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Abstract— Many estimation problems in data fusion involve
multiple parameters that can be related in some way by the
structure of the problem. This implies that a joint probabilistic
model for these parameters should reflect this dependence.
In parametric estimation, a Bayesian way to account for this
possible dependence is to use hierarchical models, in which
data depends on hidden parameters that in turn depend on
hyperprior parameters. An issue in this analysis is how to
choose the hyperprior in case of lack of prior information.
This paper focuses on parametric estimation problems involving
multinomial-Dirichlet models and presents a model of prior
ignorance for the hyperparameters. This model consists to a
set of Dirichlet distributions that expresses a condition of prior
ignorance. We analyse the theoretical properties of this model
and we apply it to practical fusion problems: (i) the estimate
of the packet drop rate in a centralized sensor network; (ii)
the estimate of the transition probabilities for a multiple-model
algorithm.
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multinomial-dirichlet distribution, Markov-chain.

I. INTRODUCTION

Many estimation problems in data fusion involve multiple

parameters that can be related in some way by the structure of

the problem. This implies that a joint probabilistic model for

these parameters should reflect this dependence. For example,

in a centralized sensor networks, it is often important to

estimate the reliability of the communication channel, i.e., the

probability θi that a packed sent from sensor i to the fusion

node is received (this information can be used for instance

to devise robust smart communication strategies, e.g., [1]).

In this case it is reasonable to expect that the estimates of

θi should be related to each other (if the deploying area

of the network is small, we expect that the communication

channels between the fusion node and each sensor node have

similar properties). We can model this dependence by using

a prior distribution in which the θi’s are viewed as a sample

from a common population distribution. For the pair sensor

i-fusion node the observed data yi (a binary variable that is

one if a packet is received and 0 is it is lost) are used to

estimate θi. This problem can be modelled hierarchically with

a model where the observable outcomes depend on the θi’s
which, in turn, depend probabilistically on further parameters,

called hyperparameters. This hierarchy allows to account for

the dependence among the θi. A hierarchical model has also

another advantage. Since the θi are estimated globally, the

measurements relative to the communication channel from

node i to the fusion node also contribute to the estimate of θj ,

i.e., the packet drop rate for the communication channel from

node j to the fusion node. Thus, we can produce a reliable

estimate of θj even in the case we have very few measurements

for the communication channel from node j to the fusion node

(because indireclty we use the measurements from the other

channels).

In this example, data are categorical (more specifically

binary) variables and the parameters θi for i = 1, . . . , p are

probabilities. In this context, it is natural to consider a multi-

nomial likelihood as probabilistic model for the observations

yij given the parameters θi and a Dirichlet distribution for

the θi’s given the hyperparameters (i.e., the parameters of the

Dirichlet distribution). Because multinomial and Dirichlet are

conjugate models, this choice simplifies the computations. To

complete the hierarchical model we must select a prior on the

hyperparameters.

In case of lack of prior information, a common approach in

Bayesian analysis is to select a noninformative distribution

as prior for the hyperparameters: for instance a uniform

distribution on the hyperparameter space.1 However, a uniform

distribution does not model ignorance but indifference, in the

sense that all the elements of the hyperparameter space have

the same probability under a uniform distribution. Conversely,

ignorance means that we do not know anything about the

hyperparameters neither their distribution. The uniform can

be one of the possible distributions for the hyperparameters

but not the only one.

Since a single probability measure cannot model prior igno-

rance, the idea proposed in Bayesian robustness [2] is to use

a set of probability measures. Examples are: ǫ-contamination

models [2], [3]; restricted ǫ-contamination models [4]; in-

tervals of measures [3], [5]; the density ratio class [5], [6],

etc. These are neighbourhood models, i.e., the set of all

distributions that are close (w.r.t. some criterion) to an ideal

distribution(the “centre” of the set). Note that this approach

is not suitable in case of total lack of prior information,

because in this case there is no ideal prior distribution, since

no single prior distribution can adequately model the lack of

prior information. In case of total lack of prior information,

Walley [6] has instead proposed the use of the so-called “near-

ignorance” priors. In choosing a set of probability measures to

model total prior ignorance, the main aim is to generate lower

1If the hyperparameter space is unbounded, then the noninformative distri-
bution is in general improper.



and upper expectations with the property that E(g) = inf g
and E(g) = sup g for a specific class of real-valued functions

g of interest in the analysis, e.g., mean, variance, credible

interval etc. This means that the only information about E(g)
is that it belongs to [inf g, sup g], which is equivalent to state

a condition of complete prior ignorance about the value of

g (this is the reason why we said that a single, however

noninformative, prior cannot model prior ignorance). However,

such condition of prior ignorance can only be imposed on a

subset of the possible functions g (for this reason the model

is called near-ignorance prior) otherwise it produces vacuous

posterior inferences [6, Ch. 5]. This means that a-posteriori

we still satisfy E(g|data) = E(g) = inf g and E(g|data) =
E(g) = sup g, i.e., we do not learn from data.2 Based on

this idea, Walley [6], [7] has developed near-ignorance prior

models for various statistical models. For the Multinomial-

Dirichlet conjugate distribution, Walley has derived a model of

prior near-ignorance called Imprecise Dirichlet model (IDM).

Before stating the goal of this paper, we briefly introduce IDM

and explain what is a model of prior near-ignorance

A. Imprecise Dirichlet Model

The Imprecise Dirichlet Model (IDM) has been introduced

by Walley [8] to draw inferences about the probability distri-

bution of a categorical variable. Consider a variable Y taking

values on a finite set Y of cardinality m and assume that

we have a sample of size N of independent and identically

distributed outcomes of Y . Our aim is to estimate the proba-

bilities θi for i = 1, . . . ,m, that is the probability that Y takes

the i-th value. In other words, we want to estimate a vector

on the m-dimensional simplex:

∆m(p) =







(θ1, . . . , θm) : θi ≥ 0,

m
∑

j=1

θj = 1







. (1)

A Bayesian approach consists in assuming a categorical dis-

tribution for the data Ca(y|θ1, . . . , θm), i.e.:

Ca(y|θ1, . . . , θm) ∝ θi,

if the category i is observed, i.e., if y = yi. If there are N i.i.d.

observations, then the likelihood is a multinomial distribution

(a product of categorical distributions), i.e.:

M(data|θ1, . . . , θm) ∝ θn1

1 · · · θnm

m ,

where ni is the number of observations for the category i and
∑m

i=1 ni = N . As prior distribution for the vector of variables

(θ1, . . . , θm), it is common to assume a Dirichlet distribution

Γ(s)
∏m

i=1 Γ(sti)

m
∏

i=1

θsti−1
i ,

2Note that the only model that satisfies prior ignorance w.r.t. all the
functions g is the set of all probability distributions. Since this set is equivalent
to the set of Dirac’s deltas (i.e., they produce the same lower and upper
expectations), the set of posteriors is again the set of all Dirac’s deltas and,
thus, we do not learn from data.

where Γ(·) is the Gamma function, s > 0 is the prior strength

and ti > 0 (with
∑m

i=1 ti = 1) is the prior mean of θi.
3 The

goal is to compute the posterior expectation of θi given the

measurements. Note that the Dirichlet distribution depends on

the parameters s, a positive real value, and (t1, . . . , tm), a

vector of positive real numbers which satisfy
∑m

i=1 ti = 1.

In case of lack of prior information, an issue in Bayesian

analysis is how to choose these parameters to reflect this

condition of prior ignorance. To address this issue, Walley

has proposed IDM, which considers the set of all possible

Dirichlet distributions in the simplex ∆m(p):
{

Γ(s)
∏m

i=1 Γ(sti)

m
∏

i=1

θsti−1
i : ti > 0,

m
∑

i=1

ti = 1

}

. (2)

For a fixed value s, this is the set of all Dirichlet distributions

obtained by letting (t1, . . . , tm) to freely vary in ∆m(t). Wal-

ley has proven that IDM is a model of prior “near-ignorance”

in the sense that it provides vacuous prior inferences for the

probabilities P (Y = yi) for i = 1, . . . ,m. In fact, since

P (Y = yi) = E[θi] = ti, and ti is free to vary in ∆m(t),
this means that P (Y = yi) is vacuous, which implies:

E[θi] = 0, E[θi] = 1. (3)

This is a condition of prior ignorance on the mean. Thus, this

means that the prior mean of θi is unknown, but this does not

hold for all functions of θ1, . . . , θm, for example

E[θiθj ] = 0, E[θiθj ] =
1

4

s

s+ 1
, (4)

while a prior ignorance model for θiθj would have upper ex-

pectation equal to 1/4. Walley has shown that prior ignorance

can only be imposed on a subset of the possible functions of

θ1, . . . , θm otherwise it produces vacuous posterior inferences

[6, Ch. 5], which means that we do not learn from data

(for this reason the model is called near-ignorance). However,

near-ignorance guarantees prior ignorance for many of the

inferences of interest in parametric estimation (e.g., mean,

cumulative distribution etc.) and, at the same time, allows to

learn from data and converges to the “truth” (be consistent

in the terminology of Bayesian asymptotic analysis) at the

increase of the number of observations.4 Walley [9] has also

proven that, besides near-ignorance, IDM satisfies several

other desiderata for a model of prior ignorance.

Symmetry principle (SP): if we are ignorant a priori about θi,
then we have no reason to favour one possible outcome of Y
to another, and therefore our probability model on Y should

be symmetric.

Embedding principle (EP): for each event A ⊂ Y , the prob-

ability assigned to A should not depend on the possibility

space Y in which A is embedded. In particular, the probability

assigned a priori to the event A should be invariant w.r.t.

refinements and coarsenings of Y .

3Commonly the Dirichlet parameters are denoted as αi, which are equal
to sti in our notation.

4A full model of prior ignorance cannot learn from data [9] as explained
in the introduction.



Near-ignorance, SP and EP hold for any model on the simplex

which satisfies E[θi] = ti for i = 1, . . . ,m with (t1, . . . , tm)
are free to vary in ∆m(t) [9]. In fact, since P (Y = Yi) =
E[θi] = ti, this implies that the probability of the event A is:

P (A) =
∑

yi∈A

P (Y = yi) =
∑

i: yi∈A

ti,

and since ti are free to vary in ∆m(t), it follows that P (A) = 0
and P (A) = 1, i.e., the lower and upper probabilities of the

event A do not depend on Y . The uniform distribution satisfies

SP but not EP since P (Y = yi) = 1/|Y|, where |Y| denotes

the cardinality of |Y|.5

Representation Invariance Principle (RIP): for each event

A ⊂ Y , the posterior inferences of A should be invariant

w.r.t. refinements and coarsenings of Y .

The posterior mean of θi relative to a Multinomial-Dirichlet

conjugate model are:

E[θi|n1, . . . , nm] =
ni + sti
N + s

, (5)

where ni is the number of observations for the i-th category

and N =
∑m

i=1 ni. Hence, the lower and upper posterior mean

derived from IDM can simply be obtained by

ni+sti
N+s

ti→0
= ni

N+s
= E[θi|n1, . . . , nm],

ni+sti
N+s

ti→1
= ni+s

N+s
= E[θi|n1, . . . , nm].

(6)

Hence, since

P (A|data) =
∑

yi∈A

P (Y = yi|data) =
∑

i: yi∈A

ni + sti
N + s

,

the lower P (A|data) =
∑

i: yi∈A ni/(N + s) and upper

P (A|data) =
∑

i: yi∈A(ni+ s)/(N+ s) posterior probability

of A do not depend on refinements and coarsenings of Y .

IDM thus satisfies RIP. Observe that the uniform distribution

(i.e., s = |Y| and ti = 1/|Y|) does not, since P (A|data) =
∑

i: yi∈A(ni+1)/(N+|Y|). In general, RIP holds if the lower

and upper posterior expectations of the event A do not depend

on the number of categories m [9].

Learning/Convergence Principle (LCP): for each event

A ⊂ Y , there exists N such that for N ≥ N the poste-

rior inferences about A should not be vacuous. Moreover,

for N → ∞, the posterior inferences should converge to

limN→∞ nA/N , where nA is the number of occurrences of

the event A in the N observations [10].

IDM satisfies learning and convergence because

P (A|data) =
∑

yi∈A

P (Y = yi|data) =
∑

i: yi∈A

ni + sti
N + s

→
ni

N

for N → ∞ and, thus, the effect of the prior vanishes at the

increase of the number of observations.

5Consider a bag which includes red and blue balls. In a condition of prior
ignorance our probability that the next drawn is red should not depend on the
way we organize the possibility space, for instance alternatively as red, light
blue and dark blue. If we use the uniform distribution this probability is 1/2
for the first case and 1/3 for the second. EP is not satisfied.

Observe that IDM satisfies all the above principles and also

the coherence (CP) and likelihood (LP) principles [8], [11].

Another important characteristic of the IDM is its computa-

tional tractability, which follows by the conjugacy between the

categorical (multinomial) and Dirichlet distributions for i.i.d.

observations.

B. Contribution of the paper

Consider now the case in which we have categorical obser-

vations yi for each group (population) i = 1, . . . , p, i.e., each

yi is a vector, i.e., yi = (yi1, . . . , yim) being m the number of

categories and where yij = 1 if the j-th category is observed

in the group i and 0 otherwise. We assume that we have a

sample of size ni of independent and identically distributed

outcomes of yi for each group (population) i = 1, . . . , p
and a total of N =

∑p
i=1 ni observations. In this case the

population parameter θi is also a vector θi = (θi1, . . . , θim)
of category probabilities which satisfies

∑

j θij = 1. We

assume that yi is distributed according to a categorical (multi-

nomial) distribution with parameter θi, i.e., the likelihood is

M(yi|θi) a multinomial distribution. By conjugacy we further

assume that θi is generated from a Dirichlet distribution

Dir(θi, α1, . . . , αm) with parameters αj > 0. The quantity

n0 =
∑

k αk represents the number of pseudo-observations

(prior sample size or prior strength) and y0j = αj/
∑

k αk

represents the j-th prior pseudo-observation. To complete the

hierarchical model we need to specify a prior distribution over

the prior parameters n0,y0 > 0 with y0 = (y01, . . . , ymj). In

this paper, we assume that n0 is fixed and, thus, we place a

prior only on y0. The aim of this paper is to extend IDM

to hierarchical models to obtain an Imprecise Hierarchical

Dirichlet model (IHDM). In the next sections, we will derive

IHDM and we investigate its properties.

II. IMPRECISE HIERARCHICAL DIRICHLET MODEL

The quantity n0 =
∑

k αk is assumed to be known thus,

to complete the hierarchical model, only a prior model on y0

must be chosen. By the properties of the Multinomial-Dirichlet

model, it follows that [12]

p
∏

i=1

M(yi|θi)Dir(θi, n0y01, . . . , n0y0m)

∝
p
∏

i=1

Γ(n0)
m
∏

j=1

θ
nij+n0y0j−1
ij

Γ(n0y0j)
,

(7)

where nij is the number of time the category j in the group i
has been observed. We can now marginalize θi in (7). From

the property of the Multinomial-Dirichlet model, it follows

that the resulting PDF is [12]:

p(y1, . . . ,yp|y0)

=

∫ p
∏

i=1

M(yi|θi)Dir(θi, n0y01, . . . , n0y0m)dθ1 . . . dθp

∝
p
∏

i=1

∏m

j=1 Γ(n0y0j + nij)

Γ(n0 + ni)

Γ(n0)
∏m

j=1 Γ(n0y0j)
.

(8)



By exploiting the following properties of the Gamma function,

Γ(n0y0j + nij) =
nij
∏

l=1

(n0y0j + l − 1)Γ(n0y0j),

Γ(n0 + ni) =
ni
∏

l=1

(n0 + l− 1)Γ(n0),

then (8) can be rewritten as:

p(y1, . . . ,yp|y0) ∝
p
∏

i=1

∏m

j=1

∏nij

l=1(n0y0j + l − 1)
∏ni

l=1(n0 + l − 1)
. (9)

Since y0 can vary in the simplex Y0, we adopt a Dirichlet

distribution as prior on y0:

Dir(y0; st1, . . . , stm) ∝
m
∏

j=1

y
stj−1
0j , (10)

where s > 0 is the hyper-prior number of pseudo-counts

and t = (t1, . . . , tm) the hyper-prior vector of pseudo-

observations. When we are in a condition of prior ignorance

about the values of y0, we can choose the parameters s and

t to reflect this state of prior ignorance by letting t to vary in

the simplex

T =

{

tj > 0, j = 1, . . . ,m,
∑m

j=1 tj = 1,
(11)

and s to vary in the interval [s, s] with 0 < s ≤ s < ∞. This

means that we adopt an Imprecise Dirichlet Model over the

vector of parameters y0, i.e.,

{Dir(y0, st1, . . . , stm) : s ∈ [s, s], t ∈ T } . (12)

This is a model of ignorance about y0 since E[y0j ] = tj and

thus:

E[y0j ] = 0, E[y0j ] = 1, ∀j = 1, . . . ,m,

where E,E denote the lower and, respectively upper expecta-

tion computed w.r.t. the set of priors in (12). Our information

about the mean of y0 is vacuous, in fact we only known that

it belongs to Y0.

Our aim is to derive meaningfull posterior inferences about

the unknown y0 by exploiting the information in the likelihood

(9). Let g denote a map from Y0 to R, we are thus interested

to compute

E[g|y1, . . . ,yp] = inf
t∈T , s∈[s,s]

E[g|y1, . . . ,yp],

E[g|y1, . . . ,yp] = sup
t∈T , s∈[s,s]

E[g|y1, . . . ,yp]

where E[g|y1, . . . ,yp] denotes the posterior expectation of g
w.r.t. the posterior p(y0|y1, . . . ,yp) obtained by combining

(9) and (10) by Bayes’ rule. Typical functions of interest are

g(y0) = y0j and g(y0) = IA(y0) where A is some measurable

subset of Y0 and IA is the indicator function on A. The

following lemma provides conditions which ensure that the

lower and upper posterior expectation of real-valued functions

g of y0 are not vacuous a-posteriori.

Lemma 1. The set of posterior PDFs p(y0|y1, . . . ,yp) ob-

tained by combining (9) and (10) by Bayes’ rule are all proper

provided that

∀j = 1, . . . ,m, max
i=1,...,p

nij ≥ 1, (13)

which means that it is necessary that there is at least one

observation for each category j. �

Proof: Consider the likelihood (9) and assume without loss of

generality that n1j ≥ 1 for j = 1, . . . ,m and nij = 0 for

i > 1 and j = 1, . . . ,m, then (9) becomes:

p(y1, . . . ,yp|y0) ∝

∏m
j=1

∏n1j

l=1(n0y0j + l− 1)
∏n1

l=1(n0 + l− 1)

=

∏m

j=1 n0y0j
∏n1j

l=2(n0y0j + l − 1)
∏n1

l=1(n0 + l − 1)
,

(14)

where in the last equality we have exploited the assumption

n1j ≥ 1. By multiplying the likelihood (14) for the prior

Dirichlet prior (10), we obtain the joint
∏m

j=1 n0y0j
∏n1j

l=2(n0y0j + l − 1)
∏n1

l=1(n0 + l − 1)

m
∏

j=1

y
stj−1
0j

∝

∏n1j

l=2(n0y0j + l− 1)
∏n1

l=1(n0 + l − 1)

m
∏

j=1

y
stj+1−1
0j

=

∏n1j

l=2(n0y0j + l− 1)
∏n1

l=1(n0 + l − 1)
Dir(y0, st1 + 1, . . . , stm + 1),

(15)

except for a normalization constant. Now Dir(y0, st1 +
1, . . . , stm + 1) is always proper for all values of t in the

simplex T . Thus, the set of posteriors PDF of y0 given the

observations includes only proper PDFs under the assumptions

of the Theorem. �

This lemma ensures that the learning/convergence principle

holds for the IHDM. In fact, assume that more observations are

available, then we can use the set of posteriors in Lemma 1 as

new set of priors to compute the set of posteriors that accounts

for both the new observations and the ones in (13). Then,

because of the Bernstein-von Mises Theorem of convergence

[13, Sec. 20.1], if we start with a prior that is proper and

positive in the parameter space then we converge to the true

value of the parameter for N → ∞.6

Lemma 1 gives conditions to guarantee that the lower and

upper posterior inferences of real-valued functions g of y0 are

not vacuous. We have derived these conditions analytically.

However, we cannot derive a closed expression for these lower

and upper posterior inferences, because in

p(y0|y1, . . . ,yp)

=

p∏
i=1

∏m

j=1

∏nij

l=1
(n0y0j + l − 1)∏ni

l=1
(n0 + l − 1)

Dir(y0, st1, . . . , stm)

∫ ∏p

i=1

∏m

j=1

∏nij

l=1
(n0y0j + l − 1)∏ni

l=1
(n0 + l − 1)

Dir(y0, st1, . . . , stm)dy0

6The likelihood must be satisfy some basic property for the Theorem to
hold, i.e., twice differentiable, continuous etc., see [13, Sec. 20.1].



we cannot find an analytical expression for the denominator.

However, the following theorem states which are the values

of s and t for which we obtain the lower and upper poste-

rior mean of y0. We can thus select these values and then

numerically solve
∫

y0p(y0|y1, . . . ,yp)dy0,

to obtain the lower and upper posterior mean.

Theorem 1. Assume that the condition (13) holds. The lower

and upper posterior expectation of y0j are obtained for s = s,

tj = 0 and, respectively, tj = 1. �

Proof: This follows by noticing that g = y0j is monotone

increasing in (0, 1) and the hyperprior
m
∏

j=1

y
stj−1
0j puts all the

mass in y0j = 0 for tj = 0 and, respectively, y0j = 1 for

tj = 1. The mass has its highest value for s = s. �

A. Estimate of θ

In the previous section, we have derived the lower and upper

prior and posterior expectations of y0. However, we are also

interested in computing the lower and upper prior and posterior

expectation of the components of θ. For the prior, notice that

E[θi|y0] =

∫

θiDir(θi, n0y01, . . . , n0y0m)dθi = y0,

this follows from the properties of the Dirichlet distribution

and, thus.

E[θi] = E[E[θi|y0]] =

∫

y0Dir(y0, st1, . . . , stm)dy0 = t.

Then, IHDM is also a model of prior near-ignorance for θi,

since

E[θij ] = min tj = 0, E[θij ] = max tj = 1.

Furthermore, since

P [yij |θi] = θij ,

this follows from the property of the categorical distribution,

and E[θij |y0] = y0j as observed above, it follows that IHDM

also satisfies the Embedding and Symmetry principle defined

in Section I-A. In fact, a-priori

P [yij ] = E[E[P [yij |θi]|y0]] = tj ,

which is free to vary in the simplex.

A-posterior by Bayes’ rule, one has that

p(θ|y0,y1, . . . ,yp)

=
p
∏

i=1

Dir(θi, n0y01 + yi1, . . . , n0y0m + yim),

and, thus,

p(θ|y1, . . . ,yp) =

∫

p(θ|y0,y1, . . . ,yp)p(y0|y1, . . . ,yp)dy0,

which is the posterior of θ. Since

∫

θijDir(θi, n0y01 + yi1, . . . , n0y0m + yim) =
n0y0j + nij

n0 + ni

,

(16)

we can derive the following result.

Corollary 1. It holds that

E[θij |y1, . . . ,yp]

= E

[

n0y0j + nij

n0 + ni

∣

∣

∣

∣

y1, . . . ,yp

]

n0Ey0
[y0j|y1, . . . ,yp] + nij

n0 + ni

.

(17)

where E[y0j |y1, . . . ,yp] is computed in Theorem 1. A similar

expression holds for the upper. �

Proof: The result follows straightforwardly from (16). �

From (17) it can be noticed that for ni → ∞,

E[θij |y1, . . . ,yp] →
nij

ni
and thus it satisfies the convergence

principle defined in Section I-A. It can be shown by a

counterexample that RIP does not hold. Consider for instance

the case p = 2, nij = 1 for i = 1, 2 and j = 1, 2, 3, i.e.,

m = 3, in this case E[y01|y1,y2] ≈ 0.295. If we reduce the

number of categories to m = 2, by putting together the last

two categories, i.e., nij = 1 for i = 1, 2, j = 1 and nij = 2
for i = 1, 2, j = 2, we instead obtain E[y01|y1,y2] ≈ 0.354.

The lower means are different. This means that the lower

expectation in (17) depends on the number of categories m.

This can be also understood by looking at the expression of

p(y0|y1, . . . ,yp).

III. DIFFERENCES WITH THE HIERARCHICAL BAYESIAN

APPROACH

In the previous section we have seen that, conversely to the

Bayesian hierarchical model (based on the uniform prior or

any other single prior), the IHDM is a model of prior igno-

rance. This means that it allows us to start from a very weak

information on the parameter of interest. Furthermore, since

it satisfies the convergence principle, it allows to converge

to the truth at the increase of the evidence. It also satisfies

the SP and EP, which cannot both be satisfied by a prior

model based on a single density function. Any single prior

density contains substantial information about the parameter of

interest, because it assigns precise probabilities to hypotheses

about this parameter and these have strong implications in the

decisions. Conversely, a prior ignorance model starts from a

vacuous model, which means that we are not assessing any

precise probability to hypotheses. If we are prior ignorant,

we should thus use IHDM. In the next section, we will show

that the posterior inferences in hierarchical model are very

sensitive to the choice of the prior hyperparameter t. This

shows, also from a sensitivity analysis point of view, that in

case of prior ignorance we should use IHDM instead of a

Bayesian hierarchical model based on a single prior density

(a precise choice of t).



IV. APPLICATION: PACKET DROP RATE ESTIMATION

Here we consider a simple example of hierarchical model.

Consider a collection of sensors observing a single phenomena

through noisy measurements. The sensors collaborate by shar-

ing information with a central node (fusion node) that performs

further computations about the phenomena of interest. The

messages are exchanged through a wireless channel which is

subject to random packet losses. Let yi be a binary variable

which is equal to 1 if the fusion node has received any packet

from sensor i and zero otherwise.

A probabilistic way to account for packet drops is by

modelling the transmission channel as a discrete-time Markov

chain with two states, loss (L) and no-loss (N), and transition

probabilities p(L|L) = θai1, p(N |L) = θai2 = 1 − θai1
and p(N |N) = θbi1, p(L|N) = 1 − θbi1. We assume that

the transition probabilities are different for each pair fusion

node-sensor. However, since the sensors are deployed in a

small area, the probabilities θai1 for each pair sensor i-fusion

node must be in somehow related (same for θbi1). We use a

hierarchical model to account for this possible dependence.

Assume for simplicity that there are only two sensors and

that each sensor-fusion node performs a transmission test to

estimate the parameters θai1, θ
b
i1. For the pair sensor 1 - fusion

node, the following list reports the result of each transmission

test (1 means that the packet was received, 0 that was lost).

Data1 = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 1, 0, 0, 0,
1, 1, 0, 0, 0, 0, 0, 1, 1, 1},

the data are to be read consecutively. This is the result for

sensor 2:

Data2 = {1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 1, 0, 1, 0, 0,
1, 1, 0, 1, 1, 1, 1, 1, 0, 0}.

Our goal is to estimate θai1, θ
b
i1 for i = 1, 2. We assume θai1

and θbi1 are independent for i = 1, 2.

We start to estimate θai1 for i = 1, 2. From the two datasets

we derive that

na
11 = 7, na

12 = 3, na
21 = 4, na

22 = 6,

where na
11 (na

21) is the number of transitions from 0 to 0 for

sensor 1 (2) and na
12 (na

22) is the number of transitions from

0 to 1 for sensor 1 (2).

We assume that n0 = 1, s = s = 4 and, thus, our aim is

to estimate y0.7 Figure 1 shows the two posterior densities of

y0 for the two extreme cases t = 0 (blue) and t = 1 (red).

Observe that the choice of t ∈ (0, 1) has not a negligible effect

on the posterior of y0. The lower and upper densities of y0
obtained for t = 0 and t = 1 are relatively far apart. This can

also be noticed from the lower and upper posterior mean of

y0 which are

E[ya01|Data1, Data2] = 0.28, E[ya01|Data1, Data2] = 0.75,

7In the binary case, y0 has only one component.

Fig. 1. Histogram of the posterior distribution of y0 for the two extreme
cases t = 0 (blue) and t = 1 (red). 100000 samples have been generated.

meaning that the posterior mean of y0 varies in [0.27, 0.75]
at the varying of t in (0, 1). We can even compute the robust

highest posterior density (HPD) credible interval for y0, which

is defined as the minimum length interval that has lower

probability 100(1− α)% of including y0, i.e.,

min
b−a: [a,b]⊆(0,1)

E[I[a,b]|Data1, Data2]− (1− α) = 0 (18)

The 95% robust HPD for y0 is equal to [0.04, 0.96]. Observe

that the 95% HPD w.r.t. the prior obtained for t = 0.5 and

s = 2 (a uniform distribution on y0) is [0.19, 0.81]. Thus,

in this case, the sensitivity of the posterior inferences to the

choice of t is not negligible.

We can also compute the posterior distributions of θa11, θ
a
21

for the extreme values t = 0 and t = 1. By applying Corollary

1, it can be derived that

E[θa11|Data1, Data2] = 0.58, E[θa11|Data1, Data2] = 0.71,

and

E[θa21|Data1, Data2] = 0.36, E[θa21|Data1, Data2] = 0.50.

Note that E[θai1|Data1, Data2] is equal to the posterior prob-

ability P (L|L) for sensor i. Thus, for sensor 1, one has that

P (L|L) = 0.58, P (L|L) = 0.71, which are the lower and

upper probabilities of P (L|L).
Similar computations can be performed for θb11, θ

b
21 with

nb
11 = 16, nb

12 = 3, nb
21 = 12, nb

22 = 14.

This time we get

E[ya01|Data1, Data2] = 0.34, E[ya01|Data1, Data2] = 0.8,

the two posterior densities of y0 for the two extreme cases

t = 0 (blue) and t = 1 (red) is shown in Figure 2. We obtain

E[θb11|Data1, Data2] = 0.75, E[θb11|Data1, Data2] = 0.83,

and

E[θb21|Data1, Data2] = 0.74, E[θb21|Data1, Data2] = 0.84.

Hence, we obtain the following matrix of imprecise probabil-

ities for the Markov chain of the channel between sensor 1
and the fusion node:
[

p(L|L) p(N |L)
p(L|N) p(N |N)

]

∈

[

[0.58, 0.71] [0.39, 0.42]
[0.17, 0.25] [0.75, 0.83]

]



Fig. 2. Histogram of the posterior distribution of y0 for the two extreme
cases t = 0 (blue) and t = 1 (red). 100000 samples have been generated.

and for the Markov chain of the channel between sensor 2 and

the fusion node:
[

p(L|L) p(N |L)
p(L|N) p(N |N)

]

∈

[

[0.36, 0.50] [0.50, 0.64]
[0.16, 0.24] [0.74, 0.84]

]

Note that p(N |L) = 1− p(L|L) and p(L|N) = 1− p(N |N).
These matrices lead to an Imprecise Markov Chain, i.e., a

Markov chain in which the transition probabilities can vary

inside a set of probability measures.

It is interesting to evaluate what happens at the increasing

of the number of observations and on the number of sensors.

Consider again the estimate of θai1 for i = 1, 2, but this time

assume that

na
11 = 70, na

12 = 30, na
21 = 40, na

22 = 60,

i.e., we have increased the number of observation but kept the

ratio constant, i.e., na
11/n

a
12 = 7/3 and na

21/n
a
22 = 4/6. The

lower and upper posterior mean of ya0 are

E[ya01|Data1, Data2] = 0.28, E[ya01|Data1, Data2] = 0.74.

It can be noticed that the increase of the number of obser-

vations has almost no effect on the estimate of ya0 , while it

shrinks the imprecision (i.e., the difference between the upper

and the lower expectation) of θa, i.e.,

E[θa11|Data1, Data2] = 0.68, E[θa11|Data1, Data2] = 0.70,

and

E[θa21|Data1, Data2] = 0.58, E[θa21|Data1, Data2] = 0.60.

Note that the lower and upper expectations almost coincide.

To have a similar effect on the estimate of ya0 we must increase

the number of sensors, for instance

na
11 = 7, na

12 = 3, na
21 = 4, na

22 = 6,
na
31 = 7, na

32 = 3, na
41 = 7, na

42 = 3,
na
51 = 7, na

52 = 3, na
61 = 7, na

62 = 3.

Note that the observations of packet drops for the third-sixth

channels agree with the ones for the first channel. The lower

and upper posterior mean of ya0 in this case are

E[ya01|Data1, Data2] = 0.44, E[ya01|Data1, Data2] = 0.66.

Thus, the information from the additional four sensors has

decreased the imprecision in the estimate of ya0 . Figure 3 shows

Fig. 3. Histogram of the posterior distribution of y0 for the two extreme
cases t = 0 (blue) and t = 1 (red). 100000 samples have been generated.

the two posterior densities of y0 for the two extreme cases

t = 0 (blue) and t = 1 (red). Compare it with Figure 1.

Summing up, the increase of the number of sensors increases

the precision of the estimate of y0. Instead, the increase of the

number of observations for a single pair sensor-fusion node

increases the precision of the estimate of θai1.

V. APPLICATIONS: TRANSITION PROBABILITY ESTIMATION

IN MULTIPLE-MODELS

Consider a set of targets that is manoeuvring based on

models m(j) ∈ M corresponding to the following kinematics

x(t+ 1) = fj(x(t)) +wj(t), (19)

where x := [x, y, v, h]
′
, with x, y Cartesian coordinates of

the position, v speed modulus, h heading angle, wj(t) zero-

mean noise with covariance Q = diag{0, 0, σ2
v∆t, σ2

h∆t},

with ∆t sampling period, and the components of the nonlinear

function fj(x(t)) are













x(t) + 2v(t)
ωt

sin
(

ωt∆t
2

)

cos
(

h(t) + ωt∆t
2

)

y(t) + 2v(t)
ωt

sin
(

ωt∆t
2

)

sin
(

h(t) + ωt∆t
2

)

v(t)

h(t) + ωt∆t













, (20)

where ωt := ḣ(t) is the angular speed. This is the coordinated-

turn model [14]. Accordingly, the model m(j) is completely

specified by the value assigned to ωt. In fact, the inclusion

of the angular speed ωt in the state vector and its estimation

are not convenient for short-duration manoeuvres since there

is little time for a reliable estimation of ωt. For ωt = 0,

(19) describes a motion with constant velocity and constant

heading (straight motion). Conversely for ωt 6= 0 it describes

a manoeuvre (turn) with constant angular speed ωt, a left turn

(ωt > 0) or a right turn (ωt < 0) depending on the sign of

ωt.

Three candidate models are considered, i.e., M =
{m(−1),m(0),m(+1)} and the angular speed corresponding to

m(±j) is assumed to be ω(±j) = ±j · 0.15 rad/s, for each

j = 0, 1.

In a Bayesian multiple-model approach [14]–[16], e.g., the

Interacting Multiple Model algorithm, to the filtering problem

it is necessary to specify the transition probabilities between



the various models. We assume that these transition probabil-

ities are unknown and we use past data to estimate them. The

following datasets reports for 5 targets the number of times

the target were in the model 0 and the number of transition

from model 0 to the other 2 models.

m(−1) m(0) m(1)

target 1 3 4 3
target 2 4 7 1
target 3 4 8 4
target 4 3 3 3
target 5 3 6 3

Our goal is to estimate the transition probabilities

Pi(−1|0) = θi1, Pi(0|0) = θi2, Pi(1|0) = θi3,

for all the targets i = 1, . . . , 5.8 We assume that there is

some relationship between the 5 targets, e.g., some aircraft

type, some mission task etc., and, thus, we use a hierarchical

approach to estimate the above probabilities. We set n0 = 1,

s = s = 4 and, thus, our aim is to estimate y0. For numerical

comparison, first we compute the estimate of y0 using only

data of the first three targets. It results that

E[y01] ∈ [.23, .65], E[y02] ∈ [.35, .73], E[y03] ∈ [.26, .62],

where the extremes of the intervals denote the lower and,

respectively, upper expectation. If we use data of all 5 targets,

we instead obtain:

E[y01] ∈ [.34, .59], E[y02] ∈ [.39, .97], E[y03] ∈ [.32, .58].

It can be observed that the intervals are smaller in the second

case because of the additional information. By using the above

calculations and Corollary 1, we can derive

P1(−1|0) ∈ [.31, .38], P1(0|0) ∈ [.39, .56], P1(1|0) ∈ [.30, .38],
P2(−1|0) ∈ [.33, .39], P2(0|0) ∈ [.53, .68], P2(1|0) ∈ [.14, .20],
P3(−1|0) ∈ [.27, .32], P3(0|0) ∈ [.48, .59], P3(1|0) ∈ [.26, .32],
P4(−1|0) ∈ [.33, .41], P4(0|0) ∈ [.35, .53], P4(1|0) ∈ [.33, .41],
P5(−1|0) ∈ [.27, .33], P5(0|0) ∈ [.47, .62], P5(1|0) ∈ [.27, .33],

which are the transition probabilities for each target i =
1, . . . , 5. These probabilities can be employed in the algorithm

presented [17] for multiple model estimation with imprecise

Markov Chains.

VI. CONCLUSIONS

This paper has presented a new prior ignorance model

for hierarchical estimation with multinomial-Dirichlet distri-

butions. It has been shown how to use the model to derive

posterior inferences on the parameters of interest. Further-

more, we have listed the main properties of the model such

symmetry, embedding, learning and convergence principles.

As future work we plan to extend this work to the case

in which also the prior strength n0 is unknown by using

a set of priors which models prior ignorance on n0. From

8The transition probabilities Pi(−1| − 1), Pi(0| − 1), Pi(1| − 1) and
Pi(−1|1), Pi(0|1), Pi(1|1) can be estimated in a similar way.

a practical point of view, we plan to develop an adaptive

multiple-model algorithm that uses the proposed approach to

estimate in real-time the transition probabilities which are then

employed to compute the state of the targets using for instance

the Interacting Multiple Model algorithm. In particular, it is

interesting to focus on the stability and convergence properties

of this adaptive algorithm.
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