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Abstract—The problem is target classification in the circum-
stances where the likelihood models are imprecise. The paper
highlights the differences between three suitable solutions: the
Transferrable Belief model (TBM), the random set approach and
the imprecise probability approach. The random set approach
produces identical results to those obtained using the TBM
classifier, provided that equivalent measurement models are
employed. Similar classification results are also obtained using
the imprecise probability theory, although the latter is more
general and provides more robust framework for reasoning under
uncertainty.
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I. INTRODUCTION

The problem is classification based on imprecise proba-

bilistic models. The recent paper [1] demonstrated that the

standard Bayes classifier in these circumstances behaves in

a manner that is inconsistent with our intuition. The main

difficulty is that the standard Bayes classifier can work only

with precise likelihoods. For that reason it needs to forcefully

adopt the precise likelihoods, thereby ignoring the uncertainty

in mapping the class to the feature measurement.

As a more appropriate alternative to the standard Bayes

classifier, [1] proposed a classification method based on the

transferrable belief model (TBM) [2]. The main idea of this

method is to treat the precise likelihoods which are used by

the standard Bayes classifier, as subjective, rather than true,

models. The precise likelihoods are therefore converted to the

least-committed belief functions, followed by the application

of the generalised Bayes transform [3] for classification. The

final step involves the mapping from the belief domain into

the probabilistic domain via the pignistic transform [2]. The

numerical results in [1] confirmed that the TBM classifier

indeed behaves in accordance with our intuition.

Mahler [4, Ch.4-8] recently proposed a novel approach to

Bayesian estimation, fusion and classification, applicable to

situations where the information (priors, measurements, like-

lihoods) is imprecise and vague (fuzzy) in addition to being

random. Mahler refers to this type of information as non-

traditional data [4], [5]. In his approach, the uncertainty

inherent in non-traditional data is represented by a Random

Set (RS) (rather than random variables). He argues that the

Bayesian framework for inference combined with random

set representation of non-traditional data is the appropriate

approach to reasoning under uncertainty.

As shown by Walley [6], belief functions [2], [7], random

sets [4] and possibility measures [8] represent uncertainty

through sets instead of single probability measures, and they

can be regarded as special cases of Walley’s coherent lower

previsions [6]. This theory, which is usually referred to as

imprecise probability theory, provides a very general model

of uncertain knowledge. In this approach, uncertainty inherent

data (likelihood model) and/or prior information (prior model)

is represented by set of probability measures or, equivalently,

by coherent lower/upper previsions (expectations). Stemming

from de Finetti’s work on subjective probability, Walley adopts

a behavioural interpretation of probability. His theory is based

on three mathematical concepts: avoiding sure loss, coherence

and natural extension. A probabilistic model avoids sure loss

if it cannot lead to behaviour that is certain to be harmful.

Coherence is a stronger principle which characterizes a type

of self-consistency. Natural extension allows to build coherent

models from any set of probability assessments that avoid sure

loss. Walley’s theory is directly applicable to both discrete and

continuous state domain. For all these reasons, Walley’s theory

is a solid framework for modelling uncertainty in information

fusion problems [9].

The aim of this paper is to highlight the differences between

the TBM, RS and imprecise probability approaches for reason-

ing. A target classification problem with imprecise likelihood

functions is adopted as a simple and illustrative example

for practical comparison. As it was argued in [10], the RS

approach produces identical results to those obtained using the

TBM classifier, provided that equivalent measurement models

are employed. The paper shows that similar classification

results can be obtained using the imprecise probability the-

ory. However, since the imprecise probability theory is more

general, it provides more robust results and is able to deal with

more general cases than both TBM and RS approach.



II. IMPRECISE PROBABILITY

This section briefly reviews Walley’s theory [6]. Consider

a variable X taking values in a set X and a utility (bounded)

function f : X → R, with f ∈ L(X ), where L(X ) denotes the
linear space of all utilities on X [6, Ch.1]. Let p : X → R be

the probability mass function (PMF) or the probability density

function (PDF) of X , then the expected utility of f w.r.t. p(·)
is defined as:

EX [f ] =

∫

x∈X

f(x)p(x)dx (1)

where p(x) denotes the value that the PDF of X assumes for

X = x. Notice that the integral becomes a sum in the case p(·)
is a PMF. Consider now the case where we have incomplete

information to elicit a single distribution to describe the

probabilistic information overX . Suppose we can characterize

this incomplete information by means of a closed-convex set

of PDFsK(X). For each PDF p ∈ K(X), we can compute the

expectation EX [f ]. Thus, because of linearity of expectation

operator, it results that: EX [f ] ≤ EX [f ] ≤ EX [f ], where
EX [f ] is the so called coherent lower prevision (CLP) or lower
expectation of f which, by definition, is equal to:

EX [f ] = min
p∈K(X)

∫

x∈X

f(x)p(x) dx, ∀f ∈ L(X ) (2)

and EX [f ] = −EX [−f ] is the upper expectation.

Let us present some examples of CLPs. CLP in (1) cor-

responds to the most informative one, i.e., the case in which

K(X) includes only one density and, thus, EX [f ] = EX [f ] =
EX [f ]. A CLP EX on L(X ) such that EX [f ] = minx∈X f(x)
for all f ∈ L(X ) can be easily identified as the least

informative CLP and is therefore called vacuous. In fact, in

the case K(X) includes all possible densities, (2) reduces to

EX [f ] = minx∈X f(x).1

Now consider also a second variable Z with values in Z .

For each utility h ∈ L(X ×Z) and z ∈ Z , a conditional lower

prevision EZ(h|X = x), denoted also as EZ(h|x), is defined
as the lower expectation of h w.r.t. Z conditioned on the case

that the variable X assumes the value x. EZ(h|x) can be

obtained from definition (2) by replacing p(x) ∈ K(X) with
the conditional PDFs p(z|x) ∈ K(Z|X), where K(Z|X) is

the set of conditional densities.

Given a conditional CLP EZ [·|X ] and a marginal CLP

EX , a joint CLP on L(X × Z) can be obtained by marginal

extension:

EX,Z [h] = EX [EZ [h|X ]] , ∀h ∈ L(X × Z). (3)

On the other hand, given a CLP EX,Z on L(X × Z) we can

1This can be proven by noticing that, when K(X) includes all possible
densities, the PDF which obtains the minimum min

p∈K(X)
EX [f ] is p(x) =

δ(x − x̃), where δ is a Dirac delta in x̃ = argminx∈X f(x).

derive the conditional CLP EX [·|z] as follows:

EX [f |z] = min
p∈K(X,Z)

∫

x∈X
f(x)p(x, z)dx

p(z)
, ∀f ∈ L(X )

(4)

where it has been assumed that p(z) =
∫

x∈X p(z|x)p(x) > 0
with p(x, z) = p(z|x)p(x). Notice that EX [f |z] is equal to the
lower envelope of all conditional expectations which can be

obtained by applying Bayes rule to each density in K(X,Z).
For this reason, (4) is called Generalized Bayes Rule (GBR)

[6].2 Notice that, in (4), instead of considering all the densities

it is sufficient to consider the extreme densities of K(X,Z)
[6, Sec. 6.4.2], i.e., the solution of GBR is on the extremes of

K(X,Z).

A. Imprecise probability and belief functions

Consider a closed-convex set of probability mass functions

and its associated CLP computed over indicators of subsets

of X ′ ⊆ X . That is, given a set X ′ ⊆ X , we consider the

lower expected value of the indicator function I{X ′}, which,
by definition, is equal to the lower probability that X ∈ X ′,
i.e.:

EX [I{X ′}] = min
p∈K(X)

∑

xj∈X
I{X ′}(xj)p(xj)

= min
p∈K(X)

∑

xj∈X ′

p(xj) = PX(X ′),
(5)

where PX(X ′) is used to denote the lower probability of the

event X ∈ X ′. If PX satisfies these properties:

1) PX(∅) = 0, PX(X ) = 1,
2) for every positive integer n and every collection

X1,X2, . . . ,Xn of subsets of X ,

PX

(

⋃

i

Xi

)

≥
∑

I⊆{1,...,n},
I 6=∅

(−1)|I|−1PX





⋂

i∈I

Xi



 (6)

where |I| denotes the cardinality of the set I , then the

lower probability PX(·) is a belief function and its conjugate

upper probability P (·) is a plausibility function.3 Property

(6) is commonly referred to as ∞-monotonicity. Only lower

probabilities that satisfy this property are belief functions.4 A

belief function is thus a special case of CLPs [6].

Given a belief function, the extreme PMFs of the set K(X)
that generate the belief function can be obtained as follows

[11]:

pπℓ(xπℓ
i
) =

∑

X ′⊆X , s.t.:
x
πℓ
i
∈X ′,x

πℓ
j
/∈X ′,∀j<i

m(X ′), (7)

where πℓ is one of the possible permutations of the elements

of X = {xπℓ
1

, . . . , xπℓ
n
} and m is the basic belief assignment

2In [6, Ch. 6], GBR is defined directly in terms of EX,Z without the needs

of explicitly determining K(X,Z). Both the definitions are equivalent under
standard assumptions of applicability of Bayes rule.

3They coincide with the definition of belief and plausibility functions given
in Dempster-Shafer theory.

4When symbol ≥ in (6) is replaced by equality, then ∞-monotonicity
reduces to the well-known additivity rule for non-exclusive events in standard
probability. Probability functions are in fact a special case of belief functions.



(bba) relative to the belief function. Each probability function

in (7) assigns to each singleton xπℓ
i
the mass of all the focal

elements of the bba which contain it, but do not contain the

elements which precede xπℓ
i
in the ordered list {xπℓ

1

, . . . , xπℓ
n
}

generated by the permutation πℓ.

Consider, for instance, the belief function in Table I. The

possible permutations of the elements of the possibility space

X = {x1, x2, x3} are:

π1 = {x1, x2, x3}, π2 = {x1, x3, x2}, π3 = {x2, x1, x3},
π4 = {x2, x3, x1}, π5 = {x3, x1, x2}, π6 = {x3, x2, x1}.

Consider then the first permutation π1, this means that xπ1

1

=
x1, xπ1

2

= x2, xπ1

3

= x3. From the bba m in Table I and (7)

with i = 1 and ℓ = 1, one gets:

pπ1(xπ1

1

) = pπ1(x1) =
∑

x1∈X ′

m(X ′) = m(x1) +m(x1, x2)

+m(x1, x3) +m(x1, x2, x3) = 0.6.

In fact in this case {xπ1

j
/∈ X ′, ∀j < i = 1} is an empty set,

since there are not elements before x1 in the permutation π1.

Conversely, for i = 2, it holds that {xπ1

j
/∈ X ′, ∀j < i = 2} =

{x1} and thus:

pπ1(xπ1

2

) = pπ1(x2) =
∑

x2∈X ′, x1 /∈X ′

m(X ′),

= m(x2) +m(x2, x3) = 0.35,

and finally pπ1(x3) = m(x3) = 0.05. For the permutation π2,

it still results that pπ1(xπ1

1

) = pπ2(x1) = 0.6, since x1 is the

first element of π2, but being xπ2

2

= x3 one has:

pπ2(xπ2

2

) = pπ2(x3) =
∑

x3∈X ′, x1 /∈X ′

m(X ′),

= m(x3) +m(x2, x3) = 0.3.

and pπ2(xπ2

3

) = pπ2(x2) = 0.1. Consider the permutation π5,

in this case pπ5(xπ5

1

) = pπ1(x3) is equal to:

pπ1(x3) =
∑

x3∈X ′

m(X ′) = m(x3) +m(x1, x3)

+ m(x2, x3) +m(x1, x2, x3) = 0.5,

and

pπ5(xπ5

2

) = pπ1(x1) =
∑

x1∈X ′, x3 /∈X ′

m(X ′),

= m(x1) +m(x1, x2) = 0.4,

and pπ5(xπ5

3

) = pπ1(x2) = m(x2) = 0.1. It can be

verified that the pair of permutations (π1, π3) and (π5, π6)
give identical PMFs. Therefore, it can be concluded [11] that

there are four PMFs associated to the belief function in Table

I, that is K(X) = Ch{pa, pb, pc, pd}, where pa(x1) = 0.4,
pa(x2) = 0.1, pa(x3) = 0.5, pb(x1) = 0.6, pb(x2) = 0.35,
pb(x3) = 0.05 and pc(x1) = 0.4, pc(x2) = 0.35, pc(x3) =
0.25 and pd(x1) = 0.6, pd(x2) = 0.1, pd(x3) = 0.3 and where
Ch denotes the convex hull. This means that K(X) includes
all PMFs such that:

p(xi) = α1pa(xi) + α2pb(xi) + α3pc(xi) + α4pd(xi)

Bel P l m

{x1} 0.4 0.6 0.4
{x2} 0.1 0.45 0.1
{x3} 0.05 0.3 0.05

{x1, x2} 0.5 0.5 0
{x1, x3} 0.65 0.65 0.2
{x2, x3} 0.4 0.4 0.25

{x1, x2, x3} 1.0 1.0 0

TABLE I

EXAMPLE OF BELIEF FUNCTION

for i = 1, 2, 3 and for each αj > 0, j = 1, 2, 3, 4 such

that
∑

j αj = 1. The fact that K(X) is equivalent to the

belief function in Table I can be verified by deriving the belief

function from K(X) using (5), i.e.:

Bel(X ′) = min
p∈K(X)

∑

xj

I{X ′}(xj)p(xj),

for each X ′ ⊆ X . Notice that, in the minimization, it is

sufficient to consider the extremes ofK(X), i.e., pa, pb, pc, pd,
since the lower (upper) probability is obtained on the extremes.

Thus Bel(·) gives the lower envelope of the closed-convex set
of probability mass functions.

Given a belief function, the lower expected value of a function

h ∈ L(X ) can be calculated through (2), after having deter-

mined the set of PMFs associated to the belief function via (7).

Consider, for instance, the belief function in Table I. Assuming

that h(x) = I{x1}(x) − I{x3}(x), i.e., h(x1) = 1, h(x2) = 0
and h(x3) = −1, then it can be verified that E[h] = −0.1 and

E[h] = 0.55. The lower expected value has been obtained

w.r.t. the extreme PMF pa(·), in fact:

3
∑

i=1

[

I{x1}(xi)− I{x3}(xi)
]

pa(xi) = 0.4− 0.5 = −0.1,

while the upper expectation w.r.t. pb(·). For any other PMF

in the convex hull of {pa, pb, pc, pd} the expected value is

included in [−0.1, 0.55].
Belief functions are important special cases of CLPs. Beside

this generality, the main difference between Walley’s theory

and theories based on belief functions (e.g., Dempster-Shafer

and random set theory) is in the way evidence is combined

and probabilities updated. Stemming from de Finetti’s work

on subjective probability, Walley gives a behavioural inter-

pretation of upper and lower expectations in terms of buying

and selling prices on gambles. According to this behavioural

interpretation, the only consistent (coherent) way of defining

a conditional model is through the Generalized Bayes Rule

(4). He also shows that Dempster’s rule of combination is

incompatible with an approach based on coherence (it can

incur in a sure loss and, thus, be unreasonable under a

behavioural interpretation of probability [6, Ch. 5]).

B. Decision making

This section presents a brief discussion on decision making

when uncertainty is represented by set of distributions. The



Bayesian methodology to decision making provides the action

which maximises the expected value of some utility function.

If haj
(x) is the considered utility function, which depends on

possible actions aj and on the unknown value of the variable

x, then ai is preferred to aj [12] if and only if

EX(haj
) < EX(hai

), (8)

where EX(·) denotes expectation w.r.t. x.
For example in classification, x is a discrete-valued class

variable x ∈ {x1, . . . , xn} and action ai represents the

selection of class xi. The utility function can be adopted to be

the indicator function hai
(x) = I{xi}(x), where I{xi}(x) = 1

if x = xi and zero otherwise. In this case EX(hai
) =

∑

j I{xi}(xj) p(xj) = p(xi) and hence (8) becomes p(xj) <
p(xi). This means that one selects the class with the highest

probability.

In imprecise probability one deals with interval-valued

expectations, leading to the problem of decision making under

imprecision [6]. A consequence of imprecision is that, when

the lower and upper expectations are substantially different,

then choosing a unique action may not be possible. Instead, a

set of possible actions may be put forward to a decision maker.

There are various ways for decision making with the convex

set of probability functions, such as: interval dominance [6],

maximality [6], minimax [12], Bayesian decision based on

pignistic probabilities [2] etc.

C. Maximality

The maximality criterion was proposed by Walley [6].

Under maximality, ai dominates (is preferred to) aj if for

all distributions p in the convex set K(X), it holds that

Ep
X(haj

) < Ep
X(hai

) or, equivalently, if

Ep
X(hai

− haj
) > 0 ∀p ∈ K(X), (9)

where Ep
X denotes the expectation w.r.t. the density p. It can

be proven that a necessary and sufficient condition for (9) to

be satisfied is that

E(hai
− haj

) > 0. (10)

In the maximality criterion, actions are compared w.r.t. the

same distribution, and thus ai is said to dominate aj if

(9) is satisfied for each distribution in the convex set. This

is a straightforward generalization of the Bayesian decision

criterion (8) to set of distributions. For this reason maximality

is the decision criterion adopted in this paper.

Consider again the example in Table I and assume that the

elements xi in X = {x1, x2, x3} denote possible classes in a

a classification problem. Hence, given the bba m, we aim to

decide which is the most probable class. In this respect, we

can compute the pignistic transformation [2]:

BetP (x) =
∑

x∈X ′⊆X

m(X ′)

|X ′| . (11)

and, then, use BetP in (8) for decision making. The pignistic

probability for the example in Table I is:

BetP (x1) = 0.5, BetP (x2) = 0.225, BetP (x3) = 0.275

and, thus, the most probable class is x1 (obtained from (8)

in the case haj
= I{xj}). However, we could also use the

maximality criterion for decision making. In the case hai
(x)−

haj
(x) = I{xi}(x) − I{xj}(x), it follows that

E[I{x1} − I{x2}] = 0.05, E[I{x1} − I{x3}] = −0.1,

E[I{x2} − I{x3}] = −0.4

where the lower expectations have been obtained considering

the extreme distributions {pa, pb, pc, pd} computed in Section

II-A. Since only E[I{x1} − I{x2}] > 0 this implies that the

undominated classes are {x1, x3}. Notice in fact that domi-

nance is an anti-commutative and transitive operation. Thus,

under maximality, we can just state that the most probable

class belongs to the set {x1, x3}. This happens because the

set K(X) includes these two extreme PMFs: pa(x1) = 0.6,
pa(x2) = 0.35, pa(x3) = 0.05 and pb(x1) = 0.4, pb(x2) =
0.1, pb(x3) = 0.5. We can see that according to pa, x1 is more

probable than x3, but according to pb, x3 is more probable

than x1. Thus, we cannot decide which is the most probable

between x1 and x3. Maximality provides a more cautious and,

thus, more robust decision criterion than that based on the

pignistic transformation.

III. PROBLEM DESCRIPTION

Consider two domains X ⊆ N is a discrete set of (target)

classes, and Z ⊆ R
nz is the target feature domain (nz ≥

1, that is z ∈ Z can be a multidimensional feature vector).

The inference is carried out on X , which is hidden, being

not directly observable. The features are the measurements

available for making inference; they are related to the hidden

target classes via the likelihood function.

In some cases the likelihood function is precisely known.

For example, let x ∈ X be a class and z = H(x) + v the

measured feature, where H(·) is a known possibly nonlinear

function and v is the measurement noise, distributed accord-

ing to the probability density function pv(·). The likelihood

function in this case is precisely known, i.e. p(z|x) = pv(z −
H(x)).
In the following, however, we are interested in a more

realistic case of imprecise and vague likelihood functions. The

features in this case need to be modelled by random sets, rather

than random variables. The particular examples of random sets

are intervals, fuzzy membership functions, Dempster-Shafer

(DS) basic belief assignments (bba’s) and fuzzy DS bba’s. In

order to fix the ideas, let us consider an example of imprecise

likelihood functions, taken from [1].

Suppose there are only three classes of aircraft, i.e. X =
{1, 2, 3}, where class 1 are commercial planes, class 2 are

large military aircraft and class 3 are light and agile military

aircraft. The available target feature for classification is the

maximum observed acceleration (during a certain interval of

time). This feature is related to classes as follows: for class

1, the acceleration is rarely higher than 1g (g = 9.81 m/s2 is

the acceleration due to gravity); targets of class 2 sometimes

perform mild evasive manoeuvres, but their maximum accel-

eration (due to their size) cannot be higher than 4g; targets of



class 3 are light and agile, with highly trained pilots, so the

maximum acceleration can go up to 7g. The steady-state of

acceleration, however, for all three classes of targets can be

considered to be zero (because of minimal fuel consumption,

minimal stress for pilots, etc.). Finally, the knowledge of prior

class probabilities is unavailable.

IV. MODELLING

Based on the above description of the problem, consider

two cases of the feature domain:

• the discrete (finite) domain of accelerations, Z =
{z1, z2, z3}, where z1 corresponds to small acceleration, i.e.

z1 = {z : |z| ≤ 1g}, z2 = {z : 1g < |z| ≤ 4g} represents

moderate acceleration and z3 = {z : 4g < |z| ≤ 7g} high

acceleration;

• the continuous domain of acceleration, Z = (−∞,∞).

The likelihood of measurement z ∈ Z is referred to as

imprecise because there is no unique mapping from X to

Z . Take for example the discrete domain Z = {z1, z2, z3}:
class 2 maps into a set {z1, z2}, while class 3 maps into a

set {z1, z2, z3}. We can model this uncertainty by using set of

likelihoods. For instance, the set of likelihoods K(Z|x3) that
maps class 3 into the set {z1, z2, z3} may be defined as:

K(Z|x3) = {p(·|x3) : p(z1|x3) + p(z2|x3) + p(z3|x3) = 1} ,

i.e., K(Z|x3) includes all the possible conditional PMFs.

This is the least uninformative CLP that models the prob-

abilistic relationship between acceleration and class 3. The
correspondence between X and Z may also be specified by

a more informative set of PMFs. Let Σx denote a random set

representation of the feature, specified by a bba. Then Σx can

be expressed as:

Σx = {(m,A) : A ⊆ Z;m > 0;
∑

m:(m,A)∈Σx

m(A) = 1}

(12)
where m represents the bba associated to Bel(·|x). A possible
specification of Σx for each class in the example above is:

Σx1
=
{

(1, {z1})
}

(13)

Σx2
=
{

(0.6−
ǫ

2
, {z1}), (ǫ, {z2}), (0.4−

ǫ

2
, {z1, z2})

}

(14)

Σx3
=
{

(0.5−
ǫ

3
, {z1}), (ǫ, {z3}), (0.3−

ǫ

3
, {z1, z2}),

(0.2−
ǫ

3
, {z1, z2, z3})

}

. (15)

where ǫ > 0 is an arbitrarily small number which has been

introduced to allow the applicability of GBR (4), i.e., p(z) > 0
for all distributions in K(Z|X).

The first bba in (13) is categorical, with a singleton focal

element; it describes a precise likelihood, i.e., p(z1|x1) = 1.
The other two bba’s, however, are multi-focal and can be

represented by:

K(Z|x2) = Ch{p1, p2}, (16)

with p1(z1|x2) = 1− ǫ, p1(z2|x2) = ǫ and p2(z1|x2) = 0.6−
ǫ
2 , p2(z2|x2) = 0.4 + ǫ

2 , while

K(Z|x3) = Ch{p1, p2, p3}, (17)

with p1(z1|x3) = 1 − ǫ, p1(z3|x3) = ǫ, p2(z1|x3) = 0.5− ǫ
3 ,

p2(z2|x3) = 0.5 − 2ǫ
3 , p2(z3|x3) = ǫ, p3(z1|x3) = 0.5 − ǫ

3 ,

p3(z2|x3) = 0.3− ǫ
3 , p3(z3|x3) = 0.2 + 2ǫ

3 , and p4(z1|x3) =
0.8 − 2ǫ

3 , p4(z2|x3) = 0, p4(z3|x3) = 0.2 + 2ǫ
3 . For the

continuous measurement domain, a random set Σx is specified

by a fuzzy DS bba as follows:

Σx = {(w, µ) : µ ∈ U(Z); w > 0;
∑

w:(w,µ)∈Σx

w = 1}, (18)

where U(Z) is the set of fuzzy membership functions defined

on Z . One possibility for the specification of Σx in accordance

with the problem description is:

Σxi
= {(wi, µi)} (19)

for i = 1, 2, 3, where

wi = 1, µi(z) = exp
{

− z2

2σ2
i

}

, (20)

and σ1 = 0.4g, σ2 = 1.6g and σ3 = 2.8g. These values

of standard deviations were adopted to ensure that Pr{|z| <
γ} = 0.99876, for γ = 1g, 4g, and 7g, representing the limits

for class 1, 2, and 3, respectively. All three fuzzy DS bba’s of

(19) have a single focal element. Other choices are possible

too. For example, a fuzzy version of the bba in (13)–(15) can

be specified as:

Σx1
= {(1, µ1)}, (21)

Σx2
= {(0.6, µ1), (0.4, µ2)} (22)

Σx3
= {(0.5, µ1), (0.3, µ2), (0.2, µ3)} (23)

where µi were defined in (20).

Within the CLP framework, the continuous case is taken

into account by considering set of densities instead of set of

probability mass functions. There are infinite ways to define a

set of densities, hereafter we just consider the so-called lower

and upper bounded density model. This model is defined as

follows:

K(Z|xi) = {p(z|xi) : l(z|xi) ≤ p(z|xi) ≤ u(z|xi)} (24)

where the lower l and upper u densities are unnormalized (and

possibly improper) densities. Thus, K(Z|xi) includes all the

densities lower and upper bounded by l and, respectively, u.
For the classification problem, we will consider u(z|xi) =
∑

i wi · µi(z) and l(z|xi) = ǫiu(z|xi), with ǫi ∈ (0, 1) and

wi, µi defined in (19)–(23).

V. CLASSIFIER BASED ON TBM

As before, x ∈ X is a class and z ∈ Z is a feature

measurement. Based on TBM framework [1], the classifier

for imprecise likelihoods is obtained as follows. Starting from

precise likelihoods p(z|xi) (same that a Bayesian classifier

would use), it treats them as being pignistic function. The first



step is to build the least committed plausibility function (de-

fined in (27)) over the observation domain which corresponds

to the pignistic function, followed by the application of the

Generalised Bayesian Theorem [1]:

m(X ′|z) ∝
∏

xi∈X ′

pl(z|xi)
∏

xi∈X\X ′

(1 − pl(z|xi)) (25)

for each ∅ 6= X ′ ⊆ X .5 Finally the last step is to normalize

m(X ′|z) and then to apply the pignistic transformation (11)

to compute the pignistic probabilities BetP (xi|z) for each xi.

Concerning the classification problem of Section IV, the

least-committed plausibility function relative to the Gaussian

density p(z|xi) = N (z; 0, σ2
i ) can be obtained as follows [1]:

µLC
i (z) =

2y√
2π

e−y2/2 + erfc(y/
√
2) (26)

where erfc(s) = 2√
π

∫∞
s

e−t2dt and y = z/σi. Taking account

the fuzzy DS bba defined by (18), the plausibility function to

be used in (25) for the classification problem is:

pl(z|xi) =
∑

(w,µ)∈Σx

w · µLC(z). (27)

VI. CLASSIFIER BASED ON RS APPROACH

The most used approach for classification in the realm of

RS theory is as follows [4, Ch.6]. The Bayes classifier for

imprecise likelihoods6 is given by:

P (x|z) = g(z|x) · P (x)
∑

x∈X
g(z|x) · P (x)

(28)

where P (x) is the prior class probability and g(z|x) is the

generalized likelihood function, defined as:

g(z|x) = Pr{z ∈ Σx}. (29)

In the DS theory, the probability on the r.h.s. of (29) is

referred to as the plausibility function on singletons, i.e.

g(z|x) ≡ plZΣx
(z). Assuming first that the domain Z is

discrete, the plausibility function on singletons corresponding

to the random set Σx specified in (12), is given by:

plZΣx
(z) =

∑

m:(m,B)∈Σx, {z}∩B 6=∅
m(B) (30)

For the continuous domain Z and a fuzzy DS bba defined by

(18), the plausibility function on singletons is defined as:

plZΣx
(z) =

∑

(w,µ)∈Σx

w · µ(z). (31)

In summary, based on RS approach, the Bayes classifier for

imprecise likelihoods, where the correspondence between X
and Z is specified by a random closed set Σx, is carried out in

two steps. The first step is to compute the plausibility function

(on singletons) of Σx. The second step is to apply the Bayes

rule (28).

5This has been obtained assuming a vacuous prior on X .
6The same form is applicable to any non-traditional data represented by

random sets.

The fact that (28) depends only on the values of the

plausibility function on singletons is an advantage from a

computational point of view but, on the other hand, implies a

large loss of information for RS approach.7 In fact, there can

be RSs with a very different information content but with same

plausibility on (some) singletons. For instance, m1(x1) = 0.5,
m1(x2) = 0.4, m1(x3) = 0.1 and m2(x1) = 0.3, m2(x2) =
0.4, m2(x3) = 0.1, m2(x1, x3) = 0.2 have same plausibility

on the singletons x1 and x2, but different information content

(i.e., m1 is a standard PMF). A similar issue arises in TBM

approach, since also the pignistc transformation implies a loss

of information w.r.t. the original belief function.

VII. CLASSIFIER BASED ON IMPRECISE PROBABILITY

In the CLP framework, updating is performed through GBR.

Thus, given the conditional CLP EZ(·|X) and prior CLP EX ,

first we compute the joint CLP EX,Z [h] = EX [EZ [h|X ]] via
marginal extension (3) and then we use GBR to compute the

posterior CLP EX(·|Z). In particular, for the classification

likelihood in Section IV, if p(X) is assumed to be a precise

probability, the posterior CLP can be computed as follows:

EX [f |z] = min
p(·|X)∈K(Z|X)

∑

x∈X
f(x)p(z|x)p(x)

∑

x∈X
p(z|x)p(x) (32)

In practice, in (32) is sufficient to consider the extremes of

the various sets K(Z|xi). The lower expectation EX(·|z) is

then employed for decision making based on the maximality

criterion defined in Section II-C. One of the main differences

w.r.t. TBM and RS approach is that the result of (32) is not a

standard expectation w.r.t. a single PMF, but a CLP associated

to a set of PMFs.8.

VIII. NUMERICAL RESULTS

In this section, we compare TBM, RS and CLP based

approach in the classification problem described in Section

IV.

a) Discrete feature domain: The set of classes is X =
{x1, x2, x3}, the feature domain is Z = {z1, z2, z3}. Con-
sidering the RS approach, the generalised likelihood function

g(zi|xj), for i, j = 1, 2, 3, is the plausibility function on

singletons of random set Σj specified in (13)–(15). Using (30)

it follows that:

g(z1|x1) = g(z1|x2) = g(z1|x3) = 1− ǫ,

g(z2|x1) = 0, g(z2|x2) = 0.4 +
ǫ

2
, g(z2|x3) = 0.5 +

2ǫ

3
,

g(z3|x1) = g(z3|x2) = 0, g(z3|x3) = 0.2 +
2ǫ

3
.

7A solution to solve this issue is proposed in [4, Ch. 7] employing RS over
set of likelihoods.

8There is no loss of information, since the functional EX(·|z) has the
same information content of K(X|Z). That is, at the changing of f in (32)
the PMF which obtains the minimum can change, while in the TBM and RS
approach the PMF is always the same, i.e., the pignistic probability or the
probability in (28).



Assuming uniform priors on classes, i.e. p(x1) = p(x2) =
p(x3) = 1/3, it follows from (28) that:

p(x1|z1) = p(x2|z1) = p(x3|z1) = 1/3. (33)

The same result is obtained via TBM approach. It appears that

the feature measurement z1 (small acceleration) does not alter

the priors (it is uninformative). This is perfectly in accordance

with our intuition because all three classes of aircraft fly (most

of the time) with small acceleration.

Considering a CLP based approach and f = I{xi} − I{xj}
in (32), we can compute the dominance condition (10), i.e.,

EX(I{xi} − I{xj}|z1) > 0, which reduces to:

min
p(·|X)∈K(z1|X)

p(z1|xi)− p(z1|xj)

p(z1|x1) + p(z1|x2) + p(z1|x3)
(34)

where the prior p(xi) = 1/3 has been simplified from

numerator and denominator. Since for maximality we are just

interesting on the sign of EX(I{x1}−I{x2}|z1), we can neglect
the contribution of the denominator. Thus, xi dominates xj if

min
p(·|X)∈K(z1|X)

p(z1|xi)− p(z1|xj) > 0. (35)

From (16)–(17), it follows that p(z1|x1) = 1 − ǫ, p(z1|x2) ∈
[0.6 − ǫ/2, 1 − ǫ], p(z1|x3) ∈ [0.5 − ǫ/3, 1 − ǫ]. Hence, we
conclude that (35) is non positive for all comparisons i, j and,

thus, that all the classes {x1, x2, x3} are undominated. This is

in perfect agreement with (33), we cannot take a decision.

If the feature measurement is z2 (medium acceleration),

based on the RS approach one gets (neglecting the contribution

of ǫ, which has been assumed to be small):

p(x1|z2) = 0, p(x2|z2) = 4/9, p(x3|z2) = 5/9. (36)

The pignistic probabilty obtained through TBM is

BetP (x1|z2) = 0, BetP (x2|z2) ≈ 0.43, BetP (x3|z2) ≈
0.57 which is numerically close to the RS approach. Using

the Voorbraak approximation [13], instead of the pignistic

transform, leads to identical results to those using the RS

approach (as claimed in [4]).

Under CLP and maximality, since p(z2|x1) = 0, p(z2|x2) ∈
[ǫ, 0.4+ ǫ/2], p(z2|x3) ∈ [ǫ, 0.5+2ǫ/3], we can conclude that

{x2, x3} are undominated. This result seems to be more in

agreement with our intuition than that derived via TBM and

RS approach (because TBM and RS approaches slightly favour

class 3 over class 2).

Finally, based on the RS and TBM approach, measurement

z3 results in classification probabilities:

p(x1|z3) = p(x2|z3) = 0, p(x3|z3) = 1. (37)

Under CLP and maximality, since p(z3|x1) = 0, p(z3|x2) = 0,
p(z3|x3) ∈ [ǫ, 0.2 + 2ǫ/3], we conclude that 3 is the only

undominated class. This is in accordance with TBM and RS

approaches and our intuition.

b) Continuous feature domain.: Again X = {1, 2, 3} but

this time Z = (−∞,∞). Let us first work out the case where

Σj , j = 1, 2, 3 is specified by (19)–(20). According to (31),

in this case the generalised likelihood function is simply:

g(z|xj) = µj(z) (38)

for z ∈ Z and j = 1, 2, 3. Application of (28) results

in classification probabilities depicted in Figure 1.(a). This

figure is practically the same of Figure 6 in [1], which was

obtained using the TBM machinery on the continuous feature

domain with the plausibility (26). For very small values of

acceleration z, all three classes are equally probable. It was

argued in [1] that this is again perfectly in accordance with

our intuition (as opposed to the classification results obtained

by the standard Bayesian classifier, which uses N (z; 0, σ2
i )

as likelihood, reported in Figure 2). Finally, for the case of
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Fig. 1. Posterior class probabilities Pr{xj |z}, j = 1, 2, 3 for Σj defined
by (a) equations (19)–(20); (b) equations (21)–(23).
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Fig. 2. Posterior class probabilities for a Bayesian classifier based on the
likelihoods N (z; 0, σ2

i ) and uniform prior.

imprecise likelihoods where the feature is specified by random



set Σj , j = 1, 2, 3 in equations (21)–(23), Figure 1.(b) depicts

the classification probabilities. The result is very similar to

that of Figure 1.(a) and the same arguments apply.

Consider now the CLPs framework and the set of densities

in (24), we can compute the dominance condition (10) for

f = I{xi} − I{xj} which, as in the discrete case, reduces to:

min
p(·|X)∈K(Z|X)

p(z|xi)− p(z|xj) > 0,

or, equivalently, to ǫiu(z|xi) − u(z|xj) > 0. In other words,

xi dominates xj for the values of z such that ǫiu(z|xi) −
u(z|xj) > 0. In the case ǫi = ǫ ≈ 1 for all i = 1, 2, 3
and wi, µi(z) defined as in (19)–(20), the plots of u(z|xi) −
u(z|xj), labelled as “class i vs. j”9, are shown in Figure

3.(a). It can be noticed that all the plots are always positive.

This means that class i dominates class j for all values of

z ∈ Z\{0}. In this case, the classification results coincide with
those depicted in Figures 1.(a), i.e., class 3 is more probable

than class 2 which, in turn, is more probable than class 1 for

each z 6= 0. Same happens in the case wi, µi(z) are defined as

in (21)–(23). At the decreasing of ǫ, TBM and RS approaches

still provide the same results, since the plausibility (upper

density) does not change. Conversely, according to the CLP

framework, the classification results become more uncertain.

Figure 3.(b) shows the case ǫ = 0.8. Since ǫu(z|xi)−u(z|xj)
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Fig. 3. Results of classification with CLP for wi, µi(z) defined as in (19)–
(20) (a) case ǫ = 0; (b) ǫ = 0.8.

is negative in z ∈ [−0.28, 0.28] for each i, j10, it follows that
in z ∈ [−0.28, 0.28] all classes {1, 2, 3} are undominated. For

9In this Figure, we have compared only 3 vs. 1, 3 vs 2 and 2 vs. 1, since
for the opposite comparisons u(z|xi)− u(z|xj) is clearly always negative.

10As before, we have compared only 3 vs. 1, 3 vs 2 and 2 vs. 1, since for
the opposite comparisons i cannot dominate j since u(z|xi)−u(z|xj) < 0.

z ∈ [−1.3,−0.28]∪[0.28, 1.3], classes {2, 3} are undominated.

This means that if the acceleration is between [−0.28, 0.28]
we cannot decide which is the class of the aircraft; if the

acceleration is in [−1.3,−0.28] ∪ [0.28, 1.3] we can say that

the aircraft is not of class 1; if it is greater than |1.3| we can

say that the aircraft is of class 3.

IX. CONCLUSIONS

In many classification problems it is impossible to specify

the precise model of the feature measurement likelihood

function. It is known that the standard Bayes classifier in those

circumstances is inappropriate to use. The paper highlights

the differences between three suitable solutions, based on (1)

the Transferrable Belief model (TBM), (2) the random set

framework for Bayesian classification and (3) the imprecise

probability approach. A simple target classification based

on acceleration feature is used for comparison. The results

illustrate that the RS approach produces identical results to

those obtained using the TBM classifier, if equivalent mea-

surement models are employed. The imprecise probability

theory provides a more general framework for reasoning

under uncertainty. Using the maximality criterion for decision

making the paper showed how to obtain similar results to those

produced by the TBM or RS classifier.
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