-likelihood w.r.t. ρ, we obtain:

0 = −1

2

n

Tr(M−1Z)

∂

∂ρ

(
Tr(M−1Z)

)
− 1

2

1

|M |
∂

∂ρ
(|M |)

=
n|M |

(α− β)f(x)

(

f(x)
∂

∂ρ
(α− β)

1

|M |
)

+
1

|M |
∂

∂ρ
(|M |)

= n(1− ρ)
∂

∂ρ

( 1

1− ρ

)

+
1

|M |
∂

∂ρ
(|M |)

where we have exploited that α− β = |M |/(1− ρ). Since

1

|M |
∂

∂ρ
(|M |) = − n(n− 1)ρ

(1 + (n− 1)ρ)(1 − ρ)

it can easily be shown that

0 = n(1− ρ)
∂

∂ρ

( 1

1− ρ

)

+
1

|M |
∂

∂ρ
(|M |) = n

(ρ− 1)(1 + (n− 1)ρ)

Thus, there is no value ρ ∈ [0, 1) which can make the derivative equal to zero and the derivative
is always decreasing in ρ. Thus the maximum likelihood estimate of ρ is ρ̂ = 0. For any fixed
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ρ, it can easily be shown that the Hessian of the likelihood w.r.t. µ, σ2 computed at µ̂, σ̄2 is
negative definite. In fact, we have that

∂2

∂µ2
L(µ, σ2, ρ)

∣
∣
∣
∣
µ̂,σ̄2

= −HTM−1HT ,
∂2

∂(σ2)2
L(µ, σ2, ρ)

∣
∣
∣
∣
µ̂,σ̄2

= −1

2

1

(σ̄2)2

and ∂2

∂σ2∂µ
L(µ, σ2, ρ)|µ̂,σ̄2 = 0. Thus, µ̂, σ̄2, ρ̂ is the maximum likelihood estimator. Since465

ρ̂ = 0, this estimator is not consistent whenever the true correlation is not zero (strictly466

positive).467

Proof of Theorem 2468

Let us define µ̂ = 1
n

n∑

i=1
xi. Then:

(x−Hµ)TΣ−1(x−Hµ) = (x−H(µ − µ̂+ µ̂))TΣ−1(x−H(µ − µ̂+ µ̂))

= (x−Hµ̂)TΣ−1(x−Hµ̂) + (µ− µ̂)HTΣ−1H(µ − µ̂).

Let us define ν = 1/σ2, then we can rewrite the likelihood as:

p(x|µ, ν, ρ) = νn/2−1/2

(2π)n/2
√
|M |

exp
(

−ν

2
(x−Hµ̂)TM−1(x−Hµ̂)

)

· ν1/2 exp
(

−ν

2
(µ − µ̂)HTM−1H(µ − µ̂)

)

(15)

Given ρ, the likelihood (15) has the structure of a Normal-Gamma distribution. Therefore, for469

the unknown parameters µ, ν, we consider the conjugate prior:470

p(µ|ν, ρ) = N(µ;µ0, k0/ν), p(ν|ρ) = G(ν; a, b), (16)

with parameters µ0, k0, a, b. By combining the likelihood and the prior, we obtain the joint:

p(µ, ν,x|ρ) = p(x|µ, ν, ρ)p(µ|ν, ρ)p(ν|ρ)

∝ ν
n+2a

2
−1

(2π)n/2
√
|M |

exp
(

−ν

2
(x−Hµ̂)TM−1(x−Hµ̂)− bν

)

· ν 1
2 exp

(

−ν

2
(µ − µ̂)2HTM−1H− ν

2k0
(µ − µ0)

2

)

.

Let us define the posterior mean

µ̃ =

(

HTM−1H+
1

k0

)−1 (

HTM−1x+
µ0

k0

)

,

then

(µ − µ̂)2HTM−1H+ 1
k0

(µ− µ0)2

= µ2
(

HTM−1H+ 1
k0

)

− 2µ
(

HTM−1Hµ̂+ µ0

k0

)

+ µ̂2HTM−1H+
µ2
0

k0

= µ2
(

HTM−1H+ 1
k0

)

− 2µ
(

HTM−1x+ µ0

k0

)

+ µ̂2HTM−1H+
µ2
0

k0

= (µ− µ̃)2
(

HTM−1H+ 1
k0

)

+ µ̂2HTM−1H+
µ2
0

k0
− µ̃2

(

HTM−1H+ 1
k0

)

.

Thus, we can rewrite the joint as p(µ, ν,x|ρ) ∝ ℓ1ℓ2 with

ℓ1 = ν1/2 exp
(

− ν
2
(µ− µ̃)2

(

HTM−1H+ 1
k0

))

∝ N

(

µ; µ̃, 1
ν

(

HTM−1H+ 1
k0

)−1
)
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and

ℓ2 =
ν

n+2a
2

−1

(2π)n/2
√
|M |

exp

(

− ν
2

(

(x −Hµ̂)TM−1(x−Hµ̂) + 2b

−µ̂2HTM−1H− µ2
0

k0
+ µ̃2

(

HTM−1H+ 1
k0

))
)

∝ 1

(2π)n/2
√

|M |
G(ν; ã, b̃)

Γ (ã)

β̃ã

with ã = a+ n
2

and

b̃ = 1
2

(

(x−Hµ̂)TM−1(x−Hµ̂) + 2b− µ̂2HTM−1H− µ2
0

k0
+ µ̃2

(

HTM−1H + 1
k0

))

.

Hence, it follows that the posterior is

p(µ, ν|x, ρ) = N

(

µ; µ̃,
1

ν

(

HTM−1H+
1

k0

)−1
)

G(ν; ã, b̃).

The marginal posterior of µ can be obtained by marginalizing out ν:

p(µ|x, ρ) ∝ 1

(2π)n/2
√
|M |

(

(µ− µ̃)2
(

HTM−1H+
1

k0

)

+ 2b̃

)−(2ã+1)/2

∝ St

(

µ; 2ã, µ̃,
b̃

ã

(

HTM−1H+
1

k0

)−1
)

. (17)

Proof of Corollary 1471

Let us consider the matching prior µ0 = 0, k0 →∞, a = −1/2, b = 0, then (17) becomes

p(µ|x, ρ) ∝ St

(

µ;n− 1, µ̂,
(x−Hµ̂)TM−1(x−Hµ̂)

(n− 1) (HTM−1H)

)

. (18)

By exploiting (x − Hµ̂)TM−1(x − Hµ̂) = Tr(M−1Z) = α−β
|M |

∑n
i=1 δi and HTM−1H =

(αn+ βn(n− 1))/|M | , then we have that

(x−Hµ̂)TM−1(x−Hµ̂)

(n− 1) (HTM−1H)
=

(α − β)
∑n

i=1 δi

(n− 1)(αn + βn(n− 1))
=

1

n

(α− β)

(α+ β(n− 1))
σ̂2,

where σ̂2 = 1
n−1

∑n
i=1 δi. Hence, one gets

1

n

(α − β)

(α+ β(n− 1))
σ̂2 =

1

n

1 + (n− 1)ρ

1− ρ
σ̂2 =

(
1

n
+

ρ

1− ρ

)

σ̂2,

which ends the proof.472


