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Abstract We consider the case in which the available knowledge does not allow

to specify a precise probabilistic model for the prior and/or likelihood in statistical

estimation. We assume that this imprecision can be represented by belief functions.

Thus, we exploit the mathematical structure of belief functions and their equiva-

lent representation in terms of closed convex sets of probability measures to derive

robust posterior inferences.

1 Introduction

Lower and Upper probabilities induced frommultivaluedmappings were introduced

by Dempster [1]. Shafer [2] called them belief and plausibility functions. Associated

with a belief function there is a closed convex set of probability measures of which

the belief function is a lower bound [1, 3, 4]. On the other hand, the lower bound

of a convex set of probability measures is not necessarily a belief function, e.g., [3,

Sec. 5.13.4]. Wasserman [5, 6] has shown that the mathematical structure of belief

functionsmakes them suitable for generating classes of prior distributions to be used

in robust Bayesian inference. In particular, in case the prior is expressed via a belief

function and the likelihood is a precise probability measures, he has derived a closed

form solution for the upper and lower bounds of the posterior probability content of

a measurable subset of the parameter space (even in case of infinite spaces). In

this paper, we extend this work in three directions. First, we compute upper and

lower bounds of the posterior expectations for any bounded scalar function g of

interest in statistical estimation. Second, we consider the case in which also the

likelihood model (not only the prior) may be expressed via belief functions. By

using the formalism of Walley’s theory of coherent lower previsions [3], we provide

closed form solutions for the lower and upper expectations of g. Third, we show the

application of this model to several cases of practical interest.

2 Belief function

In this section we revise some properties of belief functions. Let X be a Polish

space (e.g., Euclidean space) with Borel σ -algebra B(X ) and let Z be a convex,

compact, metrizable subset of a locally convex topological vector space with Borel

σ -algebra B(Z ) [5]. Let PZ be a probability measure on (Z ,B(Z )) and let Γ be

a map taking points in Z to nonempty, closed subsets of X .1 For each A ⊆ X ,

define the belief and plausibility function as [1, 5]:
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P(A) = Bel(A) = PZ({zi ∈ Z : Γ (zi)⊂ A}),
P(A) = Pl(A) = PZ({zi ∈ Z : Γ (zi)∩A 6= /0}). (1)

The fourtuple (Z ,B(Z ),PZ,Γ ) is called a source for Bel. Bel and P1 are related

by Bel(A) = 1−P1(AC), where Ac is the complement of A. An intuitive explanation

[5] of Bel and P1 is as follows. Draw z randomly according to PZ . Then Bel(A) is the
probability that the random set Γ (z) is contained in A and P1(A) is the probability
that the random set Γ (z) hits A [7]. Here, a simple example [3, Sec. 5.13.3] that

explains the construction of belief functions through multivalued mappings.

Example 1. Suppose that our information on X is a report from an unreliable wit-

ness that the event B ⊂ X has occurred. We might consider two possible expla-

nations: either the witness really observed B, or he observed nothing at all. These

hypotheses are represented by z1 and z2, with multivalued mapping Γ (z1) = B and

Γ (z2) = X . If we assess the probability PZ(z1) = p and PZ(z2) = 1− p, this corre-

sponds to the belief function Bel(A) = p if A⊇ B and A 6=X ; Bel(A) = 1 if A=X

and zero otherwise. ⊓⊔

This lack of knowledge expresses via a belief function can equivalently be repre-

sented through a set of probability measures, i.e., the set of all probabilities on X

that are compatible with the bounds Bel and Pl [1]:

PX = {PX : Bel(A)≤ PX(A)≤ Pl(A) for any A⊆ X }. (2)

For this reason, Bel is also called lower probability P (and Pl upper probability

P), since it is the lower (upper) envelope of a set of probability measures. Thus,

associated to each belief function, there is a closed convex set of probability mea-

sures of which a belief function is a lower bound but, on the other hand, the lower

bound P of a closed convex set of probability measures is not necessarily a belief

function [3]. To be a belief function, the lower probability P has to satisfy the prop-

erty of ∞-monotonicity. There are many closed convex sets of distributions that are

used in practical applications that are not belief functions. By restricting closed con-

vex sets of distributions to be belief functions one looses in generality but gains in

tractability. In fact, because of the ∞-monotonicity property, belief functions satisfy

several nice properties. Besides tractability, belief functions are also a useful source

of closed convex set of probabilities. For instance, the multivalued mapping mecha-

nism can be used to define belief functions also in the case the set X is continuous.

Example 2. Consider the case X = Z = R and thus B(Z ) and B(X ) coincide
with the standard Borel σ -algebra in R. Since X = Z , we are considering a map

from X to itself and, thus, for simplicity we can denote z with x. Assume that

p(x) is the probability density w.r.t. the Lebesgue measure on R associated to PZ
(assuming it exists) and consider the case p(x) =U[a,b](x), i.e., the uniform density

on the interval [a,b]. Consider then the multivalued mapping Γ (x) = [x− c,x+ c]
with c> 0 which maps each point x in the interval [x− c,x+ c]. This originates the
following lower/upper probabilities for the interval [r,s] with r < s:



Belief function robustness in estimation 3

P([r,s]) =
∫

x∈[a,b]
I{x: [x−c,x+c]⊂[r,s]}(u)

1
b−a

du,

P([r,s]) =
∫

x∈[a,b]
I{x: [x−c,x+c]∩[r,s]6= /0}(u)

1
b−a

du,
(3)

where I{A}, defined by I{A}(x) = 1 if x ∈ A and I{A}(x) = 0 if x /∈ A is called the

indicator of A. Notice that the inclusion [x− c,x+ c] ⊂ [r,s] holds for all x ∈ [r+
c,s−c], while the condition [x−c,x+c]∩ [r,s] 6= /0 is satisfied by all x∈ [r−c,s+c].
By setting [r,s] = (−∞,x], one can compute the lower/upper cumulate distribution

function:

P((−∞,x])=







0 x< a+ c,
x−a−c
b−a

a+ c≤ x< b+ c,

1 x≥ b+ c,
P((−∞,x])=







0 x< a− c,
x−a+c
b−a

a− c≤ x< b− c,

1 x≥ b− c.
(4)

This model can be used to account for lack of information on the support of the

uniform distribution. We are eliciting a support of length b− a but we are not com-

pletely sure about its extremes. ⊓⊔
This approach can be extended to any PDF p(x) (e.g., see [5] for the Gaussian case).
Assume X = Z = R, we discuss two other models (the first is discussed in [5])

generated by multivalued mappings.

ε-contamination: p(x) = (1−ε)π ′(x)+εδ{z0}(x), Γ (x) = x if x 6= z0 and Γ (x) =R

if x= z0, where δ{z0} is a Dirac’s delta on z0 and π ′ is PDF such that π ′(z0) = 0 and

π ′ = π if x 6= z0, then:

P(A) = (1− ε)

∫

A
π(x)dx, P(A) = (1− ε)

∫

A
π(x)dx+ ε.

When ε = 1, we have a vacuous model P(A) = 0 and P(A) = 1 .

heavy-tail: p(x) = N (x;0,1), Γ (x) = [x,1/x) if x ∈ [0,1) and Γ (x) = x if x ≥ 1

(symmetric for the negative axis). Consider A = (−∞,w] with w > 1, we can then

compute the lower upper distribution of X :

P((−∞,w]) = 1
2
+

w
∫

1

N (x;0,1)dx+
1
∫

1/w

N (w;0,1)dx= 1
2

(

erf
(

w√
2

)

− erf
(

1√
2w

))

,

where erf(w) = 2√
π

∫ w
0 e−t

2
dt, while

P((−∞,w]) = 1
2
+

w
∫

0

N (x;0,1)dx= 1
2

(

1+ erf
(

w√
2

))

.

By differentiating P((−∞,w]) w.r.t. w, one gets:

d
dw

P((−∞,w]) = 1
2





√

2
π e

− w2

2 +

√

2
π e

− 1

2w2

w2



 .
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Observe that the derivative goes to zero as 1/w2 and, thus, it has the same tail be-

haviour of the Cauchy density γ/[π((w−w0)
2 + γ2)]. This belief function can be

used for instance for robustness to outliers when employed as likelihood model or

as a sort of weak-informative prior (when employed as prior model).

2.1 Upper and lower expectation

The previous section has discussed several belief functions generated through a mul-

tivalued mappings. We have also seen that a belief function can equivalently be in-

terpreted as a lower probability model defined on the subsets of X and also as a

lower expectation model defined on the indicator functions over the subsets of X ,

i.e., E(I{A}) = P(A). Assume that we know the functional P(A) = E(I{A}) for any
subset A of X how can we extend this lower probability model to compute E(g)
for any bounded real-valued function of interest g. It can be shown that

E(g) = inf
PX∈PX

∫

g(x)PX(dx), E(g) = sup
PX∈PX

∫

g(x)PX(dx). (5)

Thus, the interpretation of belief functions as closed convex set of probability mea-

sures allows to computer lower and upper expectations for any bounded real valued

function. Since belief function are multivalued mapping, it has been proved in [5]

that (5) is equal to:

E(g) =

∫

g∗(z)PZ(dx), E(g) =

∫

g∗(z)PZ(dz), (6)

where g∗(z) = infx∈Γ (z) g(x) and g
∗(z) = supx∈Γ (z) g(x). This fact has important im-

plications for computation because it reduces the problem of calculating extrema

over the set of probability measures PX to that of finding extrema of g over subsets

of X followed by a single integral over Z.

Example 3. Consider for instance the ε-contamination model discussed in the pre-

vious section, then

E(g) =
∫

g∗(z)PZ(dz) =
∫

dz
[

(1− ε)π ′(z)+ εδ{z0}(z)
]

inf
x∈Γ (z)

g(x),

=
∫

Z −{z0}
(1− ε)π ′(z)g(z)dz+ ε inf

x∈R
g(x) =

∫

(1− ε)π(z)g(z)dz+ ε inf
x∈R

g(x). (7)

In case π(z) = N (z;x0,σ
2
0 ) and in the case the vacuous part is restricted to [−a,a]

with a> 0, one gets E(g) =
∫

(1− ε)g(z)N (z;x0,σ
2
0 )dz+ ε inf

x∈[−a,a]
g(x). ⊓⊔

2.2 Statistical inference

Assume that X ⊆ R. Consider a likelihood model p(y|x), where Y denotes the

observation variable taking values from a sample space (Y ,B(Y )) and x ∈ X .

Assume that the prior information over X is expressed through a belief function or,

equivalently, through the closed convex set of probability measures associated to

the belief function, how can we compute the lower/upper posterior expectation of a

bounded real-valued function g given the observation ỹ?
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Theorem 1. Assume that p(y|x) is B(Y )×B(X )-measurable and bounded. As-

sume that the value ỹ of Y is observed and that EX (EY (δ{ỹ}|X)) = E
(

p(ỹ|x)
)

> 0,

where δ{ỹ} is a degenerate limiting measure (e.g., Dirac’s delta) on Y . The lower

posterior expectation E(g|ỹ) is the unique solution µ of the following equation:

EX

(

EY
(

(g− µ)δ{ỹ}|X
)

)

= 0. ⊓⊔ (8)

This equation is called Generalized Bayes rule (GBR) [3, Ch. 6].

Proof.

0 = EX

(

EY
(

(g−µ)δ{ỹ}|X
)

)

= E
(

(g−µ)p(ỹ|x)
)

= inf
PX∈PX

∫

(g(x)−µ)p(ỹ|x)PX (dx)

= inf
p∈PX

∫

p(ỹ|x)P(dx)
( ∫

g(x)p(ỹ|x)P(dx)
∫

p(ỹ|x)P(dx) −µ

)

.

Being
∫

p(ỹ|x)PX (dx)=E
(

p(ỹ|x)
)

> 0 by hypothesis, it follows that µ = inf
pX∈PX

∫

g(x)p(ỹ|x)PX (dx)
∫

p(ỹ|x)PX (dx)
.

Therefore, GBR is equivalent to apply Bayes rule to all probability measures in PX and, then, take

the infimum. The following proof has been derived by [3, Sec. 6.4.1.] replacing the indicator with

a Dirac’s delta to account for the fact that Y is a continuous variable. ⊓⊔

Corollary 1. Exploiting (6) and applying (8) to belief function, it results that the

lower posterior expectation E(g|ỹ) is the unique solution µ of the following equa-

tion:

E
(

(g− µ)p(ỹ|x)
)

=

∫

PZ(dz) inf
x∈Γ (z)

(g(x)− µ)p(ỹ|x) = 0. (9)

⊓⊔

For the proof, see Theorem 2. Equation (9) can be extended to the case of n i.i.d.

observation, by simply replacing p(ỹ|x) with ∏n
i=1 p(ỹi|x). Assume now the case in

which also the likelihood model is expressed through a belief function characterized

by (U ,B(U ),Γ (·|x),PU|x) for each value of the conditional variable x.

Theorem 2. Assume that the value ỹ of Y is observed, that EX (EY (δ{ỹ}|X))> 0 and

EY (δ{ỹ}|x) is well defined for each x ∈ X . The lower posterior expectation E(g|ỹ)
is the unique solution µ of the following equation:

EX

(

EY

(

(g− µ)δ{ỹ}|X
)

)

= 0, (10)

which for belief functions becomes:

0=

∫

PZ(dz) inf
x∈Γ (z)

∫

PU|x(du|x) inf
y∈Γ (u|x)

δ{ỹ}(y)(g(x)− µ). (11)

⊓⊔
This is the extension of Corollary 1 to the case also the likelihood is a belief function.

The proof of this theorem can be derived from the proof of [8, Th. 2] by using the
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expression for the lower expectation in (6).2 The above result is very important for

practical applications as shown in the next examples.

3 ε-Contamination and interval estimation

Consider an ε-contamination model for (U ,B(U ),Γ (·|x),PU|x), i.e., PU|x = (1−
εm)N (u;x,σ2)+εmδ{u0}(u|x) and Γ (u|x) = y and Γ (u0|x) =AY (x) = [x−b,x+b]
for b> 0. In the domain of the variable Y , this model is equivalent to: y= x+(1−
εm)n+ εmv, where n is a Gaussian noise with zero mean and variance σ2, while v is

a noise with unknown distribution. The only knowledge about v is its support [−b,b]
(norm bounded noise). This model can be used to account for the uncertainty in the

measurement process which is due to a white noise component (n) and to the finite

precision of the instrument (v), so it is very important for practical applications.

Assume that also the prior over X is a ε-contamination model at the end of the

Example 3. Applying (11) one gets:

0 =
∫

dz
[

(1− ε)N (z;x0,σ
2
0 )+ εδ{z0}(z)

]

inf
x∈Γ (z)

∫

du
[

(1− εm)N (u;x,σ2)+ εmδ{u0}(u|x)
]

inf
y∈Γ (u|x)

δ{ỹ}(y)(g(x)− µ).
(12)

Consider the case where δ{ỹ}(y) is the limit for |Ω(ỹ)| → 0 of the following se-

quence of functions 1
|Ω(ỹ)| I{Ω(ỹ)}, where Ω(ỹ) is a ball centred at ỹ which does not

depend on x and |Ω(ỹ)| is its Lebesgue volume [3, Sec. 6.10.4], [8]. Then, the pre-

vious integral equation can be rewritten as:

0 = 1
|Ω(ỹ)|

∫

dz
[

(1− ε)N (z;x0,σ
2
0 )+ εδ{z0}(z)

]

inf
x∈Γ (z)

∫

du
[

(1− εm)N (u;x,σ2)+ εmδ{u0}(u|x)
]

inf
y∈Γ (u|x)

I{Ω(ỹ)}(y)(g(x)− µ).

(13)

Since |Ω(ỹ)| is positive it can be simplified in the equation, which for |Ω(ỹ)| → 0

can be written as:

0 =
∫

dz
[

(1− ε)N (z;x0,σ
2
0 )+ εδ{z0}(z)

]

inf
x∈Γ (z)

[

(1− εm)N (ỹ;x,σ2)(g(x)− µ)+ εm inf
y∈AY (x)

I{Ω(ỹ)}(y)(g(x)− µ)

]

=
∫

dz
[

(1− ε)N (z;x0,σ
2
0 )+ εδ{z0}(z)

]

inf
x∈Γ (z)

[

(1− εm)N (ỹ;x,σ2)(g(x)− µ)− εm I{x: ỹ∈AY (x)}(x)(g(x)− µ)−
]

,

(14)

where (g(x)− µ)− = −min(g(x)− µ ,0) is the negative part of g− µ . Simplifying

the other integral and exploiting that Γ (z0) = [−a,a], AY (x) = [x− b,x+ b] and,
thus, ỹ ∈ A (x) implies x ∈ [ỹ− b, ỹ+ b], one finally gets:

2 Observe that the proof in [8, Th. 2] has been obtained by assuming that the observation variables

are discretized. Intuitively, we can see Theorem 2 as the limit of this result when the size of the

discretization interval goes to zero.
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0 =
∫

(1− ε)N (x;x0,σ
2
0 )dx

[

(1− εm)N (ỹ;x,σ 2)(g(x)−µ)− εm I{x∈[ỹ−b,ỹ+b]}(x)(g(x)−µ)−
]

+ ε inf
x∈[−a,a]

[

(1− εm)N (ỹ;x,σ 2)(g(x)−µ)− εm Ix∈[ỹ−b,ỹ+b](x)(g(x)−µ)−
]

.

Notice that in case ε = εm = 0 (no imprecision) and g = X , then µ = E(X |ỹ) =
(1/σ2

0 +1/σ2)−1(x0/σ2
0 + ỹ/σ2) that is the well known expression for the posterior

mean in the Gaussian case. In the vacuous case, ε = εm = 1 (full imprecision), one

gets:

0 = − sup
x∈[−a,a]

I{x∈[ỹ−b,ỹ+b]}(x)(g(x)− µ)− = sup
x∈[−a,a]∩[ỹ−b,ỹ+b]

(g(x)− µ)−. (15)

For g = X and assuming that the two intervals overlap, one has µ = E(X |ỹ) =
max(ỹ−b,−a). Similarly, we can compute E(X |ỹ) =min(ỹ+b,a). This is the well
known updating formula in interval estimation, for instance in set-membership es-

timation [9, 10]. Figure 1 shows the expression for E(X |ỹ) in case ε = 0, εm = 0.5,
ỹ= 1, x0 = 0, σ2

0 =σ2 = 1 and different values of b, i.e., b∈ [0,4]. It can be observed
that for b < (1/σ2

0 + 1/σ2)−1(x0/σ2
0 + ỹ/σ2) = 0.5, the posterior mean coincides

with that of the case εm = 0. The lower expectations starts to decrease when the sup-

port of the norm-bounded noise v, i.e., [ỹ−b, ỹ+b], becomes larger than the interval

[0.5,1.5].

- 3 - 2 -1 1
y
�
- b

- 0.4

- 0.2

0.2

0.4

Μ

Fig. 1 Lower expectation µ = E(X |ỹ) versus ỹ−b for ỹ= 1 and b ∈ [0,4].

4 Heavy-tail belief function model

Consider the model discussed at the end of Section 2 for the variable X with

p(x) = N (x;0,2.19), i.e., variance 2.19. Assume that the measurement process is

described by a normal density function N (y;x,σ2). We can then use Corollary 1

to compute the lower posterior expectation of some function of interest g of X , i.e.,

E[g|y] is the unique solution µ of

0=
∫

dxN (x;0,2.19) inf
x′∈Γ (x)

(g(x′)− µ)∏n
i=1N (yi;x,σ

2), (16)

where Γ (x) = [x,1/x) for x ∈ (−1,1) and Γ (x) = x otherwise. The above equation

can be solved numerically by discretizing X . In Table 1 (last row) we have reported

the lower and upper posterior mean of X computed according to (16) in case g= X .

For the sake of comparison we have reported also the posterior means obtained by

the prior p1(x) = N (x;0,2.19) (Normal distribution), denoted by E1(X |y) in the

table, and p2(x) = C (x;0,1) (Cauchy distribution), denoted by E2(X |y). Both these
two prior distributions have prior mean equal to zero and and prior quartiles equal
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to ±1.3 From Table 1 it can be noticed that at the increasing of the prior-data

y 0 1 2 4.5 10

E1(X |y) 0 0.69 1.37 3.09 6.87

E2(X |y) 0 0.55 1.28 4.01 9.80

E(X |y),E(X |y) -0.26,0.26 0.68,1.46 1.35,1.93 2.78,4.52 5.42,14.01

Table 1 Posterior mean computed for the three different prior models.

conflict (increasing of y) the Cauchy prior is more robust than the Normal prior,

i.e., its posterior mean is closer to the value of the measurement. The third row

in the table shows that the choice of a set of priors based on the heavy-tail belief

function model further increases the robustness. Notice in fact that, for a small prior-

data conflict, the interval [E(X |y),E(X |y)] is tight and includes the posterior mean

E1(X |y). However, at the increasing of the conflict, the interval enlarges highlighting
the presence of a prior-data conflict, and its centre moves towards y similarly to the

posterior mean of the Cauchy prior that moves towards y.

5 Conclusions

We have derived robust inferences based on classes of priors and likelihoods gener-

ated by belief functions. As future work, we intend to apply this work to practical

estimation problems and to derive more closed convex sets of probability measures

by using the multivalued mapping mechanism of belief functions.
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