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Abstract— The paper proposes a novel Probability Hypothesis
Density (PHD) filter for linear system in which initial state,
process and measurement noises are only known to be bounded
(they can vary on compact sets, e.g., polytopes). This means that
no probabilistic assumption is imposed on the distributions of
initial state and noises besides the knowledge of their supports.
These are the same assumptions that are used in set-membership
estimation. By exploiting a formulation of set-membership esti-
mation in terms of set of probability measures, we derive the
equations of the set-membership PHD filter, which consist in
propagating in time compact sets that include with guarantee
the targets’ states. Numerical simulations show the effectiveness
of the proposed approach and the comparison with a sequential
Monte Carlo PHD filter which instead assumes that initial state
and noises have uniform distributions.

Keywords: multi-target tracking, Probability Hypothesis Density

filter, set-membership estimation.

I. INTRODUCTION

The Probability Hypothesis Density (PHD) filter [1], [2]

is an algorithm for tracking multiple targets in presence of

missed detections and clutter. Two main implementations of

the PHD filter have been proposed: the first uses sequential

Monte Carlo methods [3], the second uses Gaussian mixtures

[4]. In particular in [4] it is shown that, for linear Gaussian

system and Gaussian birth model, it is possible to derive an

analytic solution to the PHD recursion.

In this paper, we show that there is another case in which it

is possible to derive an analytic solution to the PHD recursion.

This is the case in which we have a linear system with bounded

noises. This means that instead of assuming that initial state

and noises are Gaussian, we assume to only know that they are

bounded. Bounds can be expressed in terms of the supremum

norm, 1-norm or more in general by polytopic constraints.

This kind of model for the noises is used in robust filtering

and in particular in set-membership estimation. Here, the term

robust refers to the fact that the probability distributions of the

noises are unknown - only the supports (membership-sets) are

assumed to be known.

Set-membership techniques are based on the construction

of a compact set that includes, with guarantee, the states of

the system that are consistent with the measured output and

the bounded noise. In [5], [6], an ellipsoidal bounding of the

state of the dynamic system is provided. The application of

ellipsoidal sets to filtering has also been studied by other au-

thors, for example [7], [8]. In order to improve the estimation

accuracy, the use of a convex polytope instead of an ellipsoid

has been proposed in [9], [10]. Unfortunately such a polytope

may be extremely complex and the corresponding polytopic

updating algorithms may require an excessive amount of

calculations and storage (without approximations the number

of vertices of the polytope increases exponentially in time).

For this reason, it has been suggested to outer approximate

the true polytope with a simpler polytope, i.e. possessing a

limited number of vertices. In this way, good approximation

results can be obtained [11]. However, the complexity of the

corresponding algorithms may still be too high and, in any

case, is data-dependent. An alternative approach based on a

parallelotopic approximation was presented in [12]. Notice that

a parallelotope is a set described by an 1-norm bound and

it better represents uncertainty expressed by componentwise

bounds. Minimum-volume bounding parallelotopes are then

used to estimate the state of a discrete-linear dynamical system

with polynomial complexity [12].

Set-membership estimation is in general referred in litera-

ture as the deterministic approach to filtering, since its solution

can be formulated in the realm of set-valued calculus and

no stochastic calculations are necessary. Recently, it has been

shown [13] that this is not completely true. Set-membership

estimation can also be formulated in the realm of probability

by considering set of distributions instead of a single distri-

bution. In particular, by employing the theory of Imprecise

Probability [14] and its application to the filtering problem

[15], it can be shown that the prediction and updating steps in

set-membership estimation can be reformulated by applying

Chapman-Kolmogorov equation (for prediction) and Bayes’

rule (for updating) to a particular set of probability measures,

i.e., the set of all Dirac’s deltas inside the membership-set.

By exploiting this result and the formulation of the PHD as

Gaussian Mixture we have derived a Set-Membership based

PHD filter. This Set-Membership based PHD filter has the

following properties.

(1) The membership-sets that are computed at each time

instant include with guarantee, the states of the targets that are

consistent with the measured outputs and the bounded noises.

(2) The Set-Membership based PHD filter outperforms the

SMC-PHD filter which uses uniform distributions as true

distributions for initial state and noises.

It should be pointed out that the approach proposed in this

paper is different from the box-particle PHD filter developed in

[16] from previous work [17], [18]. This difference is mainly

due to the fact that set-membership estimation is different

from box-particle filtering [19]. In [20] in fact it has been

shown that the box-particle filter can be interpreted in the



Bayesian filtering framework as a mixture of uniform prob-

ability density functions (PDF). Set-membership estimation

cannot be interpreted in the Bayesian framework, but only

in the framework of Imprecise probability (filtering with set

of probability measures). We discuss with more details this

differences in Section V.

II. SET-MEMBERSHIP ESTIMATION

Consider the following linear, time-invariant, discrete-time

system
{

xk = Fxk−1 + ωk−1,

zk = Hxk + λk,
(1)

where: k is the time; xk ∈ R
n is the state; zk ∈ R

p is the

measured output; ωk−1 ∈ R
n is the process noise; λk ∈ R

p is

the measurement noise; F and H are matrices of compatible

dimensions. In Kalman filtering, the initial state and noise

signals are assumed to be:

p(ωk−1) = N (ωk−1; ω̂, Q),

p(λk) = N (λk; λ̂, R),
p(x0) = N (x0; x̂0, P0),

(2)

where N (ρ;µ,Σ) denotes that ρ is a Gaussian random variable

with mean µ and variance Σ. Note that in (2) the noises have

a mean different from zero. We exploit this fact to derive the

following result.

Lemma 1. Consider the process noise and assume that

ω̂ ∈ Ω, (3)

where Ω is some polytope in R
n, i.e., we only know that the

mean of the process noise belongs to the set Ω, then for Q → 0
(i.e., Q is scaled by a constant ǫ and ǫ → 0), one has that

{N (ω; ω̂, Q) : ω̂ ∈ Ω}
Q→0
= {δω̂(ω) : ω̂ ∈ Ω} ,

where δω̂ denotes a Dirac’s delta centred at ω̂. �

The proof is obvious and omitted. Lemma 1 states that if

we only know that the mean of the process noise belongs to

a polytope Ω and we take the limit for Q → 0 of the set of

Gaussian PDFs with means varying in this polytope, then we

obtain the set of all Dirac’s deltas on Ω. Note that the closed

convex set containing all Dirac’s deltas on Ω and the closed

set containing all (finitely additive) probabilities with support

on Ω are equivalent.1 Thus, from Lemma 1, it also follows

that the limit of the set of Gaussian PDFs with means in Ω is

equivalent to the set of all probability measures with support

on Ω. We can state this result differently by saying that the

only information about the variable ωk−1 is that it takes values

in Ω. This is the condition which is assumed for initial state

and noises in set-membership estimation.

The aim of this section is to show that using the same limit

procedure described in Lemma 1 we can recover the formulas

of set-membership estimation. This is not a rigorous proof, we

point the reader to [13] for a more rigorous derivation. Let us

start with the prediction step.

1With equivalent we mean that they give the same lower and upper
expectations w.r.t. real-valued function defined on Ω [14, Sec. 3.6].

Theorem 1. Assume that the posterior distribution of the state

estimate at time k − 1 belongs to the set
{

N (xk−1; x̂k−1, Pk−1) : x̂k−1 ∈ X̂k−1

}

, (4)

where X̂k−1 is a polytope in R
n and consider the state

equation in (1) in which the distribution of the process noise

belongs to the set

{N (ωk−1; ω̂, Q) : ω̂ ∈ Ω} .

By taking the limit for (FPk|k−1F
T +Q) → 0,2 we obtain the

set of predicted distributions of the set-membership estimate

at time k, i.e.,:
{

δx̂k|k−1
(xk|k−1) : x̂k|k−1 ∈ X̂k|k−1

}

, (5)

with

X̂k|k−1 = FX̂k−1 ⊕ Ω, (6)

where ⊕ denotes the Minkowski sum of two sets and FX̂k−1

denotes the product of the matrix F for the elements of the

set X̂k−1. �

Proof: Choose a value for x̂k−1 in X̂k−1 and for ω̂ in Ω and

apply Kalman filtering equations for non-zero mean process

noise. The state prediction is then N (xk|k−1 ; x̂k|k−1, Pk|k−1)
where x̂k|k−1 = F x̂k−1 + ω̂ and Pk|k−1 = FPk|k−1F

T +
Q. By taking the limit for (FPk|k−1F

T + Q) → 0 of the

predictive Gaussian, we obtain δx̂k|k−1
(xk|k−1). Finally, by

repeating the previous step for all values of x̂k−1 in X̂k−1

and ω̂ in Ω, we can prove the Theorem. �

Thus, at the end of the prediction step we only know that

the value of the state prediction variable xk|k−1 belongs to the

set X̂k|k−1 in (6).

Theorem 2. Assume that the predicted distribution of the state

estimate at time k|k − 1 belongs to the set
{

N (xk|k−1; x̂k|k−1, Pk|k−1) : x̂k|k−1 ∈ X̂k|k−1

}

, (7)

where X̂k|k−1 is a polytope in R
n and consider the mea-

surement equation in (1) in which the distribution of the

measurement noise is assumed to belong to the set
{

N (λk; λ̂, R) : λ̂ ∈ Λ
}

.

Define Kk = Pk|k−1H
TS−1

k , Sk = HPk|k−1H
T +R, Pk|k =

(I−KkH)Pk|k−1 By taking the limit for Sk, Pk|k → 0 of KF

updating equation, we obtain the set of updated distributions

of the set-membership estimate at time k:
{

δx̂k
(xk) : x̂k ∈ X̂k

}

, (8)

with

X̂k =
{

x ∈ X̂k|k−1 s.t. Hx ∈ {zk − λ̂ : λ̂ ∈ Λ}
}

. (9)

�

2Again we can assume that Pk|k−1, Q are scaled by a constant ǫ and
ǫ → 0.



Proof: The KF updated posterior distribution is N (xk; x̂k, Pk)
where x̂k = x̂k|k−1 + Kk(zk − λ̂ − Hx̂k|k−1). The above
Gaussian has been obtained by applying Bayes’rule, i.e.,

N (xk; x̂k, Pk) ∝
N (zk − λ̂;Hx̂k|k−1, R)N (xk|k−1; x̂k|k−1, Pk|k−1)

N (zk − λ̂;Hx̂k|k−1, Sk)
.

A condition to apply Bayes’rule is that the denominator must

be positive; we must meet this condition when we take the

limit Sk → 0. By considering only the exponential kernel of

N (zk − λ̂;Hx̂k|k−1, Sk), this condition can be satisfied at the

limit provided that zk − λ̂ = Hx̂k|k−1, since exp(−(zk − λ̂−

Hx̂k|k−1)
TS−1

k (zk − λ̂ −Hx̂k|k−1)) = 1 in this case.3 This

means that, given zk and λ̂ in Λ, we cannot arbitrarily choose

x̂k|k−1 in X̂k|k−1 but we must choose this value to satisfy

the positiveness of the denominator.4 There exist values that

verify this condition iff:

HX̂k|k−1 ∩ {zk − λ̂ : λ̂ ∈ Λ} 6= ∅.

Then assuming that there exists some x̂k|k−1 which satisfies

the above condition and if we take zk − λ̂ = Hx̂k|k−1 we

obtain

x̂k = x̂k|k−1 +Kk(zk −Hx̂k|k−1)−KkΛ
= x̂k|k−1 +Kk(Hx̂k|k−1 −Hx̂k|k−1) = x̂k|k−1,

(10)

and this holds for all x̂k|k−1 such that zk − λ̂ = Hx̂k|k−1.

Then by taking the limit Pk|k → 0 we obtain the set of Dirac’s

deltas with support in (9). �

Theorems 1 and 2 give the theoretical solution of the

problem of set-membership estimation, i.e., to compute the

support of the posterior distribution of xk given all the past

observations under the assumption that the only information

about the distributions of initial state, process and measure-

ment noises is their support. To practically solve the prediction

and updating steps, it is in necessary to assume that the borders

of the supports of initial state and noises can be described

by simple shapes, for instance polytopes. In this case, the

prediction and updating steps reduce to propagate in time

the vertices or the linear constraints that characterize these

polytopes [11], [12].

Example 1. Consider the following example

F =

[

1 3
0 1

]

, H = [1, 0]

Ω = Co{[−0.5,−0.1]T , [−0.5, 0.1]T , [0.5,−0.1]T , [0.5, 0.1]T},

X̂0 = Co{[−1, 0.3]T , [−1, 0.7]T , [1, 0.3]T , [1, 0.7]T},

Λ = [−0.3, 0.3], where Co denotes convex hull (note that

Ω, X̂0 are boxes centred at [0, 0]T ). Fig. 1 shows the sets

FX̂0 (dashed line) and X̂1|0 = FX̂0 ⊕ Ω (solid line) for

the first (x1) and second (x2) component of the state. The

updated membership-set X̂1 is shown in Fig. 1 (red thick line)

3If zk − λ̂ 6= Hx̂k|k−1, exp(−(zk − λ̂ − Hx̂k|k−1)
TS−1

k (zk − λ̂ −
Hx̂k|k−1)) → 0 for Sk → 0.

4The application of Bayes’ rule only to the probabilities that assign positive
mass (density) to the observation is called by Walley “regular extension” [14,
Appendix J].

Fig. 1. Predicted and updated membership-set.

- it has been computed assuming the observation z1 = 3.5.

�

Form the previous example, it can be noticed that the predic-

tion and updating steps change the shape of the membership-

set X̂k. As the time increases, this set becomes more and

more complicated (many vertices and facets). Therefore, in

order to reduce the complexity of the prediction and updating

steps, at each time instant it is necessary to approximate

the membership-set with a simpler shaped region. Usually,

outer-approximating regions are provided by ellipsoids or by

polytopes with predefined shape (fixed number of vertices or

parallel edges), e.g., [12].

III. THE GAUSSIAN MIXTURE PHD FILTER

Hereafter we briefly review the Gaussian mixture PHD

filter; we point the reader to [4] for more details. In the the

Gaussian mixture PHD filter it is assumed that (1) the state

dynamics and measurement equation are given by (1); (2) the

survival ps and detection probability pd are state independent;

(3) the clutter is Poisson and independent of target-originated

measurements; (4) the intensity of the birth process is a

Gaussian mixture:

γk(x) =

Jγ,k
∑

i=1

w
(i)
γ,kN (x;m

(i)
γ,k, P

(i)
γ,k),

where m
(i)
γ,k are the peaks of the birth intensity (the locations

where new targets are more likely to appear), P
(i)
γ,k determines

the spread of the birth intensity, the weight w
(i)
γ,k gives the

expected number of new targets originated from m
(i)
γ,k.

Suppose that these assumptions hold and that the posterior

intensity at time k − 1 is a Gaussian mixture of the form

vk−1(x) =
Jk−1
∑

i=1

w
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1), (11)

then the predicted intensity for time k is also a Gaussian

mixture

vk|k−1(x) = vS,k|k−1(x) + γk(x), (12)

where

vS,k|k−1(x) = ps

Jk−1
∑

i=1

w
(i)
k−1N (x;m

(i)
S,k|k−1, P

(i)
S,k|k−1), (13)

m
(i)
S,k|k−1 = Fm

(i)
k−1, P

(i)
S,k|k−1 = FP

(i)
k−1F

T +Q.

(14)



Observe that vk|k−1(x) is again a Gaussian mixture, which

can be rewritten as

vk|k−1(x) =
Jk|k−1
∑

i=1

w
(i)
k|k−1N (x;m

(i)
k|k−1, P

(i)
k|k−1). (15)

Then, let Zk = {z1, . . . , zlk} be the set of observations at time

k, then the posterior intensity at time k is also a Gaussian

mixture and is given by:

vk(x) = (1− pd)vk|k−1(x) +
∑

z∈Zk

vD,k(x; z), (16)

with

vD,k(x; z) =

Jk|k−1
∑

i=1

w
(i)
k N (x;m

(i)
k , P

(i)
k ), (17)

w
(i)
k =

pdw
(i)
k|k−1q

(i)
k (z)

κk(z) + pd

Jk|k−1
∑

j=1

w
(j)
k|k−1q

(j)
k (z)

, (18)

q
(i)
k (z) = N (z;Hm

(i)
k|k−1, R+HP

(i)
k|k−1H

T ), (19)

m
(i)
k = m

(i)
k|k−1 +Kk(z −Hm

(i)
k|k−1),

P
(i)
k = (I −KkH)P

(i)
k|k−1, K

(i)
k = P

(i)
k|k−1H

TS−1
k ,

S
(i)
k = HP

(i)
k|k−1H

T +R,

Note that κk(z) is the clutter intensity which is in general

assumed to be:

κk(z) = φcV u(z), (20)

u(·) is the uniform density over the surveillance region, V is

the volume of the surveillance region and φc is the average

number of clutter returns per unit volume.

It should be noticed that because of (12) and (16) the

number of components of the Gaussian mixture increases

at each time step. Pruning and merging procedures are thus

necessary for computational feasibility. A pruning and merging

algorithm is described in [4] together with an algorithm to

extract the peaks of the mixture. This latter algorithm is used

to provide a point estimate of the target locations.

IV. SET-MEMBERSHIP PHD FILTER

The aim of this section is to derive a PHD filter in case we

assume that

1) initial state, measurement and process noise are mod-

elled by a set of Dirac’s deltas over polytopic regions;

2) the clutter distribution u(·) in the surveillance region U

is

u(z) ∈ {δẑ(z) : ẑ ∈ U}; (21)

3) the set of intensity of the birth process is Γs,k(x) =
{γs,k(x) : ∀s} with:

γs,k(x) =
Jγ,k
∑

i=1
w

(i)
γ,kδm(i,si)

γ,k

(x), m
(i,si)
γ,k ∈ M

(i)
γ,k,

where si indexes the choice of one element of the

membership set M
(i)
γ,k and s = {s1, . . . , sJγ,k

} the set of

all the choices in each membership-set. Thus, Γs,k(x)
is the set of all possible mixture of Dirac’s deltas that

we obtain by selecting m
(i,si)
γ,k to be any of the point in

the membership set M
(i)
γ,k for all elements of the mixture

i = 1, . . . , Jγ,k.

Theorem 3. Suppose that the above assumptions hold and that

the set of posterior intensity at time k − 1 is Vk−1(x) =
{vs,k−1(x) : ∀j} with

vs,k−1(x) =
Jk−1
∑

i=1

w
(i)
k−1δm(i,si)

k−1

(x), m
(i,si)
k−1 ∈ M

(i)
k−1,

(22)

then the set of predicted intensity for time k is Vk|k−1(x) =
{

vs,k|k−1(x) : ∀j
}

where

vs,k|k−1(x) =
Jk|k−1
∑

i=1

w
(i)
k|k−1δm(i,si)

k|k−1

(x), m
(i,si)
k|k−1 ∈ M

(i)
k|k−1,

(23)

with Jk|k−1 = Jk−1 + Jγ,k,

M
(i)
k|k−1 =

{

FM
(i)
k−1 ⊕ Ω for i = 1, . . . , Jk−1,

M
(i)
γ,k−1 for i = Jk−1 + 1, . . . , Jk−1 + Jγ,k.

(24)

w
(i)
k|k−1 =

{

psw
(i)
k−1 for i = 1, . . . , Jk−1,

w
(i)
γ,k for i = Jk−1 + 1, . . . , Jk−1 + Jγ,k.

(25)

�

Proof: The result follows directly from the proof of Theorem

1 and (11)–(15) exploiting the limit procedure described in

Theorem 1. Observe that in (24) new membership-sets are

added to account for the birth of new targets. �

Theorem 4. Suppose that the set of predicted posterior in-

tensity at time k is Vk|k−1(x) =
{

vs,k|k−1(x) : ∀j
}

with

vs,k|k−1(x) given in (23). Let Zk = {z1, . . . , zlk} be the set

of observations at time k, then the set of posterior intensity at

time k is Vk(x) = {vs,k(x) : ∀j} with

vs,k(x) =
Jk
∑

i=1
w

(i)
k δ

m
(i,si)

k

(x), m
(i,si)
k ∈ M

(i)
k , (26)

where Jk = (1 + |Zk|)Jk|k−1,

M
(i)
k =



























M
(i)
k−1, i = 1, . . . , Jk|k−1,

M
(i)
z1,k|k−1, i = Jk|k−1 + 1, . . . , 2Jk|k−1,

· · ·

M
(i)
zlk ,k|k−1, i = |Zk|Jk|k−1 + 1, . . . , |Zk + 1|Jk|k−1,

(27)



with M
(i)
zr,k|k−1 = {M

(i)
k|k−1 : HM

(i)
k|k−1 ∩ Ẑr 6= ∅}, Ẑr =

{zr − λ̂ : λ̂ ∈ Λ},

w
(i)
k =























(1− pd)w
(i)
k|k−1 for i = 1, . . . , Jk|k−1,

w
(i)
z1,k

for i = Jk|k−1 + 1, . . . , 2Jk|k−1,

· · ·

w
(i)
zlk ,k

for i = |Zk|Jk|k−1 + 1, . . . , |Zk + 1|Jk|k−1,

(28)

and

w
(i)
zr,k

=
pdI{HM

(i)

k|k−1
∩Ẑr 6=∅}

φcV + pd
∑Jk|k−1

l=1 I
{HM

(l)

k|k−1
∩Ẑr 6=∅}

(29)

where I
{HM

(i)

k|k−1
∩Ẑr 6=∅}

is the indicator function which is one

when its argument is satisfied and zero otherwise. �

Proof: The result follows directly from the proof of Theorem

2 and (15)–(20). We discuss the derivation of (29) with more

details. From Theorem 2, we know that to apply Bayes’rule we

must ensure that the denominator N (zr − λ̂;Hm
(i)
k|k−1, S

(i)
k )

is positive at the limit S
(i)
k → 0, which implies that

zr − λ̂ = Hm
(i)
k|k−1.

This means that, given zk and λ̂ in Λ, we cannot arbitrarily

choose m
(i)
k|k−1 in M

(i)
k|k−1 but we must choose this value to

satisfy the above condition. There exist values that verify this

condition iff:

HM
(i)
k|k−1 ∩ Ẑr 6= ∅.

From (19), this implies that

q
(i)
k (zr) =











1
√

det(2πS
(i)
k )

if HM
(i)
k|k−1 ∩ Ẑr 6= ∅

0 other.

the first row is obtained by taking zr − λ̂ = Hm
(i)
k|k−1. Thus,

(18) is equal to

w
(i)
zr ,k

=
pdI{HM

(i)

k|k−1
∩Ẑr 6=∅}

κk(zr)
√

det(2πSk) + pd
∑Jk|k−1

l=1 I
{HM

(l)

k|k−1
∩Ẑr 6=∅}

,

(30)

where we have assumed that all the S
(i)
k are equal to Sk. Now

we must take the limit Sk → 0. Since κk(zr) = φcV u(zr),
u(zr) ∈ {δẑ(zr), ẑ ∈ U}, if δẑ(zr) is obtained as limit

for Sk → 0 of N (zr; ẑ, Sk), then we obtain (29) by taking

ẑ = zr.

�

It is worth to point our the non-obvious differences between

the linear Gaussian mixture PHD and the set-membership PHD

filter.

1) In the set-membership PHD filter, the prediction

and updating steps practically consist on computing

M
(i)
k|k−1, w

(i)
k|k−1 and M

(i)
k , w

(i)
k .5

5The expression of the predicted and updated intensity as mixture of Dirac’s
is used only in the proof, for the practical implementation we just propagate
the membership-sets.

2) Because of the boundedness of the process and mea-

surement noise, the set-membership PHD filter naturally

performs a gating procedure on the measurements: if

I
{HM

(i)

k|k−1
∩Ẑr 6=∅}

= 0, the weight w
(i)
zr ,k

is zero. This

means that, after the updating step, the intensity mixture

vs,k(x) may practically have much less components than

Jk = (1 + |Zk|)Jk|k−1.

3) The set-membership PHD filter always guarantees that

the true values of the target states are included in some

of the polytopes M
(i)
k .

4) As for the linear Gaussian mixture PHD, the sum of the

weights of the mixture gives the number of expected

targets.

A. Pruning, merging, bounding

Although the gating procedure of the membership-set guar-

antees that the set-membership PHD filter has less components

than the linear Gaussian mixture PHD, a reduction of the

number of terms of the mixture may be necessary for pd <

1 and large number of false alarms. As for the the linear

Gaussian mixture PHD, we have implemented three reduction

strategies. First, there is a pruning strategy which deletes all

the terms in the mixture in vs,k(x) whose weights w
(i)
k are

less than a fixed threshold. Second, there is a merging strategy,

which combines the polytopes that are close. We have used the

Hausdorff metric to measure the distance of two polytopes. If

this distance is less than a fixed threshold, the polytope with

smaller weight w
(r)
k is deleted and the weight of the other

polytope is incremented by w
(r)
k . Finally, the total number of

terms of the mixture cannot exceed a fixed maximum value. It

it does, the exceeding terms with smaller weights are deleted.

Another issue concerns the number of vertices of the

polytopes of the membership sets. In this paper, we have used

a bounding-box approximation to prevent that the polytopes

become too complex. The set-membership filter has been

implemented using the routines for computational geometry

of the Multi-Parametric Toolbox [21].

V. DIFFERENCE WITH THE BOX PARTICLE FILTER

APPROACH

The aim of this section is to point out the differences

between the set-membership PHD filter proposed in this paper

and the Box Particle PHD filter presented in [16].

We start this comparison by first highlighting the differences

between Box Particle filter (Box-PF) and set-membership

estimation. Box-PF has been proposed in [19] with the goal

of reducing the computational complexity in PF. It is well

known that PF approximates the posterior PDF of the state by

a mixture of Dirac’s deltas centred on the computed particles.

The idea of the Box-PF is to approximate this PDF by a

mixture of uniform distributions with box supports [20]. Then,

assuming that the process and measurement noises are also

enclosed in boxes, at each time instant the predicted and

updated supports of the boxes in the mixture are computed

by using interval-analysis and the weights of the mixture are

updated using Bayes’ rule under the further assumptions that



the noises have uniform distributions (with box supports). With

this latter assumption, Box-PF can be completely formulated

in the realm of Bayesian filtering [20], since the distributions

of the noises are completely known. In this context, the

advantage of Box-PF is to use interval-analysis to perform

prediction/updating and, thus, to obtain a good approximation

of the solution of Bayesian filtering by using a relatively small

number of box particles.

Conversely, in set-membership estimation no assumption is

imposed on the distributions of the noises (the distributions

of the noises are unknown - only their supports are known).

The lack of information on the distributions of the noises

can be modelled by considering the set of all distributions

which are zero outside the given supports.6 In this case,

we cannot use Bayesian filtering to perform prediction and

updating but we need to work in the realm of imprecise

probability. The general solution of the filtering problem in

this case has been presented in [15] and it has also been shown

that the imprecise probability based filter coincides with set-

membership estimation in case only the supports of the noises

are known [13]. This result has been exploited in Section II

to derive set-membership estimation formulas in a more direct

(but less rigorous) way.

Set-membership estimation guarantees with probability one

that the posterior membership set computed at each time

instant always includes the true state. This is the main

difference between the two approaches - Box-PF does not

guarantee such inclusion. Because of the resampling step in

Box-PF, it may happen that a component in the mixture of

uniform distributions is discarded because it has a relatively

small weight. The union of the boxes of the Box-PF may

not include with certainty the true value of the state and,

thus, they are not supports (in the probabilistic sense) but

they are credible regions in the Bayesian filtering sense, i.e.,

regions that includes the value of the state with a given

probability (e.g., 90%, 95% etc., the value depends on the

resampling strategy and on the number of particles). These

main differences also appear in the implementation for the

PHD filter.

VI. NUMERICAL SIMULATIONS

In this section, the performance of the proposed set-

membership PHD filter is assessed by means of Monte Carlo

simulations, concerning different scenarios. The simulated

targets move in the xy Cartesian plane and are, therefore,

characterized, at discrete time k, by the state vector xt =
[px, vx, py, vy]

T , where (px, py) provides the position and

(vx, vy) the velocity in Cartesian coordinates at time t. The

6The uniform distribution is one of such distributions but it is not the only
one. For instance, a Dirac’s delta on one of the vertices of the box also
belongs to this set and represents the most critical case in which the noise is
maximum.

following motion model has been considered for the targets:

F =









1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1









, H =

[

1 0 0 0
0 0 1 0

]

,

(31)

where T = 1 is the sampling interval;

ωk ∈ Ω = Box([−1, 1], [−0.1, 0.1], [−1, 1], [−0.1, 0.1]),

λk ∈ Λ = Box([−1, 1], [−1, 1]),

where Box([−1, 1], [−0.1, 0.1], [−1, 1], [−0.1, 0.1]) denotes a

Box in which the first component of ωk is bounded in the

interval [−1, 1], the second in [−0.1, 0.1] etc. (similar for λk).

For the initial state, we have assumed that x0 ∈ X̂0 = x̂0+Ω,

where x̂0 = [10, 5, 80, 2]T for target 1, x̂0 = [80, 2, 10, 5]T

for target 2. We are considering a scenario with 2 targets,

trajectories’ length of 120 time instants, number of clutter

measurements V φc ∼ poiss(20) (on average 20 clutter mea-

surements at each time instant), detection probability pd =
0.95, and 100 Monte Carlo (MC) runs.

To evaluate the performance of the proposed algorithm,
we have used the OSPA distance [22], and inclusion metric.
Briefly, denote by d(c)(x, y) := min (c, d(x, y)) the distance
between x, y ∈ W ⊂ R

N with cut off at c, and by Πk the set of
permutations on {1, . . . , k} for any k ∈ N. For 1 ≤ p ≤ ∞,
c > 0, and arbitrary finite subsets X = {x1, . . . , xn} and
Y = {y1, . . . , ym} of W , where m,n ∈ N0 = {0, 1, 2, . . .},
then the OSPA distance is defined as:

d
(c)
p (X,Y ) :=

(

1

n

(

min
π∈Πn

m
∑

i=1

d
(c)(xi, yπ(i))

p + c
p(n−m)

))1/p

(32)

if m ≤ n, and d
(c)
p (X,Y ) := d

(c)
p (Y,X) if m > n.7

Observe that, set-membership estimation does not return a

point estimate but a set-estimate (the set that includes the

target’s state), so to compute the OSPA metric we must

extract a point estimate. As point estimate we have selected

the centre of the minimum-volume ellipsoid outer-bounding

the membership-set. The inclusion is a binary variable taking

value 1 if the target’s state at time k is included in some of

the membership-sets and value 0 otherwise. The inclusion has

been averaged over the number of targets, and the number of

MC trials.

For comparison, we have also implemented a SMC-PHD

filter, which assumes that initial state, process and measure-

ment noises have uniform distribution inside the respective

membership-sets X̂0, Ω and Λ. Also for this filter, we have

computed the OSPA metric and the inclusion metric. The

inclusion has been computed by considering credible regions

around the extracted estimates, which are obtained following

the approach described in [23]. Specifically, to calculate the

inclusion metric, we construct polytopes from the particle sets

used to extract the estimates, and then assign value 1 if the

7In multi-target tracking, xi, yi are respectively the estimated and true
positions of the targets.



target’s state is inside any of the constructed polytopes or zero

otherwise.
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Fig. 2. Inclusion and OSPA (uniform noise, pd = 1).

In the first scenario we assume a unitary detection prob-

ability, pd = 1, and that process and measurement noises

are uniformly distributed. That is, the scenario perfectly fits

the assumptions underlying the SMC-PHD filter. Results are

reported in Figs. 2 in terms of inclusion and OSPA distance.

The estimated number of targets is not reported since in this

case both filters perfectly estimate this parameter. As expected,

the SMC-PHD filter can cope with the scenario and guarantees

a lower OSPA distance than the set-membership PHD.

Results from a second scenario are reported in figs. 3. Here

we have a unitary detection probability, pd = 1, maximum

process noise, i..e., ωk = [1, 0.1, 1, 0.1]T , (in this way the

two targets cross their trajectories at about time k = 10)

and measurement noise uniformly distributed over the positive

subset of Λ, i.e., λk = u[1, 1]T with u is uniform distributed

in [0, 1]. We compare the set-membership PHD filter against

4 slightly different implementations of the SMC-PHD filter.

As detailed in the legend, we consider different numbers of

particles and process noise intensity for the SMC-PHD in

order to guarantee a sufficient coverage of the posterior PHD,

which is more critical in the case of maximum process noise

intensity. Here, Qc = 2Ω means that the SMC-PHD is using a

uniform distribution for the process noise with a support that is

twice larger than the true one used to generate the trajectories.

The inclusion metric and OSPA distance show that the set-

membership PHD filter in this case obtains a better perfor-

mance. This means that the uniform distribution assumption

in SMC-PHD filter cannot cope with a deterministic process

noise (which is constantly equal to the allowed maximum

value). The SMC-PHD filter with uniform distribution is thus

not robust to the choice of the process noise: it performs well

when the process noise is (close to) uniform but degrades its

performance (in some case it diverges for Np = 20000) in the

case the process noise is maximum. Conversely, the inclusion

performance of the set-membership approach are not affected

by the choice of the process noise.
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Fig. 3. Inclusion and OSPA (maximum noise, pd = 1).

A more interesting scenario is obtained considering a non-

unitary detection probability, pd = 0.95 and the same condi-

tions as in the second simulation case above. In Figs. 4 we

have reported the estimated number of targets, the inclusion

metric, and the OSPA distance. It is immediate to verify that

the proposed set-membership PHD filter is still better than the

SMC-PHD filter. The fact that the inclusion metric is not one

for the set-membership estimation in this case, it due to the

way we extract the targets’ tracks to compute the metrics. In

the simulations, we have extracted the best N̂t tracks, where

N̂t is the number of estimated target. This track extraction is

not very efficient. We have verified that the set-membership

PHD filter in practice has inclusion equal to one also in this

case, but we have not yet found a good algorithm to extract

the track/tracks that include/s the targets.

VII. CONCLUSIONS

The paper has proposed a Probability Hypothesis Density

filter for linear system in which initial state, process and

measurement noises are only known to be bounded. No prob-

abilistic assumption is imposed on the distributions of initial

state and noises and set-membership estimation is used to
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Fig. 4. Estimated number of targets, inclusion, OSPA (maximum noise,
pd = 0.95).

propagate in time the compact sets that include with guarantee

the targets’ states. Numerical simulations have shown that the

proposed approach outperforms a sequential Monte Carlo PHD

filter which instead assumes that initial state and noises have

uniform distributions. As future work, it may be interesting to

implement set-membership estimation in terms of parallelo-

topes, which provides a smaller outer-approximation of the

membership-set than the bounding-boxes used in this paper.

New algorithms for tracks’ extraction should also be derived

to take full advantage of the guarantee of inclusion of the set-

membership approach. It may also be interesting to practically

compare the set-membership PHD with the Box Particle PHD

filter.
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