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Abstract

We consider the case in which the available knowledge does not allow to specify a
precise probabilistic model for the prior and/or likelihood in statistical estimation.
We assume that this imprecision can be represented by belief functions models.
Thus, we exploit the mathematical structure of belief functions and their equiva-
lent representation in terms of closed convex sets of probabilities to derive robust
posterior inferences using Walley’s theory of imprecise probabilities. Then, we
apply these robust models to practical inference problems and we show the con-
nections of the proposed inference method with interval estimation and statistical
inference with missing data.
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1. Introduction

A multivalued function (also called multifunction or correspondence) is a set-
valued function, i.e., it assigns to each point in one set a set of points in a possibly
different set. Multivalued functions are interesting because they arise in various
practical applications.

• In economics, the budget set is defined as:

Γ(p,m) = {x ∈ Rn
+ : pT x≤ m},

i.e, the set of commodity vectors x that can be bought with income m ∈ R+

at the vector of prices p ∈ Rn
+. Here, Γ is a multivalued function that maps

points of Rn
+×R+ to subsets of Rn

+.
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• In statistics, a missingness process is defined as:

Γ(o) = {o,?},

i.e., the observation o ∈ O is mapped into itself or is missing (?). For
instance, in a sequence of dice rolls the process that turned the sequence
{2,4,1,5,2,6} into the sequence {2,4,1,5,?,6} is a missing process (the
outcome of the fifth roll is missing). It can be regarded as a multivalued
function that maps the fifth roll to the set of all possible dice roll outcomes
(here denoted by ?).

• In optimal control theory, it may happen that for a given state x the optimal
control value u is not unique, i.e., there exists a set Γ(x) of equivalent opti-
mal controls. The map from the state space to the set of equivalent optimal
controls is thus a multivalued function.

Let Γ denote generically a multivalued function from the set Z to subsets of the
set X . Assume that PZ is a measure that assigns probabilities to the members of
a class F of subsets of Z . If PZ(A) is the probability of A ∈F and if B⊆ Γ(A),
then what is the probability of B? While a single valued function (under general
conditions) carries PZ to a unique probability measure PX over subsets of X , a
multivalued function leads to a set of probability measures on X .

A way to characterize such set of probability measures is to determine lower
and upper bounds for the probabilities induced from the multivalued mapping;
this has been the approach first proposed by Dempster in [1]. Later, Shafer [2, 3]
has called the lower and upper probabilities induced from a multivalued mapping
belief (Bel) and, respectively, plausibility (Pl) functions.

The aim of this paper is to show how belief function models can be used in
robust statistics. Hereafter, we use the term robust as in Bayesian robustness anal-
ysis, i.e., the robustness of the posterior inferences to the choice of the involved
probabilistic models, namely the prior and the likelihood. In case of total or partial
lack of information about the probabilistic models, an issue in Bayesian analysis
is how to select the prior and the likelihood. Consider for instance the choice of
the prior, there are two main avenues that can be followed (for both avenues we
will distinguish the cases of total or partial lack of information).

The first assumes that the lack of prior information can be managed satisfacto-
rily by considering a single prior probability. For instance in case of total prior
ignorance a common choice is to consider so-called “noninformative priors”, i.e.,

2



Laplace’s prior, Jeffreys’ prior, or the reference prior of Bernardo (see [4, Sec.
5.6.2] for a review). This view has been questioned on diverse grounds. Non-
informative priors are typically improper and may lead to an improper posterior.
Moreover, even if the posterior is proper, it can be inconsistent with the likelihood
model (i.e., incoherent in the subjective interpretation of probability [5, Ch. 7]).
Furthermore, the need of selecting a single probability limits the expressiveness
of the probabilistic model. For instance, the most important criticism of nonin-
formative priors is that they are not expressive enough to represent ignorance [5,
Ch. 5]. For the case of partial lack of prior information, a common choice is to
consider so-called “fat-tail” priors (e.g., the t-Student or the Cauchy distribution)
or distributions selected according to some external criterion, e.g., maximum en-
tropy. This approach can also be questioned, since it usually leads to a unimodal
distribution while the available prior information may also be compatible with a
multimodal distribution. The result is that the inferences may be not robust, in the
sense that a point estimate based on a unimodal distribution can be in a region of
lower probability if the true distribution is multimodal.

An alternative is to use a set of prior distributions, M , rather than a single distribu-
tion, to model prior ignorance about statistical parameters. Each prior distribution
in M is updated by Bayes’ rule, producing a set of posterior distributions. In fact
there are two distinct approaches of this kind, which have been compared by Wal-
ley [5]. The first approach, known as Bayesian robustness [6, 7], considers a set
of priors which is built around a candidate (ideal) distribution which is compatible
with, but does not match completely, the available prior information. The resulting
set of priors is in general a neighbourhood model, i.e., the set of all distributions
that are close (w.r.t. some criterion) to this ideal distribution. Examples of neigh-
bourhood models are: ε-contamination models [8, 9]; restricted ε-contamination
models [10]; intervals of measures [9, 11]; the density ratio class [5, 11], etc. Note
that this approach is not suitable in case of total lack of prior information, because
in this case there is no ideal prior distribution, since no single prior distribution
can adequately model the lack of prior information. Therefore, in this case, also a
neighbourhood model can be inadequate.
In case of total lack of prior information, Walley [5] has proposed the use of the
so-called “near-ignorance” priors. This approach revises Bayesian robustness by
directly emphasizing the upper and lower expectations that are generated by M .
In choosing a set M to model total prior ignorance, the main aim is to generate
lower and upper expectations with the property that E(g) = infg and E(g) = supg
for a specific class of gambles g of interest in the statistical analysis. This means
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that the only information about E(g) is that it belongs to [infg,supg], which is
equivalent to state a condition of complete prior ignorance about the value of g
(this is the reason why we said that a single, however noninformative, prior can-
not model prior ignorance). However, such condition of prior ignorance can only
be imposed on a subset of the possible functions g (for this reason the model is
called near-ignorance prior) otherwise it produces vacuous posterior inferences
[5, Ch. 5]. Based on this idea, Walley [5, 12] has developed near-ignorance prior
models for various statistical models: for inferences with categorical data (i.e., the
so-called Imprecise Dirichlet Model); for inferences with real data [12, 13]. Start-
ing from this work, in [14] we have derived near-ignorance prior models for all the
members of the regular exponential families, which include the most used proba-
bilistc models in statistical analysis. An issue with near-ignorance prior models is
that, in some cases they may produce too uninformative inferences, for example
when the observations are not precise [15]. In [16], to overcome this issue in the
case of a bounded parameter space, Moral has proposed some alternative models
to the Imprecise Dirichlet Model that do not satisfy near-ignorance, but that pro-
duce more meaningful inferences in those cases where the ones produced by the
Imprecise Dirichlet Model seem to be too weak. Observe that, for inferences with
sets of probabilities, an estimate is called robust when either it does not depend on
the choice of a particular probability in the set (i.e., we return the set of all point
estimates computed by considering any probability in the set) or it is calculated
based on a worst-case scenario (i.e., a minimax estimate computed with respect to
the most adverse probability in the set).

In this paper, we consider the case in which some partial information about the
probabilistic models is available and we assume that this information can be mod-
elled by belief functions. In this respect, the statistical models developed in this
paper are close to the neighbourhood models discussed previously and, in some
cases, they coincide with these models. For instance, it will be shown that the
ε-contamination models are indeed belief functions [17, 18].

The use of belief functions for statistical inference has been investigated by sev-
eral authors, see for instance [17–23]. Most of these approaches consider a belief
function model for the likelihood and then use frequentist approaches to derive
inferences. In other case, both likelihood and priors are modelled by belief func-
tions and, then, the Dempster-Shafer calculus is used to compute inferences. An
issue of these approaches is that when the belief functions and probabilities are
given a betting interpretation [5, 24], then these models can incur a sure loss and,
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thus, be inconsistent under a betting interpretation. This issue can be avoided if
we perform the analysis in the Bayesian framework as shown by Walley [5].
In the context of Bayesian analysis, the use of belief functions in robust statistics
was first proposed by Wasserman [17, 18] with the aim of building new robust
prior models. In this paper, we extend this analysis by considering the case in
which also the likelihood model can be modelled by a belief function. To obtain
this goal, we will exploit the tools of the theory of Imprecise Probability developed
by Walley. In particular, we will employ the multivalued mapping mechanism to
build robust belief function models for the likelihood and the prior. Then, we will
exploit the interpretation of belief functions as closed convex sets of probabilities:

PX = {P : Bel(A)≤ P(A)≤ Pl(A), ∀A ∈F},

and apply Walley’s theory of imprecise probabilities to these sets to derive infer-
ences. In particular, we will exploit two tools of Walley’s theory: (i) marginal
extension, (ii) regular extension. Given an unconditional closed1 convex set of
probabilities PX and a conditional one PY |X (i.e., a collection of conditional
closed convex sets of probabilities of Y for each given value of the conditioning
variable X in X ), marginal extension builds a joint set PX ,Y which is obtained
by applying the law of total probability to all pairs of probabilities in the closed
convex sets PX and PY |X . Conversely, given a closed convex set of joint proba-
bilities PX ,Y and an observation Y = ỹ, we compute the conditional closed convex
set PX |ỹ by applying Bayes’ rule to all elements of the set PX ,Y , which assign
positive probability to the observation ỹ. This approach is thus a straightforward
generalisation of Bayesian inference to closed convex sets of probabilities.

It should be pointed out that marginal extension does not preserve the ∞-
monotonicity of the set of probabilities to be combined (we will seen an example
later in the paper). In other words, if the prior PX and the likelihood model PY |X
are closed convex sets of probabilities defined by a multivalued mechanism (they
are belief functions), the resulting posterior set PX |ỹ, that we obtain by apply-
ing first marginal extension and then generalised Bayes’ rule, may be not a belief
function. This means that the lower probability induced by PX |ỹ, i.e.,

P(A|ỹ) = inf
P(·|ỹ)∈PX |ỹ

P(A|ỹ), ∀A ∈F ,

may be not a belief function.

1In the weak∗ topology; see [5, Sec. 3.6] for more details.
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We do not see this as a weak point of the proposed inference method. In fact,
many of the models used in robust statistics and based on sets of probabilities are
not belief functions. For instance the lower probability defined by the following
set of Normal densities with bounded mean:

PX = {N(x;m,1) : m ∈ [a,b]},

is not a belief function (this is shown later in the paper). This is one of the most
used robust models in engineering applications. Many other counterexamples can
be provided. The advantage of using Walley’s theory of imprecise probability is
that it can be applied to general closed convex sets of probabilities and, thus, we
are not obliged to limit ourself to belief function models.

Although many useful sets of probabilities are not belief functions, the multi-
valued mapping mechanism is a very useful tool to build robust models. Further-
more, belief functions are advantageous from a computational point of view as it
will be explained later. For these reasons, it is worth to investigate the applica-
tion of belief function models to statistical inference problems; at least for all the
cases in which the expressiveness of belief function is enough to model the sta-
tistical problem we are considering. The paper is organized as follows. Section
2 revises the interpretation of belief functions in terms of closed convex sets of
probabilities and presents some examples. Section 3 includes the main results of
the paper for the application of belief functions to statistical inference. Section
4 presents new models for robust inference based on belief functions and shows
the connections of the proposed inference method based on belief functions with
interval estimation and statistical inference with missing data. Finally Section 5
ends the paper.

2. Belief function

In this section we revise some properties of belief functions [17]. Let X be
a Polish space (e.g., Euclidean space) with Borel σ -algebra B(X ) and let Z
be a convex, compact, metrizable subset of a locally convex topological vector
space with Borel σ -algebra B(Z ) [17]. Let PZ be a probability measure on
(Z ,B(Z )) and let Γ be a multivalued mapping from Z to 2X (i.e., the power set
of X ) such that, by defining A∗= {z ∈Z : Γ(z)∩A 6= /0} for a given A∈B(X ),
it satisfies that A∗ ∈B(Z ) for each A ∈B(X ).2

2This property of Γ is called strong measurability, we point the reader to [25] for more details.
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For each A⊆X , define the belief and plausibility function as [1, 17]:

P(A) = Bel(A) = PZ({z ∈Z : Γ(z)⊂ A}),
P(A) = Pl(A) = PZ({z ∈Z : Γ(z)∩A 6= /0}). (1)

The fourtuple (Z ,B(Z ),PZ,Γ) is called a source for Bel. Bel and Pl are related
by Bel(A) = 1−Pl(Ac), where Ac is the complement of A. An intuitive expla-
nation [17] of Bel and Pl is as follows. Draw z randomly according to PZ . Then
Bel(A) is the probability that the random set Γ(z) is contained in A and Pl(A) is
the probability that the random set Γ(z) hits A [26]. Here, a simple example [5,
Sec. 5.13.3] that explains the construction of belief functions through multivalued
mappings.

Example 1. Suppose that our information on X is a report from an unreliable
witness that the event B ⊂ X has occurred. We might consider two possible
explanations: either the witness really observed B, or he observed nothing at all.
These hypotheses are represented by z1 and z2, with multivalued mapping Γ(z1) =
B and Γ(z2) =X . If we assess the probability PZ(z1) = q and PZ(z2) = 1−q with
q∈ (0,1), this corresponds to the belief function Bel(A) = q if A⊇ B and A 6=X ;
Bel(A) = 1 if A = X and zero otherwise.

The multivalued mapping mechanism can be used to define belief functions also
in the case the sets Z and X are infinite.

Example 2. Consider the case Z = R+, B(Z ) is the Borel σ -algebra on R+

and PZ(dz)= pz(z)dz, where pz is the chi-square density function (w.r.t. the Lebesgue
measure on R+) with one degree of freedom:

pZ(z) =
z−1/2e−z/2

21/2G
(1

2

) , z > 0,

where G(z) is the Gamma function. Furthermore, assume that X = R, B(X )
is the Borel σ -algebra on R and consider the multivalued mapping Γ(z) =±x =
±√z, i.e, z= x2. We aim to compute the lower and upper probability of the follow-
ing intervals A = (−∞,x] for each x∈X . By definition of cumulative distribution
function (CDF), the lower and upper probability of A = (−∞,x] correspond to the
lower and upper CDF. By exploiting (1) it follows that:

P(A)=F(x)=

{
0, x≤ 0,∫ x2

0 pZ(z)dz, x > 0,
P(A)=F(x)=

{ ∫
∞

x2 pZ(z)dz, x≤ 0,
1, x > 0.

(2)
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Figure 1: Lower and upper distribution function. The central line is the Normal distribution.

Figure 1 shows the lower and upper CDF together with the CDF of the standard
Normal distribution. It is well known that if X is standard Normal distributed then
Z = X2 is chi-square distributed with one degree of freedom. Since the inverse of
the relation Z = X2 is a multivalued function, the converse does not hold. For
instance, if X > 0 is chi distributed with one degree of freedom, i.e., it has density

p(x) =
2

1
2 e−

x2
2

G(1
2)

,

then X2 is again chi-square distributed with one degree of freedom. Thus, both
Normal and the chi distribution with are mapped into a chi-square distribution
with one degree of freedom from the relation Z = X2. Summarizing, if we know
that Z is chi-square distributed and that X =±

√
Z, we can only say that the CDF

of X is bounded by the lower and upper CDF in Figure 1. The CDF of the chi
distribution coincides with the lower CDF. Note that, the area between the lower
and upper CDF in Figure 1 may include CDFs whose transformation to Z = X2

is not a chi-square distribution. Thus, if we keep only the set of CDFs bounded
by the upper and lower distribution functions, we may lose information, in the
sense that there can be intermediate CDFs which do not correspond with this
multivalued function. This issue can be avoided by working directly with the set
of probabilities induced by the multivalued mapping from the probability measure
Pz.

Example 3. Assume X = Z = R, we discuss another model (see [17] for the
derivations) generated by a multivalued map. Assume that

pZ(x) = (1− ε)π ′Z(x)+ εδ{z0}(x),
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where δ{z0} is a Dirac’s delta on z0 and π ′ is a probability density function (PDF)
such that π ′Z(z0) = 0 and π ′Z = πZ if x 6= z0. Consider then the multivalued map
Γ(x) = x if x 6= z0 and Γ(x) = R if x = z0. From (1) it follows that:

P(A) = (1− ε)
∫

A
π
′
Z(x)dx, P(A) = (1− ε)

∫
A

π
′
Z(x)dx+ ε.

This is the so called ε-contamination model [8] or linear-vacuous model [5, Sec.
2.9.2]. When ε = 1, it reduces to a vacuous model P(A) = 0 and P(A) = 1 for all
A 6= X and P(X ) = P(X ) = 1.

This lack of knowledge expressed via a belief function can equivalently3 be rep-
resented through a set of probability measures, i.e., the set of all probabilities on
X that are compatible with the bounds Bel and Pl [1]:

PX = {PX : Bel(A)≤ PX(A)≤ Pl(A) for any A⊆X }. (3)

Example 4. Consider the Example 1 with X = {x1,x2,x3} and B = {x1,x2}. The
set of probability measures induced by the belief function is the following closed
convex set:

PX =

{
p : p =

4

∑
i=1

αi pi, αi > 0,
4

∑
i=1

αi = 1

}
, (4)

where p, pi denote probability mass functions in PX and p1(x1) = 1, p1(x2) = 0,
p1(x3) = 0 and p2(x1) = 0, p2(x2) = 1, p2(x3) = 0 and p3(x1) = q, p3(x2) = 0,
p3(x3) = 1−q and p4(x1) = 0, p4(x2) = q, p4(x3) = 1−q. In other words, Px is
the convex hull of the set of extreme probabilities:

Ext(PX) = {p1, . . . , p4}.

Here p1 considers the case in which all the mass is assigned to x1, which belongs
to both B and X (similar p2 for x2). p3 and p4 consider the case in which the
mass 1−Bel(B) is assigned to x3, while the mass Bel(B) is assigned respectively
to x1 or x2. It can easily be verified that the belief function (and the plausibility
function) in Example 1 satisfy:

Bel(A) = P(A) = min
p∈PX

∑
xi∈A

p(xi), Pl(A) = P(A) = max
p∈P ∑

xi∈A
p(xi).

3Conditions for the equivalence between the class of the distributions induced by a random
set and the lower (or upper) probability it induces are discussed [25]. In this paper we focus the
attention to cases for which this equivalence holds. We point the reader to [25] for more details.

9



For this reason, Bel (Pl) is also called lower (upper) probability, since it is the
lower (upper) envelope of a set of probability measures. Observe that the mini-
mum/maximum are always attained by the extremes p1, . . . , p4; this follows from
the fundamental theorem of linear programming.

Example 5. Consider Example 3, in this case the set of extreme probabilities is

Ext(PX) =
{

p = (1− ε)π ′Z + εδ{xd} : xd ∈ R
}
, (5)

that is the extreme probabilities are convex combinations of the density π ′Z with
all the possible Dirac’s delta in R. Given any real valued function g, the lower
and upper expectations of g are obtained by these extreme probabilities.

Thus, associated to each belief function, there is a closed convex set of probabil-
ity measures of which a belief function is a lower bound but, on the other hand,
the lower bound P of a closed convex set of probability measures is not neces-
sarily a belief function, see for instance [5]. Assuming that P( /0) = 0, P(X ) = 1
and P(X) ≥ 0 for all X ∈ X then, to be a belief function, the lower bound P
of a closed convex set of probability measures has to satisfy the property of ∞-
monotonicity [2, Theorem 2.1], i.e., for every positive integer n ≥ 2 and every
collection X1, . . . ,Xn of elements of B(X ),

P(X1∪X2∪·· ·∪Xn) ≥ ∑i P(Xi)−∑i< j P(Xi∩X j)+ . . .
+ (−1)n+1P(X1∩·· ·∩Xn).

(6)

There are many closed convex sets of probabilities that are used in practice
in statistical inference that are not belief functions, see next Examples 6 and 7.
By restricting closed convex sets of probabilities to be belief functions one looses
in generality but can gain in tractability.4 In fact, because of the ∞-monotonicity
property, belief functions satisfy several nice properties. We discuss one of the
most useful properties in the next section. Besides tractability, belief functions
are also an useful source of closed convex set of probabilities. This is mainly
because of the multivalued mapping mechanism that can be used to define belief
functions.

4This is not always the case as shown by the simple counterexamples 6 and 7. Inferences from
both these models are relatively easy to derive.
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Example 6. Consider a Normal distribution N(x;m,1) with x ∈ R, mean m and
variance 1. Assume that we do not know m but we know that it belongs to [−1,1].
Our uncertainty can be modelled by the following set of probability density func-
tions:

PX = {N(x;m,1) : m ∈ [−1,1]} ,

i.e., the set of all Normal densities with mean varying in [−1,1]. Consider then
the events X1 = [−1,−0.9]∪ [0.9,1] and X2 = [−0.6,−0.5]∪ [0.9,1], one has
that

P(X1) = inf
m∈[−1,1]

∫
X1

N(x;m,1)dx = 0.0456,

and the minimum is obtained for m =−1 or m = 1. Similarly, one has that:

P(X2) = 0.0420, for m =−1,
P(X1∩X2) = 0.0060, for m =−1,
P(X1∪X2) = 0.0578, for m = 1.

Thus, it results that

0.0578 = P(X1∪X2)< P(X1)+P(X2)−P(X1∩X2) = 0.0818,

which violates (6) for n = 2. We thus conclude that the lower probability defined
by the set of densities PX is not a belief function (it is not ∞-monotone).

Example 7. This example has been adapted from [5, Sec. 5.13.4]. Consider a
multivariate Normal distribution N(x;m,Σ) with x = [x1,x2]

T ∈ R2, mean m =
[0,0]T and covariance matrix

Σ =

[
1 ρ

ρ 1

]
,

where the correlation coefficient ρ is completely unknown. Thus, we only know
that it satisfies ρ ∈ (−1,1).5 Our uncertainty can be modelled by the following
set of probability density functions:

PX = {N(x;m,Σ) : ρ ∈ (−1,1)} .

5 We have considered an open interval ρ ∈ (−1,1) to avoid degenerate situations in which the
covariance matrix Σ has zero determinant, i.e., the cases ρ =±1.
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Consider then the events X1 = {x : x1 ≤ 0} and X2 = {x : x2 ≤ 0}, one has that

P(X1) = P(X1) = 0.5, for any ρ,
P(X2) = P(X2) = 0.5, for any ρ,

P(X1∩X2) = 0, for ρ →−1,
P(X1∩X2) = 0.5, for ρ → 1.

By exploiting the inequality [5, Property 2.7.4(h)]:

P(X1∪X2)≤ P(X1)+P(X2)−P(X1∩X2),

it follows that P(X1∪X2)≤ 0.5. Then, since

P(X1)+P(X2)−P(X1∩X2) = 1,

one gets
P(X1∪X2)< P(X1)+P(X2)−P(X1∩X2),

which violates (6). We thus conclude that the lower probability defined by the set
of densities PX is not a belief function.

2.1. Upper and lower expectation
The previous section has discussed several belief functions generated through

multivalued mappings. We have also seen that a belief function can equivalently
be interpreted as a lower probability model defined on the subsets of X and, thus,
as a lower expectation model defined on the indicator functions over the subsets of
X , i.e., E(I{A}) = P(A). Assume that we know the functional P(A) = E(I{A}) for
any subset A of X how can we extend this lower probability model to compute
E(g) for any bounded real-valued function of interest g.6 The lower and upper
expectations can be obtained as follows:

EX(g) = inf
PX∈PX

∫
g(x)PX(dx), EX(g) = sup

PX∈PX

∫
g(x)PX(dx). (7)

Thus, the interpretation of belief functions as closed convex sets of probabil-
ity measures allows to compute lower and upper expectations for any bounded

6For unbounded functions, we can define the lower (equivalently upper) expectation as the
limit of a bounded restriction of g as the restriction vanishes. For instance, for g = X with X ∈ R,
we can consider the limit for a→ ∞ of the lower expectation of gI[−a,a]. We point the reader to
[27] for a more rigorous definition and for issues concerning the choice of the restriction.
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real valued function. Since belief functions are multivalued mapping, it has been
proved in [17] that (7) is equal to:

EX(g) =
∫

g∗(z)PZ(dx), EX(g) =
∫

g∗(z)PZ(dz), (8)

where g∗(z) = infx∈Γ(z) g(x) and g∗(z) = supx∈Γ(z) g(x). This fact has important
implications for computation because it reduces the problem of calculating ex-
trema over the set of probability measures PX to that of finding extrema of g over
subsets of X followed by a single integral over Z.

Example 8. Consider for instance the ε-contamination model discussed in the
previous section, then

EX(g) =
∫

g∗(z)PZ(dz) =
∫

dz
[
(1− ε)π ′Z(z)+ εδ{z0}(z)

]
inf

x∈Γ(z)
g(x),

=
∫

Z −{z0}
(1− ε)π ′Z(z)g(z)dz+ ε inf

x∈R
g(x)

=
∫
(1− ε)πZ(z)g(z)dz+ ε inf

x∈R
g(x).

(9)

2.2. Conditional models
In the previous sections, we have discussed unconditional models generated

from a probability space through a multivalued mapping. We can easily extend
the previous results to conditional models. Let PZ(·|zo) be a conditional probabil-
ity measure on (Z ,B(Z )) for each value zo ∈Zo and let {Γ(·|zo) : zo ∈Zo} be
a set of multivalued maps parametrized by zo and taking points in Z to nonempty,
closed subsets of X . For each A ⊆X , define the conditional belief and plausi-
bility function as:

P(A|zo) = Bel(A|zo) = PZ({zi ∈Z : Γ(zi|zo)⊂ A}|zo),
P(A|zo) = Pl(A|zo) = PZ({zi ∈Z : Γ(zi|zo)∩A 6= /0}|zo),

(10)

for each value zo ∈Zo. Hence, equation (8) becomes:

E(g|zo) =
∫

g∗(z)PZ(dx|zo), E(g|zo) =
∫

g∗(z)PZ(dz|zo), (11)

where g∗(z) = infx∈Γ(z|zo) g(x) and g∗(z) = supx∈Γ(z|zo) g(x).
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Example 9. Consider again Example 8 in case πZ(z|z0)=N (z;zo,1) and Γ(z|zo)=
[z0−a,z0 +a] with a > 0. Then, one gets

EX(g|zo) = (1− ε)
∫

g(z)N (z;zo,1)dz+ ε inf
x∈[zo−a,zo+a]

g(x).

3. Statistical inference

Consider the problem of statistical inference about a variable X from mea-
surements ỹn = {ỹ1, . . . , ỹn} of the variables Y1, . . . ,Yn. Assume that we have some
prior information over X which is expressed through a belief function or, equiv-
alently, through the closed convex set of probability measures associated to the
belief function. A belief function model can also be assumed for the observation
process. How can we compute the lower/upper posterior expectation of a bounded
real-valued function g of X given the observations ỹ1, . . . , ỹn?

Before stating the solution of the above inference for belief functions, it is
useful to show how standard Bayesian inference can be formulated in terms of
expectations.

Theorem 1. Assume that our information on the initial state and observation
model is represented by the expectation EX and, respectively, conditional expec-
tations EYk [·|X ] for any k = 1, . . . ,n. Furthermore, assume that, the variables
Y1, . . . ,Yn are conditionally independent given X, which implies that

EY n[h|x] = h0(x)
n

∏
k=1

EYk [hk|x], (12)

for any given x ∈X and for any bounded real-valued function h : X ×Y n→R
such that h = h0 ∏

n
k=1 hk with h0 : X → R and hk : Yk→ R. Then, assuming that

EX ,Y n[∏n
k=1 I{ỹk}]> 0, where I{ỹk} denotes the indicator function of the observation

ỹk and given the sequence of measurements ỹn, the posterior expectation EX [g|ỹn]
for any bounded real-valued function g : X → R is equal to the unique value
ν ∈ R that solves the following optimization problem:

supν s.t. EX ,Y n

[
(g−ν)

n
∏

k=1
I{ỹk}

]
≥ 0, (13)
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where the above joint expectation is given by:

EX

[
(g−ν)

n

∏
k=1

EYk

[
I{ỹk}

∣∣∣X]] . (14)

PROOF. By exploiting the law of total expectation (also called law of iterated
expectations), the joint in (13) can be rewritten as:

EX ,Y n

[
(g−ν)

n

∏
k=1

I{ỹk}

]
= EX

[
EY n

[
(g−ν)

n

∏
k=1

I{ỹk}

∣∣∣X]].
Since (g−ν) is a function of X only, from (12) one has that:

EX

[
EY n

[
(g−ν)

n

∏
k=1

I{ỹk}

∣∣∣∣X]]= EX

[
(g−ν)

n

∏
k=1

EYk

[
I{ỹk}

∣∣∣X]] .
By linearity of the expectation, since ν is a constant, one has that

EX

[
(g−ν)

n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]] = EX

[
g

n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]]
− νEX

[
n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]] . (15)

Equation (13) states that the posterior expectation EX [g|ỹn] is the supremum value
of ν such that (15) is non-negative. Since by assumption:

EX ,Y n[
n

∏
k=1

I{ỹk}] = EX

[
n

∏
k=1

EYk

[
I{ỹk}

∣∣∣X]]> 0,

we can divide (15) by EX ,Y n[
n
∏

k=1
I{ỹk}]> 0 and thus from (13) obtain

supν s.t.
EX

[
g

n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]]
EX

[
n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]] −ν ≥ 0. (16)
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The solution of (16) is thus

ν = EX [g|ỹn] =

EX

[
g

n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]]
EX

[
n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]] , (17)

this in fact is the supremum value of ν such that the inequality in (16) is satisfied.

Assume for instance that X ,Yi are finite sets and, thus, the expectations are com-
pletely defined by the probability mass functions p(x), p(yi|x), then the solution
of (16) is:

ν = EX [g|ỹn] =

EX

[
g

n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]]
EX

[
n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]] =

∑x∈X g(x)p(x)
n
∏

k=1
p(ỹk|x)

∑x∈X p(x)
n
∏

k=1
p(ỹk|x)

= ∑
x∈X

g(x)p(x|ỹn) = EX [g|ỹn],

where p(x|ỹn) denotes the posterior probability of X given ỹn. This shows that
(13) is just the formulation of Bayes’ rule in terms of expectations. Observe
that, in case Yk ⊆ Rm and EYk [·|X ] is the expectation w.r.t. a probability measure
that is absolutely continuous w.r.t. the Lebesgue measure on Rm, i.e., EYk [h|x] =∫

h(yk)p(yk|x)dyk where p(yk|x) is a probability density function, then EYk [I{ỹk}|x] =
0 since any singleton set has zero measure. Thus, Theorem 1 cannot be applied
because the condition EX ,Y n[∏n

k=1 I{ỹk}] > 0 is not met. A way to overcome such
issue in Bayesian estimation is to replace the observation ỹk with nested neigh-
bourhoods B(ỹk,γ) (a ball of radius γ , which should not depend on x). Then, if
the density p(yk|x) is continuous, bounded and positive in these neighbourhoods,
the posterior is obtained by taking the limit of the fraction in (17) for γ → 0. This
gives Bayes’ rule for density functions, for more details see [5, Sec. 6.10]. In this
case, the posterior can equivalently be obtained from Theorem 1 by replacing the
indicator I{ỹk} by a Dirac’s delta on ỹk and by exploiting EYk [δ{ỹk}|x] = p(ỹk|x),
i.e.,

EX [g|ỹn] =

EX

[
g

n
∏

k=1
EYk

[
δ{ỹk}

∣∣∣X]]
EX

[
n
∏

k=1
EYk

[
δ{ỹk}

∣∣∣X]] =

∫
X g(x)p(x)

n
∏

k=1
p(ỹk|x)dx

∫
X p(x)

n
∏

k=1
p(ỹk|x)dx

.
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In the following we extend Theorem 1 to the case where the prior and/or the like-
lihood are modelled by lower expectation models (for instance induced by a belief
function). To obtain such extension, we must generalise the law of iterated expec-
tations and conditional independence to lower expectation models. There is not a
unique way to perform such generalisation, we will use marginal extension [5, Th.
6.7.2] and, respectively, strong independence because they have a Bayesian sensi-
tivity analysis interpretation: (i) to apply marginal extension is equivalent to apply
the law of iterated expectations to all the expectations obtained from the closed
convex sets of probabilities PX and PY |X ; (ii) to say that Y1 and Y2 are strongly
independent given X is equivalent to say that they are stochastically independent
for all extreme points of the joint closed convex set of probabilities PX ,Y1,Y2 .

Definition 1. Let EX and EY [·|X ] be respectively an unconditional and condi-
tional lower expectation model defined by PX and, respectively, PY |X . The
marginal extension of EX and EY [·|X ] is the joint lower expectation:

EX ,Y [h] = EX [EY [h|X ]], (18)

for any bounded real-valued function h on X ×Y [5, Sec. 6.7].

Definition 2. Let EYi
[·|X ] be conditional lower expectation models for i= 1, . . . ,m

defined by the closed convex sets PYi|X . We call strong extension of the PYi|X the
joint conditional closed convex set of probabilities PY m[·|x] =PY1,...,Ym[·|x] whose
extremes are obtained by element-wise combining all the extremes of the PYi|x for
all x ∈X [28].

Consider three variables, X ,Y1,Y2, and the joint closed convex set of probabilities
PX ,Y1,Y2 obtained from PY1|X , PY2|X and PX by applying strong extension and
marginal extension. Then, Y1 and Y2 are strongly independent conditional on X ,
meaning that Y1 and Y2 are stochastically independent given X = x for all the
extreme points of PX ,Y1,Y2 and for all x ∈X [28].

Now we are ready to extend Theorem 1 to lower expectations.

Theorem 2. Assume that our information on the initial state and observation
model are represented by the lower expectation EX and, respectively, conditional
lower expectation EYk

[·|X ] for any k = 1, . . . ,n. Furthermore, assume that, the
joint EY n[·|x] is obtained by strong extension from the EYk

[·|X ] , which implies that

EY n[h|x] = h+0 (x)
n

∏
k=1

EYk
[hk|x]+h−0 (x)

n

∏
k=1

EYk [hk|x], (19)
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for any given x ∈X and for any bounded real-valued function h : X ×Y n→R
such that h = h0 ∏

n
k=1 hk with h0 : X → R, hk : Yk → R and where h+0 (x) =

max(h0(x),0) and h−0 (x)=min(h0(x),0). Then, assuming that EX ,Y n[∏n
k=1 I{ỹk}]>

0 and given the sequence of measurements ỹn, the posterior lower expectation
EX [g|ỹn] for any bounded real-valued function g : X → R is defined as the value
ν ∈ R that solves the following optimization problem:

supν s.t. EX ,Y n

[
(g−ν)

n
∏

k=1
I{ỹk}

]
≥ 0, (20)

where the above joint lower expectation is given by:

EX

[
(g−ν)+

n

∏
k=1

EYk

[
I{ỹk}

∣∣∣X]+(g−ν)−
n

∏
k=1

EYk

[
I{ỹk}

∣∣∣X]] . (21)

PROOF. By exploiting marginal extension, the joint in (20) can be rewritten as:

EX ,Y n

[
(g−ν)

n

∏
k=1

I{ỹk}

]
= EX

[
EY n

[
(g−ν)

n

∏
k=1

I{ỹk}

∣∣∣X]].
Since g−ν is a function of X only, from the definition of lower expectation in (7)
it follows that:

EX

[
EY n

[
(g−ν)

n
∏

k=1
I{ỹk}

∣∣∣∣X]]
= EX

[
(g−ν)+EY n

[
n
∏

k=1
I{ỹk}

∣∣∣X]+(g−ν)−EY n

[
n
∏

k=1
I{ỹk}

∣∣∣X]] ,
where (g(x)−ν)+ = max(g(x)−ν ,0) and (g(x)−ν)+ = min(g(x)−ν ,0). Note
in fact that, since g−ν is a function of X only, one has that:

EY n

[
(g−ν)

n
∏

k=1
I{ỹk}

∣∣∣∣X]= inf
p∈PY n|x

∫
(g(x)−ν)

n
∏

k=1
I{ỹk}(yk)dP(yn|x)

= (g(x)−ν)+ inf
p∈PY n|X

∫ n
∏

k=1
I{ỹk}(yk)dP(yn|x)

+(g(x)−ν)− sup
p∈PY n|X

∫ n
∏

k=1
I{ỹk}(yk)dP(yn|x).
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By exploiting (19), one has that:

EY n

[
n

∏
k=1

I{ỹk}

∣∣∣X]= n

∏
k=1

EYk

[
I{ỹk}

∣∣∣X] ,
and that

EY n

[
n

∏
k=1

I{ỹk}

∣∣∣X]= n

∏
k=1

EYk

[
I{ỹk}

∣∣∣X] .
The lower posterior expectation EX [g|ỹn] is obtained through regular extension [5,
Appendix J], i.e., by solving:

supν s.t. EX

[
(g−ν)+

n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]+(g−ν)−
n
∏

k=1
EYk

[
I{ỹk}

∣∣∣X]]≥ 0.

(22)

Observe that, the lower posterior expectation of g computed from (20) can equiva-
lently be obtained by (i) applying Bayes’ rule to all members of the closed convex
set of joint probabilities associated to EX ,Y n which assign positive mass to the ob-
servations; (ii) computing the expectation of g for each posterior obtained at the
previous step; (iii) compute the lower envelope of all the posterior expectations
computed at the previous step. Note that (20) is a version of Walley’s generalised
Bayes’ rule which is called Regular Extension [5, Appendix J].

In Section 2.1, we have seen that the mathematical structure of belief functions
allows to simplify the computations of lower and upper expectations. Hereafter,
we use this fact to specialize the results of Theorem 2 to the following cases:

• EX and EYk
[·|X ] are lower expectations induced by a multivalued mapping

(i.e., lower expectations w.r.t. a belief function);

• EX is a lower expectation induced by a multivalued mapping while EYk
[·|X ] =

EYk [·|X ] = EYk [·|X ], i.e., the likelihood model can be described by a single
probabilistic model.

Corollary 1. Consider Theorem 2 in case EX and EYk
[·|X ] are lower expectations

induced by a multivalued mapping then the joint in (21) is∫
Z

PZ(dz) inf
x∈ΓZ(z)

[
(g(x)−ν)+

k

∏
i=1

∫
Uk

PUk|x(duk|x) inf
yk∈ΓYk (uk|x)

I{ỹk}(yk)

+(g(x)−ν)−
k

∏
i=1

∫
Uk

PUk|x(duk|x) sup
yk∈ΓYk (uk|x)

I{ỹk}(yk)

]
,

(23)
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where ΓZ maps the probability measure PZ defined in (Z ,B(Z )) to (X ,B(X ))
and ΓYk(·|x) maps PUk(·|x) defined in (Uk,B(Uk)) to (Yk,B(Yk)).

PROOF. This can be derived from (21) by using the expression for the lower ex-
pectation in (8).

Corollary 2. Consider Theorem 2 in case the observation process satisfies EYk
[·|X ] =

EYk [·|X ] = EYk [·|X ], i.e., the likelihood model can be described by a single proba-

bility. Then, in case Yk is discrete, since EYk

[
I{ỹk}

∣∣∣x]= p(ỹk|x), where p(ỹk|x) is
the conditional probability mass function of ỹk given x, the joint in (21) becomes:

EX

[
(g−ν)

n

∏
k=1

p(ỹk|x)

]
, (24)

and in case EX is the lower expectation induced by a multivalued mapping it
becomes ∫

Z
PZ(dz) inf

x∈ΓZ(z)
(g(x)−ν)

n

∏
k=1

p(ỹk|x). (25)

Finally, in case Yk ⊆ Rm, the expressions (24) and (25) still hold but now p(ỹk|x)
must be interpreted as the probability density function of ỹk given x.

PROOF. This can easily be derived from Corollary 1.

4. Applications

In this section, by exploiting the results of Section 3, we will show how be-
lief functions can be employed to draw robust inferences in practical statistical
problems.

4.1. Interval estimation
Consider the following statistical model:{

x ∈ X ,
yi = x+ vi, vi ∈ V ,

(26)

for i = 1, . . . ,n, where the only prior information on the value x of X is that x ∈
X ⊂ R and also the noise term satisfies vi ∈ V ⊂ R. The goal is to estimate x
given n observations ỹi. We assume that the sets X and V are closed symmetric
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intervals including the origin and with known width ρ0 > 0 and, respectively,
ρv > 0. We can model this information by the following (belief function) lower
expectation models:

EX [g] = inf
|x|≤ρ0

g(x),

EYi
[h|x] = inf

|yi−x|≤ρv
h(x,yi),

(27)

for any given x and bounded real-valued functions g and h. Observe in fact that,
the information that x belongs to X can be modelled by the set of all probability
measures with support in X . Hence, it follows that EX [g] = inf|x|≤ρ0 g(x), since
the infimum is obtained by a Dirac’s delta centred at x` = arg inf|x|≤ρ0 g(x). This is
called vacuous restricted model. A similar consideration holds for the conditional
model of Yi given x.

We can now exploit Corollary 1 to compute the posterior lower expectation
of a bounded real-valued function g of X given n observations ỹn. Let us start to
write down EX ,Y n . From (23), one has that

EX ,Y n

[
(g−ν)

n
∏
i=1

I{ỹi}

]
= inf

{x:|x|≤ρ0}

[
(g(x)−ν)+

n
∏
i=1

inf
{yi: |yi−xi|≤ρv}

I{ỹi}(yi)

+ (g(x)−ν)−
n
∏
i=1

sup
{yi: |yi−xi|≤ρv}

I{ỹi}(yi)
]
.

(28)
Since

inf
{yi: |yi−x|≤ρv}

I{ỹi}(yi) = 0,

and
sup

{yi: |yi−x|≤ρv}
I{ỹi}(yi) = I{x: |ỹi−x|≤ρv}, (29)

equation (28) reduces to

EX ,Y n

[
(g−ν)

n
∏
i=1

I{ỹi}

]
= inf
{x:|x|≤ρ0}

[
(g(x)−ν)−

n
∏
i=1

I{x: |ỹi−x|≤ρv}(x)
]
. (30)

Observe that the product of the indicators is only different from zero for the values
of x which satisfy x ∈ {

⋂n
i=1 Xi(ỹi)}, Xi(ỹi) = {x : |ỹi− x| ≤ ρv}. Thus, (30)

can be rewritten as

EX ,Y n

[
(g−ν)

n
∏
i=1

I{ỹi}

]
= inf
{
⋂n

i=1 Xi(ỹi)}∩{x:|x|≤ρ0}
(g(x)−ν)−. (31)
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Since (g(x)−ν)− is always non-positive, the supremum value of ν such that (31)
is non-negative is

ν = inf
{
⋂n

i=1 Xi(ỹi)}∩{x:|x|≤ρ0}
g(x), (32)

which, by (20), is the lower posterior expectation of g given the observations ỹn.
Observe, that the above intersections are non empty because of the assumption in
Theorem 2:

EX ,Y n

[
n

∏
i=1

I{ỹi}

]
> 0.

Consider for instance the case g = X , i.e., we aim to compute the lower posterior
mean of X , i.e., EX [X |ỹn]. From (32), one has that

ν = EX [X |ỹn] = max(−ρ0, ỹ1−ρv, . . . , ỹn−ρv),

and EX [X |ỹn] = −EX [−X |ỹn] = min(ρ0, ỹ1 + ρv, . . . , ỹn + ρv). It can be noticed
that the lower/upper posterior mean can be simply computed by applying interval
estimation.

Actually, in interval estimation one aims to compute the posterior support of X
and not the lower and upper posterior mean. We can easily show that the interval
[EX [X |ỹn],EX [X |ỹn]] coincides with the posterior support.

The posterior support can in fact be obtained by setting g(x) = I[r,s](x)− 1
and looking for the smallest interval [r,s] that has lower posterior probability of
g equal to zero. For Bayesian models, this is in fact equivalent to determine the
100% posterior Bayesian credible interval:

mins− r, s.t. (33)

0 = EX [I[r,s](x)−1|ỹn] =
∫
X
(I[r,s](x)−1)dP(x|ỹn)

=
∫ s

r
dP(x|ỹn)−1.

For a set of probabilities, we just determine the smallest interval that has lower
probability equal to 1 so that the constraint in (33) holds for any probability in the
set. Thus for g(x) = I[r,s](x)−1, (32) becomes

EX1
[g|ỹn] = min

{
⋂n

i=1 Xi}∩{x:|x|≤ρ0}
I[r,s](x)−1.

It is clear that the smallest interval [r,s] such that EX1
[g|ỹn] = 0 is again

max(−ρ0, ỹ1−ρv, . . . , ỹn−ρv)≤ x≤min(ρ0, ỹ1 +ρv, . . . , ỹn +ρv).
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Thus, interval estimation can be seen as the application of the the statistical in-
ference procedure discussed in Section 3 to the simplest belief function models,
i.e., restricted vacuous models. Here, we have discussed the solution of inter-
val estimation in the univariate (scalar) case. In the multivariate case, instead of
the constraints (26) we would have something like ||x||p ≤ γ0 for some p-norm
(same for the measurement noise). The above derivations can straightforwardly
be generalised to this case. This Section has shown that interval estimation can
be formulated in the realm of probability. This is an interesting result because it
shows that interval estimation is not a deterministic approach, but it can be in-
terpreted as a probabilistic approach based on belief functions (more in general
closed convex sets of probabilities). The advantage of seeing interval estimation
under this view is that we can generalize it in case some additional information is
available (besides the support) that can be modelled by belief functions. Then, we
can easily include this information in our model and use Corollary 1 to derive less
conservative posterior inferences.

4.2. Fat tailed prior model
Assume that our information about X ∈ R can be described by a Normal den-

sity p(x)=N (x;0,1) with zero mean and unit variance in the interval [−1.65,1.65]
(this the 90% credible interval for X based on p(x)) but we do not know how to
assign the remaining mass. We model this lack of information by means of the
following multivalued map Γ.

Γ(x) =


x, if x ∈ (−1.65,1.65),
[1.65,∞), if x ∈ [1.65,∞),
(−∞,−1.65], if x ∈ (−∞,−1.65].

Observe that, here we are considering a multivalued map from Z =R to X =R,
with pz(z) =N (z;0,1) and Γ defined above. Since Z =X with a bit of abuse of
notation, we have defined Γ as a map from X to itself. In fact, our aim is to use the
multivalued mapping mechanism to model our uncertainty about the probability
of X on the tails [1.65,∞) and (−∞,−1.65]. This uncertainty is modelled by Γ

that maps all the points x in the right-tail (left-tail) of the Normal distribution to
the interval [1.65,∞) (respectively (−∞,−1.65]).

The closed-convex set of priors defined by the above multivalued map mech-
anism can equivalently be characterized by the lower expectation model:

EX [g] =
∫

dxN (x;0,1) inf
w∈Γ(x)

g(w), (34)
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for any bounded real-valued function g of X . Consider for instance the following
two cases:

1. for g = X , one obtains EX [X ] =−∞ and EX [X ] = ∞;
2. for g = I(−∞,x′], one obtains

EX [I(−∞,x′]] =

{
0, if x′ ∈ (−∞,−1.65),∫ x′
−∞

N (x;0,1)dx, if x′ ≥−1.65;

EX [I(−∞,x′]] =


∫−1.65
−∞

N (x;0,1)dx, if x′ ∈ (−∞,−1.65),∫ x′
−∞

N (x;0,1)dx, if x′ ∈ [−1.65,1.65],
1 if x′ ≥ 1.65.

which are respectively the lower and upper prior CDF of X .

The set of extreme priors which, for any g, attain the lower expectation EX is:

Ext(PX) =
{

p = I(−1.65,1.65)N (x;0,1)+ rlδxl + ruδxu :

xl ∈ [1.65,∞), xu ∈ (−∞,−1.65]
}
,

with rl = ru =
∫−1.65
−∞

N (x;0,1)dx.
Assume the likelihood distribution is the Normal p(y|x) = N (y;x,1) and that

a sequence of n = 4 observations, with sample mean ŷn, is available for inference.
This means that p(ŷn|x) =N (ŷn;x,1/4). We can then exploit Corollary 2 to com-
pute the lower (upper) posterior expectation of any bounded real-valued function
g of X given the n observations, i.e.,:

supν s.t.
∫

dxN (x;0,1) inf
w∈Γ(x)

(g(w)−ν)N (ŷn;w,1/n)≥ 0. (35)

The solution of (35) gives the lower posterior expectation of EX [g|ŷn]; the upper
can be computed as EX [g|ŷn] = −EX [−g|ŷn]. Figure 2 compares the lower and
upper posterior mean obtained by solving (35) with the posterior mean computed
by applying Bayesian inference to the likelihood N (ŷn;x,1/4) and the Normal
prior N (x;0,1) (in this case the posterior mean is E[X |ŷn] =

4
5 ŷn) and, respec-

tively, the posterior mean computed by applying Bayesian inference to the like-
lihood N (ŷn;x,1/4) and a t-Student prior with zero mean and 1 degree of free-
dom (the posterior mean has been computed numerically in this case). Note that,
when the sample mean ŷn belongs to [0,1.65], the difference between upper and
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Figure 2: Lower and upper posterior mean (blue-square), posterior mean based on the Normal
prior (red-circle) and posterior mean based on the t-Student prior (green-triangle).

lower mean is approximately zero. Conversely, when ŷn gets larger, this differ-
ence grows highlighting the conflict between prior and likelihood model. Thus,
when ŷn ∈ [0,1.65], the tail of prior affects only minimally the posterior inference
and, thus, we can equivalently choose a Normal prior or a t-student prior or our
belief function model, since they produce the same inferences, i.e., there is no
issue of robustness. Conversely, when ŷn > 1.65, the choice of the tail behaviour
is critical and our inference strongly depends on this choice. The advantage of
using our belief model in this case is that it has the worst tail behaviour and, thus,
it includes all the posterior inferences computed via a Bayesian analysis w.r.t. any
choice of the tails of the prior. Thus, inferences based on the belief function model
are maximally robust to the tail behaviour.

4.3. Hierarchical Belief function priors
The set of priors considered in the previous section can sometimes be too

conservative because of the presence of the Dirac’s deltas. In some cases, we
may want to restrict the closed-convex set of priors to include only absolutely
continuous probability measures, i.e., a closed-convex set of probability density
functions. We have already seen some examples of this kind of models in Section
2, for instance the set of Normal densities with mean belonging to an interval. The
lower probability induced by this set of densities is not a belief function, however
we can see it as a hierarchical model generated by a belief function.

Consider the Normal prior N(x;m,σ2) with x ∈ R and assume that we do not
know the mean m but we know that

m ∈ [a,b]⊂ R, (36)
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Figure 3: Set of priors (left) and posterior (right) for m ∈ {−1,−0.5,0,0.5,1}.

with a < b. We can model the information about the value m of the mean M by a
restricted vacuous Belief function on [a,b]:

Em[ f ] = inf
m∈[a,b]

f (m), (37)

for any bounded real-valued function f of M. By combining the Normal prior
with the Belief function (37) using marginal extension we can define the following
lower expectation on X :

EX [g] = EM [EX [g|M]] = inf
m∈[a,b]

∫
g(x)N(x;m,σ2)dx, (38)

for any bounded real-valued function g of X .7 For instance in case g = X we
obtain

EX [X ] = inf
m∈[a,b]

∫
xN(x;m,σ2)dx = inf

m∈[a,b]
m = a, (39)

and EX [X ] = −EX [−X ] = b, which are respectively the lower and upper mean
of X . Figure 3 shows the set of priors in (39) for [a,b] = [−1,1], σ = 1 and the
resulting set of posteriors computed w.r.t the likelihood N(y;x,σ2

y ) with y = 3 and
σ2

y = 1. We can include more information in the above model by considering
instead of (37) the following linear-vacuous mixture:

Em[ f ] = (1− ε)
∫ b

a
f (m)T N(m;m0,σ

2
0 )dm+ ε inf

m∈[a,b]
f (m), (40)

where T N(m;m0,σ
2
0 ) denotes a truncated Normal in [a,b] with m0 ∈ [a,b]. In this

case, we are assuming that some probabilistic information about the mean m is

7We have already seen that the lower probability induced by (38) is not a belief function. This
shows that marginal extension does not preserve the monotonicity of (37).
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Figure 4: Set of priors (left) and posterior (right) for m ∈ {−1,−0.5,0,0.5,1} and ε = 0.4.

available (the truncated Normal) but we are not completely certain (ε > 0) about
it and, thus, we still allow the possibility that m can assume any value in [a,b].
By combining the Normal prior N(x;m,σ2) with the Belief function (40) using
marginal extension we can define the following lower expectation on X :

EX [g] = EM [EX [g|M]] = (1− ε)
∫ ∫ b

a
g(x)N(x;m,σ2)T N(m;m0,σ

2
0 )dmdx

+ ε inf
m∈[a,b]

∫
g(x)N(x;m,σ2)dx.

(41)
Assuming that [a,b] is larger than the 3σ credible interval of the Normal N(m;m0,σ

2
0 ),

we can approximate T N(m;m0,σ
2
0 ) with N(m;m0,σ

2
0 ). Then by exploiting the

following result:∫ ∫
g(x)N(x;m,σ2)N(m;m0,σ

2
0 )dxdm =

∫
g(x)N(x;m0,σ

2 +σ
2
0 ),

and assuming that g = X , one obtains that

EX [X ] = (1− ε)
∫

xN(x;m0,σ
2 +σ

2
0 )dx

+ ε inf
m∈[a,b]

∫
xN(x;m,σ2)dx = (1− ε)m0 + εa.

(42)

and similarly EX [X ] = (1−ε)m0+εb. Figure 4 shows the set of priors in (41) for
[a,b] = [−1,1], ε = 0.4, m0 = 1, σ = 1 and σ0 = 1/3 and the resulting set of pos-
teriors computed w.r.t the likelihood N(y;x,σ2

y ) with y = 3 and σ2
y = 1 by using

Theorem 2. Observe that in this case the set of posteriors is more concentrated
around the posterior N(x,1.5,0.5) that we would obtain from the prior N(x,0,1)
and the likelihood N(y;x,σ2

y ) using Bayes’ rule. Threfore, the additional informa-
tion about m reduces the posterior imprecision w.r.t the mean.
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4.4. Incomplete observations
The term incomplete observations is used in literature to refer to set-valued

observations. It describes a situation where we want to measure the value of a
certain variable Y , but for some reason we can only determine it in an imperfect
manner: we perform some kind of measurement whose outcome is W , but this
does not allow us to completely determine the value of Y . Let us consider some
examples.

1. Suppose we want to measure the voltage Y across a resistor, but the read-
out W of our digital voltage meter rounds this voltage to the next millivolt
(mV). So if, say, we read that W = 12mV , we only know that the voltage Y
belongs to the interval (11mV,12mV ] [29].

2. Suppose that in the sequence of coin tosses H,H,T,H,T,T the fifth toss
is missing, i.e., H,H,T,H,?,T . We only know that the fifth observation Y
belongs to the possibility space {H,T}.

The second example represents a particular kind of incomplete observation called
missing process. This is an important case because the problem of missing data is
ubiquitous in statistics.

It can be noticed that an incomplete observation mechanism can be described
by a multivalued function

Γ(y) = W ′,

where W ′ is a subset of the observation space W [29, 30]. Thus, it can be mod-
elled by a belief function:

EW [h|x] =
∫
Y

dP(y|x) inf
w∈Γ(y|x)

h(w),

for any bounded real-valued function h of W and value of the conditional variable
x. It is often assumed that Γ(y|x) = Γ(y), i.e., it does not depend on x but only on
the value of y.

A formalisation of the incomplete observation mechanism was first derived
in 1985 by Shafer [31]. Shafer showed that the right way to update probabilities
with incomplete observations requires knowledge of the incompleteness mecha-
nism, i.e., the mechanism that is responsible for turning a complete observation
into an incomplete one. Shafers result states that neglecting the incompleteness
mechanism can lead to unreliable conclusions. To overcome to this issue, first de
Cooman and Zaffalon [29] and then Zaffalon and Miranda [30] proposed a con-
servative inference rule to deal with incomplete observations. The basic idea is
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to consider the most conservative assumption about the incompleteness mecha-
nism and, thus, to derive lower and upper bounds for the inferences based on this
assumption. We point the reader to [29, 30] for a deeper discussion about conser-
vative inferences with incomplete observations. In the next section, we show the
main ideas with a simple example.

4.4.1. The coin example
Let X denote the probability of obtaining head in a coin toss. Let Yi denote

the outcome of the i-th coin toss (Yi = 1 means head and Yi = 0 tail). We as-
sume that we cannot observe directly Yi but we can read the record Wi of the coin
toss reported by a witness. The problem is that some records of the witness’ are
missing.

We assume that:

• our prior information about X is described by the Beta distribution

p(x) = Beta(x;α,β ) ∝ xα−1(1− x)β−1,

for some α,β > 0;

• the observations Yi are i.i.d. with distribution:

p(Yi = yi|x) = xyi(1− x)1−yi,

with yi ∈ {0,1}.

Given for instance the following sequence of observations

w̃n = {1,1,0,1,?,0},

our goal is to draw inferences about X .
The likelihood model of the observation Wi = wi given x is:

p(Wi = wi|x) = ∑
yi∈{0,1}

p(wi|yi)xyi(1− x)1−yi = p(wi|1)x+ p(wi|0)(1− x). (43)

Since the incomplete observation mechanism is a missing process, we can assume
that p(Wi = 0|1) = 0 and p(Wi = 1|0) = 0. Then, since Wi = {1,0,?}, from (43)
it results that

p(Wi = 1|x) = p(Wi = 1|1)x,
p(Wi = 0|x) = p(Wi = 0|0)(1− x),
p(Wi =?|x) = p(Wi =?|1)x+ p(Wi =?|0)(1− x).

(44)
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If we assume that the missing of an observation does not depend on the outcome
of the coin toss (this assumption is called missingness at random ), i.e., p(Wi =
?|1) = (Wi =?|0) = ρ , then:

p(Wi =?|x) = ρ.

In this case, it does not matter the values of p(Wi = 1|1)> 0, p(Wi = 0|0)> 0 and
ρ > 0, by applying Bayes’ rule to (43) and to the Beta prior, we obtain:

p(x|w̃n) = Beta(x;n1 +α,n0 +β ), (45)

where n1 is the number of ones in w̃n and n0 is the number of zeros in w̃n. Hence,
the posterior expectation of X is:

E[X |w̃n] =
n1 +α

n1 +n0 +α +β
. (46)

That is, we can simply neglect the missing observations and use the remaining
ones to derive inferences about X .

In many practical cases the missing at random assumption is not justified be-
cause we do not know if the missing mechanism depends or not on the outcome
of the coin toss, i.e., we only know that:

p(Wi =?|1)+ p(Wi = 1|1) = 1, p(Wi =?|0)+ p(Wi = 0|0) = 1.

These two equalities define two closed and convex conditional sets of probabilities

PWi|Yi=1 = {p : p(Wi =?|1)+ p(Wi = 1|1) = 1},

PWi|Yi=0 = {p : p(Wi =?|0)+ p(Wi = 0|0) = 1}.

We can then compute lower and upper bounds for E[X |w̃n] by considering the
extreme distributions in the above sets. These distributions can be obtained by
considering the two extreme cases: (i) p(Wi =?|1) = 0 and p(Wi =?|0) = 1 and
(ii) p(Wi =?|1) = 1 and p(Wi =?|0) = 0, which gives the lower and, respectively,
upper posterior expectation of X :

EX [X |w̃n] =
n1 +α

n+α +β
, E[X |w̃n] =

n1 +n? +α

n+α +β
. (47)

The lower posterior expectation is obtained by replacing all question marks with
0, while the upper posterior expectation by replacing all question marks with 1. In
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other words, we consider the two extreme cases: (i) all the question marks were
0, (ii) all the question marks were 1. This is the least committal approach in case
we do not know anything about the missing process.8 This result is an application
of the the Conservative Inference Rule presented in [30, Sec. 4].

The inferences (47) can equivalently be derived by exploiting the results in
Corollary 1 in the special case in which EX = EX = EX , where EX is the expecta-
tion w.r.t. the prior Beta density.

Note in fact that the missing observation mechanism can be described by the
following multivalued map:

Γ(Yi|x) = {Yi,?},

for all x ∈ (0,1). This means that the observation Yi ∈ {0,1} either is mapped into
itself or it is missing and that this does not depend on the value of x. Hence, it
results that:

EWi
[I{w̃i}|x] = ∑

yi∈{0,1}
xyi(1− x)1−yi inf

wi∈{yi,?}
I{w̃i}(wi), (48)

and
EWi[I{w̃i}|x] = ∑

yi∈{0,1}
xyi(1− x)1−yi sup

wi∈{yi,?}
I{w̃i}(wi), (49)

These lower and upper expectations define bounds for EWi[I{w̃i}|x]. For instance,
for w̃i = 0, one has that

EWi
[I{0}|0] = 0≤ EWi[I{0}|0]≤ 1− x = EWi[I{0}|0].

Thus, the lower and upper posterior mean in (47) can equivalently be obtained
by applying Corollary 1 to the case in which the prior expectation EX is precise
(i.e., it is the expectation w.r.t. the Beta density on X) and, the likelihood model is
given by EWi

[·|X ]. Assuming that a sequence of n values w̃1, . . . , w̃n is observed,
from (23) for g(x) = x and (48)–(49) one gets∫ 1

0
Beta(x;α,β )

[ n

∏
i=1

∑
yi∈{0,1}

xyi(1− x)1−yi inf
wi∈{yi,?}

(x−ν)I{w̃i}(wi)

]
dx. (50)

8Note that, we are also assuming that the missing probability may be not stationary, i.e., it can
change from draw to draw.
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For all the three possible values of w̃i, i.e., 0,1,?, we can parametrize the expec-
tations included in the bounds (48)–(49) in the following way:

EWi[I{1}|x] = ε1x, EWi[I{0}|x] = ε2(1− x), EWi[I{?}|x] = ε3x+ ε4(1− x) (51)

where εi ∈ (0,1) and does not depend on x (because Γ does not depend on x).9 In
fact, from (48)–(49) it results that

EWi
[I{0}|x] = 0, EWi[I{0}|x] = 1− x,

and, thus, 0≤ EWi[I{1}|x]≤ 1−x, which can be rewritten as EWi[I{1}|x] = ε2(1−x)
for ε2 ∈ (0,1). Similar expressions can be derived for EWi[I{1}|x] and EWi[I{?}|x].
Then, (50) can be rewritten as:∫ 1

0
Beta(x;α,β )

[
∏

n
i=1 inf

εi∈(0,1)
(x−ν)

(
I{w̃i}(1)ε1x+ I{w̃i}(0)ε2(1− x)

+I{w̃i}(?)(ε3x+ ε4(1− x))
)] (52)

Observe that

I{w̃i}(1)ε1x+ I{w̃i}(0)ε2(1− x)+ I{w̃i}(?)(ε3x+ ε4(1− x))

for w̃i = 0, w̃i = 1 and w̃i =? is respectively equal to ε1x, ε2(1−x) and ε3x+ε4(1−
x). We are looking for the supremum value of ν such that (52) is greater than or
equal to zero. Such value of ν is obtained for ε3 = 0, ε4 = 1 and ε1,ε2 > 0 (it does
not matter their value provided that it is positive). These are the values that give
the posterior lower mean of X . In fact, by comparing (51) with (44), it follows that
ε1 = p(Wi = 1|1), ε2 = p(Wi = 0|0), ε3 = p(Wi =?|1) and ε4 = p(Wi =?|1). Thus,
the posterior lower and upper mean is again obtained by the two extreme cases: (i)
p(Wi =?|1) = 0 and p(Wi =?|0) = 1 and (ii) p(Wi =?|1) = 1 and p(Wi =?|0) = 0.
It does not matter the value of ε1 and ε2 provided that they are positive. This
example shows that belief functions are fundamental to treat missing data when
the missingness mechanism is unknown.

9Note that the fact that Γ does not depend on x, implies that Wi is also strongly independent of
X given Yi, see [30, Sec. 4].
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5. Conclusions

We have shown that, although many useful models used in robust statistics
cannot be represented by belief functions, the multivalued mapping mechanism
that induces a belief function is a very useful tool to design robust model. Fur-
thermore, belief functions give advantages from a computational point view. By
using the multivalued mapping mechanism, we have derived several belief func-
tion models that we have used to derive robust statistical inferences by using Wal-
ley’s theory of imprecise probabilities. We have also shown the connection of the
proposed approach with interval estimation and statistical inference with missing
data. As future work, we intend to apply this work to more practical estimation
problems and to derive more closed convex sets of probability measures by using
the multivalued mapping mechanism of belief functions.
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