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The Generalised Moment-based Filter
A. Benavoli

Abstract—Can we solve the filtering problem from the only
knowledge of few moments of the noise terms? In this paper,
by exploiting set of distributions based filtering, we solve this
problem without introducing additional assumptions on the
distributions of the noises (e.g., Gaussianity) or on the final form
of the estimator (e.g., linear estimator). Given the moments (e.g.,
mean and variance) of random variable X , it is possible to define
the set of all distributions that are compatible with the moments
information. This set can be equivalently characterized by its
extreme distributions: a family of mixtures of Dirac’s deltas. The
lower and upper expectation of any function g of X are obtained
in correspondence of these extremes and can be computed by
solving a linear programming problem. The filtering problem can
then be solved by running iteratively this linear programming
problem. In this paper, we discuss theoretical properties of this
filter, we show the connection with set-membership estimation
and its practical applications.

Index Terms—Generalised moments, set of distributions, ro-
bustness, set-membership estimation, Kalman filter.

I. INTRODUCTION

In the linear non-Gaussian case, it is well-known that

the Kalman filter (KF) is the best linear minimum variance

estimator. If the distributions of the non-Gaussian noises are

unknown (we only know their mean and variance), there exist

few alternative approaches to state estimation apart from KF

(Monte Carlo methods cannot be used in this case since they

assume that the distributions of the noises are known).

In this unknown-distribution setting, quantifying the un-

certainty/reliability of the KF estimate is a big issue, since

the estimation error x̂k − xk has an unknown distribution.

Thus, the best one can hope for is to give bounds of the

estimation error using for instance the Chebyshev inequality.

This method, however, has several limitations: (i) it can only

be applied to determine lower/upper bounds for the probability

of intervals of type |x̂k − xk| R δσk; (ii) it can produce

confidence regions that are too large. To alleviate the conser-

vativeness of Chebyshev inequality, Spall [1] has proposed to

compute confidence regions by using instead the Kantorovich

inequality. In [2], Maryak et al. derive narrower probability

bounds for he estimation error by using central limit theorem

type arguments. However, these approaches can only be used

to compute confidence regions for the KF estimate in non-

Gaussian settings, while cannot be used to compute bounds

for the expectation of other functions of interest of the state.

Furthermore, they cannot be extended to the nonlinear case.

In this paper, we address these issues by using set of

distributions based filtering [3] considering a particular class

of distributions: the set of distributions which have the same
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first m generalised moments. Given real-valued functions fi
for i = 0, 1, . . . ,m of a random variable X we call the real

numbers µi = E[fi] generalised moments (here E[·] denotes
expectation). The knowledge of m (generalised) moments µi

is not enough to uniquely specify the distribution of a variable,

the generalised moment problem then consists to find all the

distributions compatible with the moments information [4].

The moment problem has received great attention in the

control theory community since, for instance, the solution to

the optimal control problem for a linear plant can be obtained

by solving a special kind of moment problem [5, Ch. 7]. Other

applications of the moment problem to system and control

theory are presented in [6], [7]. Here, Byrnes and Lindquist

solve the moment problem by selecting among the admissible

distributions the one which minimizes a Kullback-Leibler

divergence based cost. In the moment problem, it is common

to impose some cost criterion (e.g., maximum entropy, KL

divergence etc.) [8], [9], [10] to select one of the admissible

distributions. In this way the moment problem reduces to

maximise/minimise a cost subject to moment constraints.

It is well known that given the mean and variance of a real-

valued variable X , the maximum entropy distribution is the

Gaussian distribution with same mean and variance. However,

we will show that the most critical distributions (the ones

that have the most extreme behaviour) compatible with the

mean/variance information are trimodal mixtures of Dirac’s

deltas. Thus, maximum entropy is not a robust criterion since

it chooses a unimodal distribution (Gaussian) when the true

distributions may be multimodal.1

In this paper, we follow a different approach. Instead of

choosing a single distribution (imposing some criterion), we

address the problem by dealing with all the distributions

compatible with the moment constraints. Thus, we determine

lower and upper bounds of the expectations of all the functions

of interest in estimation. To obtain this goal, we exploit the

following results:

(i) given m generalised moments (e.g., mean, variance etc.) of

random variable X , it is possible to define the set of all dis-

tributions that are compatible with the moments information;

(ii) this set of distributions is closed and convex and, thus,

can be equivalently characterized by an upper (or lower)

expectation model, that can be computed by solving a (infinite)

linear programming problem;

(iii) by assuming that m generalised moments of initial state,

process and measurement noise are known and considering

the corresponding upper (or lower) expectation models, the

filtering problem can then be solved by propagating in time

the lower and upper expectations of any real-valued function

1For example, the MMSE or MAP point estimate computed assuming a
unimodal-symmetric distribution can be in a region of low probability if the
true distribution is multimodal with the same mean and variance.
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of interest g by using the approach proposed in [3].

The obtained Generalised Moment Based Filter has several

interesting properties. It reduces to set-membership estimation

when only the supports of the noises are known. It can be used

to determine uncertainty bounds for the Kalman filter estimate

when the distributions of the process or measurement noises

are unknown. It can compute the set of all Bayesian optimal

estimates which are compatible with the moment information.

It can be applied to both linear/nonlinear systems [11, Sec. 8].

II. IMPRECISE INFORMATION, ONLY MOMENTS KNOWN

Consider a variable X taking values x in the possibility

space X (e.g., a finite set or a subset of the euclidean space Rn)

and let B be the Borel σ-algebra of measurable subsets of X .

Consider a sequence of m+1 real-valued functions fi for i =
0, 1, . . . ,m defined on X and measurable with respect to B.
We call fi for i = 0, 1, . . . ,m generalised moment functions

(gmfs). Assume that the only information aboutX is expressed

in terms of expectations of these gmfs, i.e., we know that

µi = EP [fi] =
∫

X
fi(x)dP (x) for i = 0, 1, . . . ,m, (1)

where dP denotes a Borel measure on X , µi ∈ R are

finite and known. In the rest of the paper, we assume that

µ0 = 1 and f0 = 1 and, thus, that P is a probability

measure, i.e., EP [1] =
∫

X dP (x) = 1 (normalization) and,

that, µ = [1, µ1, µ2, . . . , µm]T is a feasible moment vector,

i.e., a moment vector of some distribution.

Notice that the knowledge of the expectation of m + 1
moment functions is not enough to uniquely specify the

probability measure P , so we can consider the set of all

probabilities which are compatible with this information:

P(µ) =
{

P :
∫

X f(x)dP (x) = µ
}

, (2)

where f = [1, f1, . . . , fm]T is the vector of gmfs.

Given a real-valued objective function g defined on X and

integrable with respect all probabilities in P(µ), our goal is
to compute

E[g] = inf
P∈P(µ)

EP [g], E[g] = sup
P∈P(µ)

EP [g], (3)

i.e., the lower and upper bounds on the expectation of g
over the set of probability measures P(µ) whose vector of

gmfs match µ. A particular case of interest of the above

optimization problem is when X ⊆ R and fi = X i and,

thus, the constraints (1) become:

E[1] = 1, E[X ] = µ1, . . . , E[Xm] = µm. (4)

By considering (4), we are assuming that the only knowledge

about X is represented by the first m+ 1 raw moments. For

m = 2, this means that we only know the space of possibilities

X , the mean µ1 and the variance µ2 − µ2
1 of X .

If instead of the first m + 1 raw moments we know for

instance the first q-quantiles r1, . . . , rq of X , then we can

model this knowledge through (1) by setting m = q + 1,
fi = I{X≤ri} and µi = i/m for i = 1, 2, . . . ,m, where IΩ is

the indicator function of the set Ω. Thus, the formulation (1) is

very general and allows to model a large variety of situations.

A. Optimization problem

Consider the problem (3) with the constraints (1). Hereafter,

we focus on E[g] (upper bound) only, but all results hold true

for the lower bound as well, since E[g] = −E[−g]. Observe
that, in the optimization problem (3): (i) the optimization

variables are the amount of non-negative mass assigned to

each point x in X , (ii) the objective EP [g] and the constraints

EP [f ] = µ are linear functions of the optimization variables.

Therefore, if X is finite then (3) is a conventional linear

program, while if X is infinite then (3) is a semi-infinite linear

program (i.e., infinite number of decision variables but finite

number of constraints).

Hence, since (3) is a (infinite) linear program, from the

fundamental theorem of linear program we know that in the

search for an optimal solution we can focus only on basic

solutions (extreme points). Karr [12] has in fact proved that

the set of probability measures P(µ) which are feasible for

the semi-infinite linear program problem (3) is convex and

compact with respect to the weak∗ topology. As a result, P(µ)
can be expressed as the convex hull of its extreme points and

these extreme points are probability measures that have at most

m + 1 distinct points of support in X (e.g., on R they are

mixtures of m + 1 Dirac’s deltas), see [13, Lemma 3.1]. A

consequence of this is that the integral EP [g] =
∫

X
g(x)dP (x)

with respect to the probability P ∈ P(µ) becomes a sum over

m+ 1 points when calculated on the extreme solution which

gives the upper expectation (the same holds for the integrals

in the constraints in (1)). The aim of the optimization is thus

to find centres and weights of this m+ 1 mixture of Diracs’.

Since (3) is a (infinite) linear program, we can define its

dual problem. Because (3) has m + 1 constraints, then the

dual has m + 1 optimization variables z = [z0, z1, . . . , zm]
with zi ∈ R [13, Sec. 3] and it is equal to:

E[g] = inf
z

z
Tµ, s.t. z

T
f(x) ≥ g(x), ∀x ∈ X . (5)

Observe that when X is infinite, the dual is a semi-infinite

linear program, since the number of constraints is infinite.

The dual can also be rewritten in the equivalent minimax

formulation [14, Sec. 3.1.3]:

E[g] = inf
z

sup
x∈X

g(x)− z
T (f(x) − µ). (6)

When X is finite, (5) becomes a linear program and, thus, can

easily be solved. In case X is infinite, a way to solve it is first

to discretise X and then, use standard linear programming.

We will discuss other approaches in Section VI. Let us now

consider some examples.

B. The case of m = 0

In this case, the only constraint is
∫

X dP (x) = 1. Assume

for instance that X = [−d, d] ⊂ R with d > 0, then in

this case the only knowledge about the value x of X is that

x ∈ [−d, d] or, equivalently, |x| ≤ d. We can model this norm

bounded constraint by the following probabilistic constraint

P (x ∈ X ) =
∫

X dP (dx) = 1. This means that the only

information about the probability measure of X is its support

X . We can then consider the set of all probability measures
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whose support is X and use this set to compute lower and

upper bounds for the expectation of real-valued functions of

interest g of X . In this case, it holds that

E[g] = sup
P∈P(µ)

∫

X

g(x)dP (x) = sup
x∈X

g(x), (7)

and E[g] = inf
x∈X

g(x). This follows by the fact that in this case

(m = 0) the set of extreme points of the closed convex set

of probabilities P(µ) is the set of all m+ 1 = 1 mixtures of

Dirac’s deltas in X . Hence, it is clear that for any function g it

holds E[g] = supx∈X g(x) (it is enough to take p(x) = δx0
(x)

with x0 = arg supx∈X g(x)). For instance in case g = X and

X = [−d, d], one gets that E[X ] = −d, E[X ] = d, which are

respectively the lower and upper mean of X .

C. The case of m = 2, f1 = X and f2 = X2

In this case, it is assumed that the only knowledge about X
is represented by the space of possibilities and the first two

raw moments (equivalently, mean and variance) of X . Assume

that X = R, µ1 ∈ R, µ2 ∈ R
+ and µ2 − µ2

1 ≥ 0 (this is the

positivity constraint for the variance of X). The constraints

on µ = [1, µ1, µ2]
T have been imposed to guarantee that

µ is a feasible moment sequence (i.e, there exists at least a

probability distribution with moment vector µ). In this case,

we know that the set of extreme points of P(µ) are at most

mixtures of m+ 1 = 3 Dirac’s deltas. Our aim is to compute

lower and upper bounds for the expectation of real-valued

functions g of X . Since the first two raw moments are known,

it is clear that E[X ] = E[X ] = µ1 and E[(X − µ1)
2] =

E[(X − µ1)
2] = µ2 − µ2

1.

Consider instead the following function g = I{|X−µ1|≤γσ}

with γ > 0, where |X−µ1| ≤ γσ is the standard γσ credible

interval: centred on the mean µ1 and with standard deviation

σ =
√

µ2 − µ2
1. Then, it holds that

E[I{|X−µ1|≤γσ}] = 1− 1
γ2 , (8)

and the lower expectation in (8) is obtained by a trimodal

mixture of Dirac’s deltas, see [11, Sec. II]. Notice that the

lower expectation of I{|X−µ1|≤γσ} corresponds to the worst-

case (equality) in the Chebyshev inequality P (|X − µ1| ≤
γσ) ≥ 1 − 1

γ2 , i.e., the probability of the set |X − µ1| ≤ γσ

is equal to 1 − 1
γ2 . Thus we have obtained the Chebyshev

inequality.

D. Multivariate moment problem

In all the above examples we have considered univariate

moment problems, i.e., X ⊆ R. However, we have previously

assumed that X can take values in a generic possibility space

X including thus the multivariate case X ⊆ R
n.

Consider then a multivariate variable X = [X1, . . . , Xn]
T

on X ⊆ R
n and assume that the first α raw moments of X are

known, i.e., E[Xα1

1 Xα2

2 · · ·Xαn

n ] = µα1α2···αn
, for any non-

negative integer αi such that α1 + α2 + · · · + αn ≤ α [15].

The above multivariate moment problem can be expressed

in the form (1) by choosing fi(x) = xα1

1 xα2

2 · · ·xαn

n . Thus,

given a real-valued function g of X , the goal is always to

determine lower and upper bounds for EP [g] with P ∈ P(µ).

For instance, in case X = [X1, X2]
T , we have 6 constraints

E[1] = 1, E[X1] = µ10, E[X2] = µ01, E[X1X2] = µ11,

E[X2
1 ] = µ20, E[X2

2 ] = µ02, which is equivalent to assume

the knowledge of support, mean and covariance matrix of X .

III. FILTERING

The objective in this paper is to solve the filtering problem

assuming that the only information available on the distri-

butions of initial state X0, state dynamics Xk|Xk−1 and

measurement equation Yk|Xk is represented by the expectation

of generalised moment functions, i.e.,

EX0
[f(X0)] = µx

0 , EXk
[f (Xk)|xk−1] = µx

k(xk−1), (9)

EYk
[f(Yk)|xk] = µ

y
k(xk), (10)

where the moment vectors µx
k(xk−1) and µ

y
k(xk) depend on

the conditioning variables xk−1 and xk−1 and f(Xk),f(Yk)
are generalized moment functions. Note also that, here we

are assuming that the distributions of the noises are unknown

and non stationary, i.e., they can vary with time, while the

(time evolution of the) moments are known and given by (9)–

(10). In Section II, we have shown that the only knowledge

of a finite number of moments of a variable X does not

allow to specify a single distribution. Instead of arbitrarily

choosing a distribution compatible with the given moments

(e.g., maximum entropy distribution), we solve the filtering

problem by considering all the distributions in the set P(µ)
that satisfy (9)–(10).

To obtain this goal we do not simply apply the standard

Bayesian filtering to the set of extreme points (e.g., Dirac’s

deltas) of P(µ). In fact, because of the prediction step, the

number of extreme points of the set of posterior densities,

which characterizes our imprecise information on the state Xt,

increases exponentially with time, see for instance [11, Sec.

V]. So we cannot characterize our information on the state

given all the past measurements by means of the posterior set

of distributions.2 In [3], it has been shown that an efficient

solution of the moment based filtering problem can be com-

puted by propagating in time the lower and upper expectation

of functions of interest g of Xk (e.g., mean, credible interval,

etc.). To summarise this result, we introduce the short notation

Xℓ = {X0, . . . , Xℓ} and Y ℓ = {Y1, . . . , Yℓ}.
Theorem 1. Assume that our information on the initial state,

state dynamics and measurement equation is represented by

the upper expectation models EX0
, EXk

[·|Xk−1] and, re-

spectively, EYk
[·|Xk], which are assumed to be known for

k = 1, . . . , t. Furthermore, assume that, for each k = 1, . . . , t,
Xk−2 and Y k−1 are epistemically irrelevant to Xk given

Xk−1 and that Xk−1 and Y k−1 are irrelevant to Yk given

Xk, meaning that

EXk
[h1|x

k−1, yk−1] = EXk
[h1|xk−1], (11)

EYk
[h2|x

k, yk−1] = EYk
[h2|xk], (12)

2This is the same problem that arises in set-membership estimation in
the multivariate case, i.e., the number of vertices (extreme points) that
describes exactly the membership-set of the state at a given time t increases
exponentially with time.
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for any bounded scalar functions h1 : X k × Yk−1 → R and

given xk−1, yk−1, h2 : X k × Yk → R and given xk, yk−1.

Then, assuming that EXt,Y t [
∏t

k=1 I{ỹk}] > 0 and given the

sequence of measurements ỹt = {ỹ1, ỹ2, . . . , ỹt}, the posterior
upper expectation EXt

[g|ỹt] for any bounded scalar function

g : Xt → R is equal to the unique value ν ∈ R that solves

the following optimization problem:

inf ν s.t. EXt,Y t

[

(g − ν)
∏t

k=1 I{ỹk}

]

≤ 0, (13)

where the above joint upper expectation is given by:

EX0

[

EX1

[

EY1

[

. . . EXt

[

EYt

[

(g − ν)
t
∏

k=1

I{ỹk}
∣

∣Xt

]

∣

∣

∣
Xt−1

]

. . .

∣

∣

∣X1

]∣

∣

∣X0

]]

.

(14)

�
The proof and explanations can be found in [3, Th. 2].3

Notice that, the irrelevance conditions (11)–(12) are just the

generalization to (lower) upper expectation models of the

Markov conditions of independence assumed in Bayesian

filtering. Furthermore, the (lower) upper expectation model

obtained by solving (13) is in fact equal to the lower envelope

of the posterior expectations that we obtain by applying Bayes’

rule to the set of probability measures associated to the joint

model (14). It can in fact be verified that Theorem 1 reduces

to the solution of Bayesian filtering for density functions

when upper expectations are replaced by expectations and the

indicators I{ỹk} by IB(ỹk,γ), where B(ỹk, γ) is ball of radius
γ centred at ỹk, and then taking the limit for γ → 0 [3, Corol.

1].4 Bayesian filtering represents the most informative case, in

the next section we will show that set-membership estimation

represents the least informative case.

A. Set-membership estimation

Consider the following scalar system
{

xk = axk−1 + wk−1,
yk = cxk + vk,

(15)

where a, c ∈ R are known, and assume that the only informa-

tion on the initial state and disturbances is represented by the

following norm bounded constraints

|x0| ≤ ρ0, |wk| ≤ ρw, |vk| ≤ ρv, (16)

for some given scalar ρ0, ρw, ρv > 0. This means that the

only available information on initial state and disturbances

is represented by their spaces of possibilities (i.e., the sets

where they take values). From (15)–(16), it in fact follows that,

given xk−1, the space of possibilities of Xk is Xk(xk−1) =
{xk ∈ R : |xk − axk−1| ≤ ρw} and, given xk, the space of

possibilities of Yk is Yk(xk) = {yk ∈ R : |yk − cxk| ≤ ρv}.

3The only difference w.r.t. [3, Th. 2] is that here for conditioning we apply
the so called Regular extension (13). Applying regular extension is equivalent
to compute the lower envelope of the posterior expectations that we obtain
by applying Bayes’ rule to the set of probability measures (associated to the
joint model) that assign positive mass to the observations [14, Appendix J].

4Bayes’ rule for density functions is defined as the limit of Bayes’ rule for
probability mass function (discrete observations) when the discretisation step
goes to zero, see for instance [14, Sec. 6.10].

The notation Xk(xk−1) and Yk(xk) is used to highlight the

dependence of the possibility spaces of the conditional models

on xk−1 and, respectively, xk. In Section II we have shown

that (15)–(16) is a particular case of a moment problem, i.e.,

the m = 0 moment problem, in which we have a single

constraint (on the support of the variable) and the upper

(lower) expectation of any function g is simply equal to the

supremum (infimum) of g in X . Thus, the upper expectation

models corresponding to the (15)–(16) are:

EX0
[g] = sup

|x0|≤ρ0

g(x0),

EXk
[g|xk−1] = sup

|xk−axk−1|≤ρw

g(xk),

EYk
[h|xk] = sup

|yk−cxk|≤ρv

h(yk),

(17)

for any given xk−1, xk and real-valued functions of the state

(g) and of the measurement (h).
Assume that t = 1 (we can generalize the following

derivations to the case t > 1) and consider (14) in case initial

state, measurement model and state transition are described by

(17). Then, (14) is equal to:

sup
{x0:|x0|≤ρ0}

sup
{x1:|x1−ax0|≤ρw}

sup
{y1: |y1−cx1|≤ρv}

(g(x1)− ν)I{ỹ1}(y1).
(18)

If ỹ1 is an observation compatible with the constraints (15)–

(16), one has sup{x0:|x0|≤ρ0} sup{x1:|x1−ax0|≤ρw}

sup{y1: |y1−cx1|≤ρv} I{ỹ1}(y1) > 0 thus we can apply Theo-

rem 1. The joint upper expectation (18) can be rewritten as

sup
{x0:|x0|≤ρ0}

sup
{x1:|x1−ax0|≤ρw}

[

(g(x1)− ν)+ sup
{y1: |y1−cx1|≤ρv}

I{ỹ1}(y1)

+(g(x1)− ν)− inf
{y1: |y1−cx1|≤ρv}

I{ỹ1}(y1)
]

,

(19)

where (g − ν)+ = sup(0, g − ν) and (g − ν)− = inf(0, g −
ν) are respectively the positive and negative part of (g −
ν). It holds that inf{y1: |y1−cx1|≤ρv} I{ỹ1}(y1) = 0, and

sup{y1: |y1−cx1|≤ρv} I{ỹ1}(y1) = I{x1: |ỹ1−cx1|≤ρv}. Thus,

(19) can be rewritten as

sup
{x0:|x0|≤ρ0}

sup
{x1:|x1−ax0|≤ρw ,|ỹ1−cx1|≤ρv}

(g(x1)− ν)+.

(20)

Since (g(x1)−ν)+ is always non-negative, the infimum value

of ν such that (20) is non-positive is

ν = sup
{x0:|x0|≤ρ0}

sup
{x1:|x1−ax0|≤ρw}∩{x1:|ỹ1−cx1|≤ρv}

g(x1),

(21)

which, by (13), is the solution of the filtering problem ν =
E[g|ỹ1], i.e., the upper posterior expectation of the function g
of X1 given the observation ỹ1. Observe that the hypothesis

EX,Y1
[I{ỹ1}] > 0 of Theorem 1 ensures that the intersection

in the second supremum in (21) is non empty. Consider for

instance the case g = X1 and assume that a = c = 1,
then from (21) one has that ν = EX1

[X1|ỹ1] = min(ρ0 +
ρw, ỹ1 + ρv), and, thus, EX1

[X1|ỹ1] = −EX1
[−X1|ỹ1] =

max(−ρ0−ρw, ỹ1−ρv) gives the upper posterior mean of X1.
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It can be noticed that the solution ν of (18) coincides with the

set-membership estimate of X1 and the posterior expectation

of any function of Xk at any time k can be simply obtained

by applying interval analysis. Actually, in set-membership

estimation one aims to compute the posterior support of X1

and not the lower and upper posterior means. It can easily be

shown that the interval [EX1
[X1|ỹ1], EX1

[X1|ỹ1]] coincides
with the posterior support.

B. Markov’s moment problem

Assume that, besides m-moments, we know lower and

upper bounds of the density function. For instance, for the

measurement density function, this means

l(yk|xk) ≤ p(yk|xk) ≤ u(yk|xk),

where the two functions 0 < l(yk|xk), u(yk|xk) are assumed

to be known real-valued bounded continuous functions for

any xk ∈ Xk. This is the Markov’s moment problem [5,

Ch. 7] in which, besides the knowledge of the moments, an

additional condition is imposed on the distribution dP (x) in

(1): the distribution is required to have a density p(x) which is

lower and upper bounded by known functions. If we assume

a bounded density model for the measurement equation, then

it can be shown [16] that for any real-valued function h of Yk

the upper expectation EYk

[

h
∣

∣xk

]

can be obtained by solving:

inf
z

z
Tµ(xk) +

∫

Yk

(h(yk)− z
T
f(yk))

+u(yk|xk)dyk

+

∫

Yk

(h(yk)− z
T
f(yk))

−l(yk|xk)dyk.

(22)

Provided the upper expectation model in (22) is well-defined,

the extreme densities which give the lower/upper expectations

are piecewise densities that can only assume values in the set

{l(yk|xk), u(yk|xk)} for any yk ∈ Yk and xk ∈ Xk and that

have at most m + 1 points of discontinuity in Yk . Observe

that, when l(yk|xk) = u(yk|xk) = p(yk|xk), we are back

to a standard PDF model and (22) reduces to EYk

[

h
∣

∣xk

]

=
∫

Yk

h(yk)p(yk|xk)dyk.
In the following, we assume the model (22) for the measure-

ment equation with l(yk|xk) > 0 and, thus, the measurement

model is a set of PDFs defined by gmfs and lower and upper

bounds on the density.

Observe that, when l(yk|xk) = 0 one has that

EYk

[

IB(ỹk,γ)

∣

∣xk

]

= 0 for any xk ∈ Xk and small γ, and in

this case it can be shown that the moment based filter gives the

same posterior inferences as set-membership estimation even

in the case, besides the supports, additional information on the

moments is available for initial state and noises. The intuitive

explanation for this behaviour is that EYk

[

IB(ỹk,γ)

∣

∣xk

]

= 0
implies that the set of conditional probabilities that character-

izes the observation model includes distributions that are zero

on a neighborhood of the observation ỹk. This means the event

“the observation yk falls in a neighborhood of ỹk” has zero

probability. Thus, Bayes’ rule is not applicable (the likelihood

is zero). Applying (13) in this case, it is equivalent to apply

Bayes’ rule only to the likelihoods that assign positive mass

(but arbitrarily close to zero) to a neighborhood of ỹk. If we

do that, it results that the posterior inferences coincide with

those obtained via set-membership estimation. This behaviour

can be avoided if l(yk|xk) > 0 for any yk, xk. This happens

for instance when the density function of the measurement

model is known and positive (e.g., Gaussian) or when lower

and upper bounds for the density are given with l(yk|xk) > 0.

IV. AN ALGORITHM FOR THE GMF FILTER PROBLEM

Hereafter, we describe an algorithm that allows to solve (13)

in case the upper expectation models for initial state, state dy-

namics and measurement equation are given by (9)–(10) with

the additional constraints l(yk|xk) ≤ p(yk|xk) ≤ u(yk|xk)
for the measurement model. To solve (5), we discretise the

support Xk for k = 0, 1, . . . , t so that (5) becomes a linear

program.

1) For each k = 0, . . . , t discretise Xk by generating n
points (equally spaced) in Xk.

2) Set a value of ν and set g(·, t, ν) = g(·)− ν.
3) Do the following backward propagation for k = t, . . . , 1:

For each discretised value xj
k−1 of Xk−1, solve

g(xj

k−1, k − 1, ν) = inf
z

z
T
µ

k
x(x

j

k−1)

s.t. zT f(xi
k)− EYk

[g(xi
k, k, ν)I{B(ỹk,γ)}|xk] ≥ 0, ∀xi

k ∈ Xk,

where µk
x(x

j
k−1) are the known moments of f(xk) given

xj
k−1.

4) Solve:

res = inf
z

z
T
µ

0
x

s.t. z
T
f(xi

0)− g(xi
0, 0, ν) ≥ 0, ∀xi

0 ∈ X0,

where µ0 are the known moments of f(x0).
5) Repeat steps 2–4 until the infimum value of ν such that

res ≤ 0 is achieved.

The solution of step 5 gives ν = EXk
[g|ỹk]. Observe that also

to compute EYk
[g(xi

k, k, ν)I{B(ỹk,γ)}|xk] we need to solve an

optimization problem like (22). 5

V. NUMERICAL SIMULATIONS

In [11], we have shown the application of the generalised

moment based filter (GMBF) to both a linear and nonlinear

scalar systems in which the measurement noise is Gaussian

and only the mean and variance are known for initial state

and process noise. Here, we modify the assumptions on the

noises to obtain a percentiles based filter.

Consider the one-dimensional model (15). We assume to

know: (i) the support X0, the 25th percentile E[I{X0≤−0.3}] =
0.25, the 50th percentile E[I{X0≤0}] = 0.5 and the 75th

percentile E[I{X0≤0.3}] = 0.75; (ii) a similar model is

assumed for the process noise. These are the percentiles

of a Cauchy distribution with zero location parameter and

0.3 scale parameter C(0, 0.3). Conversely, the measurement

noise is assumed to be Gaussian distributed vk ∼ N (0, r)
with r > 0 (i.e., l(yk|xk) = u(yk|xk) = N (yk, xk, r)).
From the knowledge of the percentiles of the process noise

5We have implemented the above algorithm in matlab-tomlab by solving
the dual problems by using cplex algorithm and the infimum on ν problem
using npsol.
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and (15), we can derive: E[I{Xk≤−0.3+axk−1}|xk−1] = 0.25,
E[I{Xk≤axk−1}|xk−1] = 0.5 and E[I{Xk≤0.3+axk−1}|xk−1] =
0.75. We can the employ the algorithm of Section IV with

Xk = X = [−50, 50] and discretisation step 0.1 to compute

the 95% robust credible interval, i.e., the smaller interval

which has lower probability 0.95 of including the true state.

For comparison, we report the estimate of a KF that assumes

x0 ∼ N (0, q), wk ∼ N (0, q) and vk ∼ N (0, r) where the

variance q = (0.4447)2 ensures that the zero-mean Gaussian

distribution has the same 25th, 50th and 75th percentiles of

C(0, 0.3).
A trajectory of 8 timesteps has been considered based on

the assumption x0, wk ∼ C(0, 0.3) (the true model is stationary

but the GMBF is not assuming stationarity). For performance

comparison, we have computed the optimal Bayesian estimate

(OPF), i.e., the posterior mean, obtained by a particle filter

(2500 particles) based on the true unknown distributions of

x0, wk (i.e., the Cauchy distribution). The results are shown

in Figure 1. It can be noticed that the KF estimate is wrong

at time 7. The trajectory of the system and the OPF are

not included in the 95% KF-CI (KF-Chebyshev Inequality)

based interval, while they are included in the GMBF credible

interval (because the likelihood model is Gaussian with a small

variance, KF recovers very fast in 1-2 time steps). These

violations happen in several trajectories: the average (in the

230 MC runs) coverage of the 95% KF-CI based interval is

around 85%, while the 95% credible interval of GMBF has

a coverage of 98%. The flat-tails of the Cauchy distribution

makes the KF to be not robust.
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Fig. 1. Trajectory (brown triangles), KF estimate (red empty circles), OPF
estimate (green full circles), GMBF lower and upper limits of the credible
interval (blue full squares) and KF Chebyshev inequality based interval (black
empty squares) for a single MC run.

VI. CONCLUSIONS

In this paper, we have solved the filtering problem in the

case only few generalised moments of initial state and noise

terms are known. We have also shown that this filter reduces

to set-membership estimation when only the supports of the

noises are known.

A main issue for future work is how to efficiently extend

this approach to the multivariate case. A global discretisation

of the space X is not efficient in high dimensions. These are

some ideas that can be exploited.

First, we can assume that the noises are bounded and that

we have some further information expressed as gmfs and

bounds on the PDF. Since the noises are bounded we can

use set-membership estimation to compute some polytopic

outer approximation of the support [17] and, thus, apply the

discretisation to this set. In this way, we perform a local

discretisation which is much more efficient. The additional

information on the noises (mean, variance) can be used to

compute a 95% credible region that can be much smaller

than the 100% credible region (support) computed by set-

membership estimation without caring about the additional

information on the noises. Second, we can solve the problem

without discretisation by using the minimax formulation in (6)

and nonlinear optimization approaches. Third, for piecewise

polynomial functions f, g, the inner supremum in (6) can

be solved efficiently [13] by using linear matrix inequalities.

Thus, we could use a polynomial approximation instead of

discretisation to practically solve the semi-infinite linear pro-

gram.
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