
Università degli Studi di Bari
Dipartimento di Informatica

LACAM
Machine Learning

Learning Sum-Product Networks

Nicola Di Mauro Antonio Vergari

International Conference on Probabilistic Graphical Models
Lugano, Switzerland, 6-9 September 2016

Outline

→Representation

→ Inference

→ Interpretation

→ Learning

→Applications

→Representation Learning

→References

The need for Tractable Inference
Probabilistic modeling of data aims at

▶ representing probability distributions compactly

▶ computing their marginals and modes efficiently (inference)

▶ learning them accurately

A solution is to use Probabilistic Graphical Models (PGMs)
However, PGMs are limited in

▶ representing compact distributions
▶ having intractable (exponential in their treewidth) exact inference in the

worst case
▶ falling back on approximate inference

▶ requiring and exponential sample size (wrt the number of variables)

▶ learning the structure since it requires inference

Exact inference in a tractable model may be better than performing
approximate inference in an intractable model

The need for SPN
Why should you work on SPNs?

Sum-Product Networks (SPNs) are a type of probabilistic model[1]

▶ a class of deep probabilistic models that consist of many layers of hidden
variables and can have unbounded treewidth

→ probabilistic semantics and NN interpretation
▶ inference in SPNs is guaranteed to be tractable

▶ structure and parameters can be effectively and accurately learned

SPNs represent probability distributions and a corresponding exact inference
machine for the represented distribution at the same time

Simple and effective algorithms to learn them

Successfully employed in several applications

[1]Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011

Representation

Density estimation
Given a set of i.i.d. samples {xi}Ni=1 over RVsX, the aim is to learn an
estimator for the joint probability distribution pX

Unsupervised learning density estimators

▶ Bayesian Networks

▶ Markov Networks

▶ Kernel Density Estimators

▶ Autoregressive Neural Networks

▶ Sum-Product Networks

▶ …

Once a density estimator is learned, one uses it to answer queries, i.e. to do
inference

(Different kinds of) Inference
Different types of models make different operations tractable

Operations that may be required to be efficient are

▶ p(X = x) (evidence)
→ tractable for SPNs, BNs

▶ p(E),E ⊂ X (marginals)
→ tractable for SPNs, hard in BNs (even approximate)

▶ p(Q|E),Q,E ⊂ X,Q ∩E = ∅ (conditionals)
→ tractable for SPNs, hard in BNs (even approximate)

▶ argmaxq∼Q p(q|E) (MPE assignment)
→ hard for both SPNs and BNs

▶ Z =
∑

x∼X ϕ(x) (partition function)
→ tractable for SPNs, hard for MNs

▶ sampling: generate independent samples from the posterior distribution

Tractable Probabilistic Models
Due to the importance of efficient inference a lot of work has been devoted to
learning probabilistic models for which inference is guaranteed to be tractable

▶ Graphical models
▶ graphical models with low treewidth and their mixtures
▶ thin junction trees

▶ Computational graphs from Knowledge Compilation
▶ Arithmetic Circuits
▶ Sentential Decision Diagrams[2]

▶ Neural Networks
▶ Restricted Boltzmann Forest
▶ Neural Autoregressive Distribution Estimator (NADE)[3]

▶ Masked Autoencoder Distribution Estimator (MADE)[4]

[2]Darwiche,Modeling and Reasoning with Bayesian Networks, 2009
[3]Larochelle and Murray, “The Neural Autoregressive Distribution Estimator”, 2011
[4]Germain et al., “MADE: Masked Autoencoder for Distribution Estimation”, 2015

Sum-Product Networks
A Sum-Product Network S over RVsX is a rooted weighted DAG consisting of
distribution leaves (network inputs), sum and product nodes (inner nodes).

▶ A leaf n defines a tractable, possibly
unnormalized, distribution ϕn over some RVs
inX.

▶ A nonnegative weightwnc is associated to
each edge linking a sum node n to c ∈ ch(n)

▶ ch(n): child (input) nodes of a node n
▶ pa(n): parent (output) nodes of a node n
▶ Sn: sub-network rooted at node n

X1X2X1X2

× ×

w1w2

Scopes

The scope of a node n in S is denoted as

sc(n) ⊆ X × ×

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

Scopes

The scope of a node n in S is denoted as

sc(n) ⊆ X

▶ the scope of a leaf node n is defined as
the set of RVs over which ϕn is defined
E.g. sc(n) = {X6}

× ×

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

Scopes

The scope of a node n in S is denoted as

sc(n) ⊆ X

▶ the scope of a leaf node n is the set of
RVs over which ϕn is defined

▶ the scope of an inner node n is defined as
sc(n) =

∪
c∈ch(n) sc(c)

E.g. sc(n) = {X5, X6}

× ×

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

Scopes

The scope of a node n in S is denoted as

sc(n) ⊆ X

▶ the scope of a leaf node n is the set of
RVs over which ϕn is defined

▶ the scope of an inner node n is defined as
sc(n) =

∪
c∈ch(n) sc(c)

E.g. sc(n) = {X3, X4, X5, X6}

× ×

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

Scopes

The scope of a node n in S is denoted as

sc(n) ⊆ X

▶ the scope of a leaf node n is the set of
RVs over which ϕn is defined

▶ the scope of an inner node n is defined as
sc(n) =

∪
c∈ch(n) sc(c)

E.g.
sc(n) = {X1, X2, X3, X4, X5, X6}

× ×

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

Scopes

The scope of a node n in S is denoted as

sc(n) ⊆ X

▶ the scope of a leaf node n is the set of
RVs over which ϕn is defined

▶ the scope of an inner node n is defined as
sc(n) =

∪
c∈ch(n) sc(c)

▶ the scope of S is the scope of its root, i.e.
X
E.g.
sc(S) = sc(n) =
{X1, X2, X3, X4, X5, X6}

× ×

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

Structural Properties
Let S be an SPN and let S⊕ (resp. S⊗) be the set of all sum (resp. product)
nodes in S

1. S is complete iff ∀n ∈ S⊕, ∀c1, c2 ∈ ch(n) : sc(c1) = sc(c2)

2. S is decomposable iff
∀n ∈ S⊗,∀c1, c2 ∈ ch(n), c1 ̸= c2 : sc(c1) ∩ sc(c2) = ∅

3. If S is complete and decomposable, then it is valid [5][6]

Evaluating a valid network corresponds to evaluate a joint unnormalized
probability distribution pX: ∀x, S(x)/Z = p(X = x)

▶ Z being the normalizing partition function Z =
∑

x∼X S(x)

Valid SPN correctly compiles the extended network polynomial encoding the
distribution pX [7].

[5]Darwiche,Modeling and Reasoning with Bayesian Networks, 2009
[6]Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
[7]Peharz et al., “On Theoretical Properties of Sum-Product Networks”, 2015

Inference

Complete evidence inference

× ×

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.

Each noden, computeSn(x|sc(n)) = Sn(x):

▶ Sn(x) = ϕn(sc(n) = x|sc(n))
if n is a leaf node

▶ Sn(x) =
∏

c∈ch(n) Sc(x)
if n is a product node

▶ Sn(x) =
∑

c∈ch(n) wncSc(x)
if n is a sum node

Complete evidence inference

× ×

× ×

× ×× ×

.7 .8

.75 .66

.82 .58 .9 .77

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.

Each noden, computeSn(x|sc(n)) = Sn(x):

▶ Sn(x) = ϕn(sc(n) = x|sc(n))
if n is a leaf node

▶ Sn(x) =
∏

c∈ch(n) Sc(x)
if n is a product node

▶ Sn(x) =
∑

c∈ch(n) wncSc(x)
if n is a sum node

Complete evidence inference

× ×

× ×

.522 .631.475 .693

.7 .8

.75 .66

.82 .58 .9 .77

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.

Each noden, computeSn(x|sc(n)) = Sn(x):

▶ Sn(x) = ϕn(sc(n) = x|sc(n))
if n is a leaf node

▶ Sn(x) =
∏

c∈ch(n) Sc(x)
if n is a product node

▶ Sn(x) =
∑

c∈ch(n) wncSc(x)
if n is a sum node

Complete evidence inference

× ×

× ×

.498 .637

.522 .631.475 .693

.7 .8

.75 .66

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.

Each noden, computeSn(x|sc(n)) = Sn(x):

▶ Sn(x) = ϕn(sc(n) = x|sc(n))
if n is a leaf node

▶ Sn(x) =
∏

c∈ch(n) Sc(x)
if n is a product node

▶ Sn(x) =
∑

c∈ch(n) wncSc(x)
if n is a sum node

Complete evidence inference

× ×

.246 .315

.498 .637

× ×× ×

.7 .8

.75 .66

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.

Each noden, computeSn(x|sc(n)) = Sn(x):

▶ Sn(x) = ϕn(sc(n) = x|sc(n))
if n is a leaf node

▶ Sn(x) =
∏

c∈ch(n) Sc(x)
if n is a product node

▶ Sn(x) =
∑

c∈ch(n) wncSc(x)
if n is a sum node

Complete evidence inference

× ×

.273 .301

.246 .315

× ×× ×

.7 .8

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.

Each noden, computeSn(x|sc(n)) = Sn(x):

▶ Sn(x) = ϕn(sc(n) = x|sc(n))
if n is a leaf node

▶ Sn(x) =
∏

c∈ch(n) Sc(x)
if n is a product node

▶ Sn(x) =
∑

c∈ch(n) wncSc(x)
if n is a sum node

Complete evidence inference

.152 .168

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.

Each noden, computeSn(x|sc(n)) = Sn(x):

▶ Sn(x) = ϕn(sc(n) = x|sc(n))
if n is a leaf node

▶ Sn(x) =
∏

c∈ch(n) Sc(x)
if n is a product node

▶ Sn(x) =
∑

c∈ch(n) wncSc(x)
if n is a sum node

Complete evidence inference

.152 .168

.163

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.

Each noden, computeSn(x|sc(n)) = Sn(x):

▶ Sn(x) = ϕn(sc(n) = x|sc(n))
if n is a leaf node

▶ Sn(x) =
∏

c∈ch(n) Sc(x)
if n is a product node

▶ Sn(x) =
∑

c∈ch(n) wncSc(x)
if n is a sum node

the root output is S(x) = p(X = x)

Marginal inference

× ×

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute a marginal query like
p(Q = q),Q ⊂ X evaluate S as before
(feedforward)

Marginal inference

× ×

× ×

× ×× ×

.7 .8

1.0 1.0

1.0 .58 1.0 .77

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute a marginal query like
p(Q = q),Q ⊂ X evaluate S as before
(feedforward)
but evaluate a leaf n as:

Sn(q) =

{
p(sc(n) = q|sc(n)) if sc(n) ⊆ Q

1.0 otherwise

Marginal inference

.367 .409

.396

.656 .732

.58 .77

.58 .77

.58 .77.58 .77

.7 .8

1.0 1.0

1.0 .58 1.0 .77

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

To compute a marginal query like
p(Q = q),Q ⊂ X evaluate S as before
(feedforward)
but evaluate a leaf n as:

Sn(q) =

{
p(sc(n) = q|sc(n)) if sc(n) ⊆ Q

1.0 otherwise

then propagate as before

▶ each sub-network shall output 1 as the
probability of marginalizing over all the
RVs out of its scope

Conditionals are tractable as well:
p(Q|E) = p(Q,E)/p(E)

MPE inference[8]

× ×

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

An approximation of MPE inference can be an-
swered in linear time as well

q∗ = argmax
q∼Q

p(E,q)

for some RVsE,Q ⊂ X,E ∩Q = ∅,
E ∪Q = X

[8]Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016

MPE inference[8]

× ×

max

max max

× ×

max max

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

An approximation of MPE inference can be an-
swered in linear time as well.
eg: Q = {X3, X4, X5},E = {X1, X2, X6}

▶ build aMax-Product Network M
substituting each n ∈ S⊕ for amax
node computing

max
c∈ch(n)

wncMn

[8]Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016

MPE inference[8]

.194 .344

.24

.348 .616

.58 .77

.58 .77

.58 .77.58 .77

.7 .8

1.0 1.0

1.0 .58 1.0 .77

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

An approximation of MPE inference can be an-
swered in linear time as well.
eg: Q = {X3, X4, X5},E = {X1, X2, X6}

▶ build aMax-Product Network M

▶ evaluateM bottom-up after setting all
leaves n, sc(n) ⊆ Q to 1

▶ a top-down traversal traces back the MPE
assignment for each RV inQ, following:

▶ only the max output child branch of a
max node

▶ all child branches of product nodes

▶ determining a path whose leaves union
forms the MPE assignment

[8]Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016

MPE inference[8]

.194 .344

.24

.348 .616

.58 .77

.58 .77

.58 .77.58 .77

.7 .8

1.0 1.0

1.0 .58 1.0 .77

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

An approximation of MPE inference can be an-
swered in linear time as well.
eg: Q = {X3, X4, X5},E = {X1, X2, X6}

▶ build aMax-Product Network M

▶ evaluateM bottom-up after setting all
leaves n, sc(n) ⊆ Q to 1

▶ a top-down traversal traces back the MPE
assignment for each RV inQ, following:

▶ only the max output child branch of a
max node

▶ all child branches of product nodes

▶ determining a path whose leaves union
forms the MPE assignment

[8]Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016

MPE inference[8]

.194 .344

.24

.348 .616

.58 .77

.58 .77

.58 .77.58 .77

1 0

1.0 1.0

1.0 .58 1.0 .77

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

An approximation of MPE inference can be an-
swered in linear time as well.
eg: Q = {X3, X4, X5},E = { X1, X2} , X6

▶ build aMax-Product Network M

▶ evaluateM bottom-up after setting all
leaves n, sc(n) ⊆ Q to 1

▶ a top-down traversal traces back the MPE
assignment for each RV inQ, following:

▶ only the max output child branch of a
max node

▶ all child branches of product nodes

▶ determining a path whose leaves union
forms the MPE assignment

[8]Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016

MPE inference[8]

.194 .344

.24

.348 .616

.58 .77

.58 .77

.58 .77.58 .77

1 0

1 0

0 .58 1.0 1

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

An approximation of MPE inference can be an-
swered in linear time as well.
eg: Q = { X3, X4, X5 },E = { X1, X2, X6}

▶ build aMax-Product Network M

▶ evaluateM bottom-up after setting all
leaves n, sc(n) ⊆ Q to 1

▶ a top-down traversal traces back the MPE
assignment for each RV inQ, following:

▶ only the max output child branch of a
max node

▶ all child branches of product nodes

▶ determining a path whose leaves union
forms the MPE assignment

[8]Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016

Partition function computation

× ×

× ×

× ×× ×

1.0 1.0

1.0 1.0

1.0 1.0 1.0 1.0

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

As for ACs, setting all leaf outputs to 1 equals to compute the partition function

Partition function computation

1.0 1.0

1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.01.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0 1.0 1.0

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

As for ACs, setting all leaf outputs to 1 equals to compute the partition function

Interpretation

SPN interpretations
Probabilistic model

▶ sum nodes in a valid network are probabilistic mixtures over their
children distributions whose coefficients are the children weights

▶ a categorical latent RVHn can be associated to each sum node n, having
values in {1, . . . , |ch(n)|}

▶ the weights of a sum node n can also be interpreted as the probabilities of
choosing the corresponding child branch from node n, having already taken
the path from the root up to n

▶ since product nodes are evaluated as product of probability values, they
identify factorizations over independent distributions

Deep feedforward neural network

▶ SPNs can also be interpreted as a particular kind of feedforward deep
Neural Networks (NNs) with nonnegative parameters, where the leaf
distributions are input neurons whereas sum and product nodes are the
hidden neurons

SPNs and other models
▶ SPNs are more general than both hierarchical mixture models and thin

junction trees
▶ SPNs can be exponentially more compact (distribution over states of

variables with an even number of 1’s, for instance)

▶ SPNs are not classical PGMs
▶ they are computational graphs, inference machines,…

▶ SPNs are not “probabilistic, general-purpose convolutional networks, with
average-pooling corresponding to marginal inference and max-pooling
corresponding to MPE inference”

Network Polynomials
LetΦ(x) ≥ 0 an unnormalized probability distribution on Boolean variables.
x (resp. x̄) denotes the indicator function [x] (resp. [x̄]) for the variableX .
The network polinomial[9] ofΦ(x) is

∑
x Φ(x)Π(x)

▶ Π(x) is the product of the indicators that have value 1 in state x

.
Example (Bernoulli distribution overX with parameter p)
..

. px+ (1− p)x̄

.
Example (Bayes NetworkX1 → X2)
..

.

θx1θx2|x1
x1x2 + θx1θx̄2|x1

x1x̄2 + θx̄1θx2|x̄1
x̄1x2 + θx̄1θx̄2|x̄1

x̄1x̄2

with θ· = P (·)

[9]Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003

Network Polynomials (II)
▶ The network polynomial is a multilinear function of the indicator variables

▶ The unnormalized probability of evidence e (partial instantiation ofX) is
the value of the network polynomial when all indicators compatible with e
are set to 1 and the remainder are set to 0

.
Example
..

.

Φ(X1 = 1, X3 = 0) is the value of the network polynomial when x̄1 and x3

are set to 0 and the remaining indicators are set to 1 throughout.

▶ The partition function is the value of the network polynomial when all
indicators are set to 1

▶ For any evidence e, the cost of computing P (e) = Φ(e)/Z is linear in
the size of the network polynomial

▶ The network polynomial has size exponential in the number of variables

▶ it is possible to represent and evaluate it in polynomial space and time
using an AC or an SPN

Arithmetic Circuits
Arithmetic Circuits (ACs)[10]: inference representation closely related to SPNs

▶ a rooted DAG with sums and products as interior nodes

▶ indicator nodes and parameters as leaves

Properties

▶ decomposable: children of a product node have disjoint scopes

▶ smooth: children of a sum node have identical scopes
▶ deterministic: children of a sum node are mutually exclusive

▶ at most one is non-zero for any complete configuration

An AC represents a valid probability distribution if it is decomposable and
smooth
ACs generated by compiling graphical models are typically deterministic as well

▶ while for SPNs sum nodes represent mixtures of distributions and are not
deterministic in general

[10]Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003

Arithmetic Circuits (II)
ACs and SPNs representations are equivalent for discrete domains[11]

▶ every decomposable and smooth AC can be represented as an equivalent
SPN with fewer or equal nodes and edges

▶ every SPN can be represented as an AC with at most a linear increase in
the number of edges

Learning ACs has been made by

▶ a standard BN structure learner with the complexity of the resulting
circuit as the regularizer[12]

▶ learning MNs representable by ACs, but does not reusing sub-ACs[13]

SPN learning algorithms emphasize mixtures

▶ results in models that use implicit latent variables to capture all of the
interactions among the observable variables

[11]Rooshenas and Lowd, “Learning Sum-Product Networks with Direct and Indirect Variable
Interactions”, 2014
[12]Lowd and Domingos, “Learning Arithmetic Circuits”, 2012
[13]Lowd and Rooshenas, “Learning Markov Networks With Arithmetic Circuits”, 2013

Arithmetic Circuits (II)
Differences with SPNs

probabilistic semantics of SPNs

▶ allows for direct structure learning schemes where the compilation
process is implicit

▶ allows sampling from their encoded distribution (generative model)

no shared weights

▶ differently from ACs, it is not possible to have the same tied parameter
for many nodes in SPNs

generalized SPNs
▶ instead of using IVs to represent the states of discrete RVs, SPNs have

been generalized to continuous RVs and discrete RVs with infinitely many
states[14]

▶ IVs λX=x are replaced by distributions

[14]Peharz et al., “On Theoretical Properties of Sum-Product Networks”, 2015

SPNs as NNs (I)
SPNs are a particular kind of labelled, constrained and fully probabilistic
neural networks.

Labelled: each neuron is associated a scope
Constrained: completeness and decomposability determine network
topology.
Fully probabilistic: each valid sub-SPN is still a valid-SPN.

SPNs provide a direct encoding of the input space into a deep architecture→
visualizing representations (back) into the input space.

Vergari et al., “Visualizing and Understanding Sum-Product Networks”, 2016

SPNs as NNs (II)
A classic MLP hidden layer computes the function:

h(x) = σ(Wx+ b)

SPNs can be reframed as DAGs of MLPs, each sum layer computing:

S(x) = log(Wx)

and product layers computing:

S(x) = exp(Px)

whereW ∈ Rs×r
+ andP ∈ {0, 1}s×r are the weight matrices:

W(ij) =

{
wij if i → j

0 otherwise
P(ij) =

{
1 if i → j

0 otherwise

Vergari et al., “Visualizing and Understanding Sum-Product Networks”, 2016

SPNs as NNs (III)

XYZWK

XYZWK

XYZWK

XYZ

WK

XYZK

W

WK

WK

XYZ

Z

Y

X
XY

Z

Z

Y

X

K

K

W

K

K

Z

Y

X

XYZ

Z
XY

XY

XY

ZK

XYZK

XYZK

XYZK

XYZ

Z XYZ

XYZ

W

Z

Y

X

Z

Z

Y

X

K

K

W

K

K

Z

Y

X

W

Z

Y

X

Z

Z

Y

X

K

K

W

K

K

Z

Y

X

SPNs as NNs (IV): filters
Learned features as images maximizing neuron activations[15]:

x∗ = argmax
x,||x||=γ

hij(x;θ).

With SPNs, joint solution as an MPE assignment for all nodes (linear time):

x∗
|sc(n) = argmax

x
Sn(x|sc(n);w)

.

→ scope length (|sc(n)|) correlates with feature abstraction level

[15]Erhan et al., “Visualizing Higher-Layer Features of a Deep Network”, 2009
Vergari et al., “Visualizing and Understanding Sum-Product Networks”, 2016

SPNs as BNs
Adopting Algebraic Decision Diagrams (ADDs) for CPDs, every SPN can be
converted into a BN in linear time and space complexity in the size of the SPN

▶ the generated BN has a simple bipartite structure
▶ applying the VE algorithm to the generated BN with ADD representation

of its CPDs, the original SPN can be recovered in linear time and space
with respect to the size of the SPN

▶ the SPN can be viewed as a caching of the VE inference process

Figure from [16]. Construct a BN with CPDs represented by ADDs from an SPN.
[16]Zhao et al., “On the Relationship between Sum-Product Networks and Bayesian Networks”, 2015

Discuss

× ×

× ×

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

.194 .344

.24

.348 .616

.58 .77

.58 .77

.58 .77.58 .77

1 0

1 0

0 .58 1.0 1

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

Learning

Learning SPNs
Parameter learning: estimatew from data considering an SPN as a latent RV
model, or as a NN.

Structure learning: build the network from data by assigning scores to
tentative structures or by exploiting constraints

How to learn a “full” SPN:

▶ handcrafted structure, then parameter learning [Poon and Domingos
2011] [Gens and Domingos 2012]

▶ random structures, then parameter learning [Rashwan et al. 2016]

▶ structure learning, then parameter learning (fine tuning) [Zhao et al.
2016]

▶ learn both weight and structure at the same time [Adel et al. 2015; Gens
and Domingos 2013; Rooshenas and Lowd 2014; Vergari et al. 2015] …

Structure Learning
Score vs constraint based search. No closed form for likelihood scores, need
heuristics [Rooshenas and Lowd 2014].
No need for it by exploiting the inner nodes probabilistic semantics

Learning graph vs tree structures: Easier to learn a tree SPN (sometimes
SPT) with greedy approaches. Graph SPNs may be more compact and
expressive efficient.

Top-down vs bottom-up approaches: iteratively cluster data matrix
(top-down) or start by the marginal RVs (bottom-up)

LearnSPN is a greedy, top down, constraint based learner for tree SPNs [Gens
and Domingos 2013]
→ First principled top-down learner, inspired many algorithms and variations
→ Surprisingly simple and accurate

LearnSPN (I)
Build a tree SPN by recursively split the data matrix:

▶ splitting columns into pairs by a greedy G Test with threshold ρ:

G(Xi, Xj) = 2
∑

xi∼Xi

∑
xj∼Xj

c(xi, xj) · log
c(xi, xj) · |T |
c(xi)c(xj)

▶ clustering instances into |C| sets with online Hard-EM, estimating weights
as cluster proportions with cluster penalty λ

p(X) =
∑

Ci∈C

∏
Xj∈X p(Xj |Ci)p(Ci)

▶ if there are less thanm instances, put a naive factorization over leaves

▶ each univariate distribution getML estimation smoothed by α

Hyperparameter space: {ρ, λ,m, α}.

LearnSPN (II)

1

2

3

4

5

6

7

8

X4X3X2X1 X5

X4X3X2X1 X5 X4X3X2X1 X5

3/8 2/8 3/8 3/8 2/8 3/8

X4X3X2X1 X5

3/8 2/8 3/8

LearnSPN (II)
X4X3X2X1 X5

X4X3X2X1 X5 X4X3X2X1 X5

3/8 2/8 3/8

3/8 2/8 3/8

X4X3X2X1 X5

3/8 2/8 3/8

LearnSPN (II)
X4X3X2X1 X5

X4X3X2X1 X5

X4X3X2X1 X5

3/8 2/8 3/8 3/8 2/8 3/8

X4X3X2X1 X5

3/8 2/8 3/8

LearnSPN (II)
X4X3X2X1 X5

X4X3X2X1 X5 X4X3X2X1 X5

3/8 2/8 3/8 3/8 2/8 3/8

X4X3X2X1 X5

3/8 2/8 3/8

Tweaking LearnSPN
LearnSPN performs two interleaved greedy hierarchical divisive clustering
processes (co-clutering on the data matrix).

Fast and simple. But both processes never look back and are committed to the
choices they take→ slow down the two processes

Online EM does not need to specify the number of clusters k in advance. But
overcomplex structures are learned by exploding the number of sum node
children→ look for deeper networks

Tractable leaf estimation. But too strong naive factorization independence
assumptions, hard to regularize→ learn tree distributions as leaves

ML estimations are effective. But they are not robust to noise, they can overfit
the training set easily→ learn bagged sum nodes

Why Structure Quality Matters
Tractable inference is guaranteed if the network size is polynomial in |X|.

Network size influences inference complexity: smaller networks, faster
inference!
→ Comparing network sizes is better than comparing inference times

Network depth influences expressive efficiency [Martens and Medabalimi
2014] [Zhao et al. 2015]

Structural simplicity as a bias: overcomplex networks may not generalize well.

Structure quality desiderata: smaller but accurate, deeper but not wider,
SPNs.

LearnSPN-b
Observation: each clustering process benefits from the other one
improvements/highly suffers from other’s mistakes.

Idea: slow them down the processes by limiting the number of nodes to split to
the minimum. LearnSPN-b, binary splitting k = 2.
→ one hyperparameter less, λ.
→ not committing to complex structures too early
→ reducing node out fan increases the depth
→ same expressive power as LearnSPN structures
→ statistically same (or better) accuracy, smaller networks

3/8 2/8 3/8 = 3/85/8

3/5 2/5

LearnSPN-b: depth VS size

4 6 8 10 12 14 16 18
depth (# levels)

0

500

1000

1500

2000

2500

3000

3500

si
ze

 (

ed
ge

s)

k=10
k=4
k=2

5 10 15 20 25
depth (# levels)

5000

0

5000

10000

15000

20000

25000

30000

35000

si
ze

 (

ed
ge

s)

k=10
k=4
k=2

Figure : Network sizes VS depths while varying the max number of sum node children splits
(k ∈ {10, 4, 2}). Each dot is an experiment in the grid search hyperparameter space performed
by LearnSPN-b on NLTCS (left) and Plants (right).

LearnSPN-b: best ll VS size

tr
et

ai
l

ko
sa

re
k

nl
tc

s

pu
m

sb
_s

ta
r

m
sw

eb

dn
a

bn
et

fli
x

m
sn

bc

je
st

er

bo
ok kd

d

ac
ci

de
nt

s

cw
eb

kb

tm
ov

ie

pl
an

ts ad

ba
ud

io

cr
52 bb

c

datasets

103

104

105

106

si
ze

 (

ed
ge

s)

LearnSPN
SPNB
SPNBT

Figure : Comparing network sizes for the networks scoring the best log-likelihoods in the grid
search as obtained by LearnSPN, LearnSPN-b and LearnSPN-bT for each dataset.

Other variations on LearnSPN
ACs modeling leaves by performing a greedy score search. ID-SPN best
log-likelihood learner (but lots of hyperparameters).
Freely available in the Libra[17] toolkit [Rooshenas and Lowd 2014]

Looking for correlations instead of independencies via matrix factorizations.
Splitting matrix rows and columns at the same time: SPN-SVD.
It can cope with continuous data [Adel et al. 2015]

Post-learningmergining sub-SPNs that model “similar” distributions.
Reducing network sizes [Rahman and Gogate 2016].

Learning Relational SPNs on first order data represented in Tractable Markov
Logic (TML), LearnRSPN [Nath and Domingos 2015].

[17]http://libra.cs.uoregon.edu/

Other Tendencies in Structure Learning
Learning deterministic structures which enable closed form log-likelihood
and weight estimation.
Selective SPNs, enabling efficient Stochastic Local Search [Peharz et al. 2014a].
Mixing latent and deterministic mixtures as sum nodes (a Cutset Network is an
SPN!) [Rahman and Gogate 2016]

Learning DAGs structures instead of trees.
Substituting sub-structures with more complex ones by cloning
mixtures [Dennis and Ventura 2015]

Template learning for sequence models. Stochastic local search over well
defined constrained structures. Dynamic SPNs [Melibari et al. 2016]→
PGM’16!

Parameter Learning
Non convex optimization, solvable with (online) iterative methods (e.g. SGD)

Classical approach: compute the gradient∇wS(x)
→ use backpropagation (differential approach[18])

1. ∇S(x)S(x)← 1 start from the root

2. if n is a sum node, ∀c∈ch(n):
∇Sc(x)S(x)← ∇Sc(x)S(x) + wnc∇Sn(x)S(x)

3. if n is a product node, ∀c∈ch(n):
∇Sc(x)S(x)← ∇Sc(x)S(x) +∇Sn(x)S(x)

∏
k∈ch(n)\{c} Sk(x)

Issues:

▶ vanishing gradients: depth is a major problem for soft gradients
▶ hyperparameter choices

▶ adaptive learning rate scheduling algos not employed yet!

[18]Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003

“Hard” gradients

× ×

max

max max

× ×

max max

× ×× ×

X1 X2

X3 X4

X5 X6 X5 X6

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

From SPN S to MPNM

▶ forward (bottom-up) prop xi

▶ backprop as MPE descent

▶ “count” the weights occurrencies in the
pathWxi

∇wpc logM(x) =
♯{wpc ∈Wx}

wpc

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Gens and Domingos, “Discriminative Learning of Sum-Product Networks”, 2012

“Hard” gradients

.194 .344

.24

.348 .616

.58 .77

.58 .77

.58 .77.58 .77

.7 .8

1.0 1.0

1.0 .58 1.0 .77

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

From SPN S to MPNM

▶ forward (bottom-up) prop xi

▶ backprop as MPE descent

▶ “count” the weights occurrencies in the
pathWxi

∇wpc logM(x) =
♯{wpc ∈Wx}

wpc

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Gens and Domingos, “Discriminative Learning of Sum-Product Networks”, 2012

“Hard” gradients

.194 .344

.24

.348 .616

.58 .77

.58 .77

.58 .77.58 .77

1 0

1 0

0 .58 1.0 1

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

From SPN S to MPNM

▶ forward (bottom-up) prop xi

▶ backprop as MPE descent

▶ “count” the weights occurrencies in the
pathWxi

∇wpc logM(x) =
♯{wpc ∈Wx}

wpc

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Gens and Domingos, “Discriminative Learning of Sum-Product Networks”, 2012

“Hard” gradients

.194 .344

.24

.348 .616

.58 .77

.58 .77

.58 .77.58 .77

1 0

1 0

0 .58 1.0 1

0.3 0.7

0.6 0.4 0.2 0.8

0.5 0.5 0.9 0.1

From SPN S to MPNM

▶ forward (bottom-up) prop xi

▶ backprop as MPE descent

▶ “count” the weights occurrencies in the
pathWxi

∇wpc logM(x) =
♯{wpc ∈Wx}

wpc

→ not vanishing (regardless depth)
→ slower convergence

(less updates/instance)

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Gens and Domingos, “Discriminative Learning of Sum-Product Networks”, 2012

Hard/Soft Parameter Updating

∆wpc

Soft Gradient
Generative (∇wpcS(x)) Sc(x)∇Sp(x)S(x)

Discriminative (∇wpc logS(y|x))
∇wpcS(y|x)

S(y|x) − ∇wpcS(∗|x)
S(∗|x)

Hard Gradient
Generative (∇wpc logM(x)) ♯{wpc∈Wx}

wpc

Discriminative (∇wpc logM(y|x)) ♯{wpc∈W(y|x)}−♯{wpc∈W(1|x)}
wpc

Soft Posterior[19] (p(Hp = c|x)) ∝ 1
S(x)

∂S(x)
∂Sp(x)

Sc(x)wpc

Hard Posterior (p(Hp = c|x)) =

{
1ifwpc ∈Wx

0otherwise

[19]Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016
Gens and Domingos, “Discriminative Learning of Sum-Product Networks”, 2012

Bayesian Parameter Learning
Learning in a Bayesian setting is computing the posterior p(w|{xi}mi=1)
having a prior p(w):

p(w|{xi}t+1
i=1) ∝ p(w|{xi}ti=1)p(x

t+1|w)

p(w)modeled as a product of Dirichlet, p(xt+1|w) is an exponential sum of
monomials,→ the posterior becomes a mixture of products of Dirichlets
growing exponentially in the data and sum nodes!

Online Bayesian Moment Matching (OBMM): computing first two moments
to approximate the intractable posterior, efficiently for tree SPNs [Rashwan
et al. 2016].

Collapse Variational Inference (CVB-SPN) to optimize a logarithmic lower
bound (better than ELBO) efficiently (linear in |S|) [Zhao et al. 2016].

Parameter learning
CVB-SPN[20] OBMM[21] SGD[48] EM[48] SEG[48]

NLTCS -6.08 -6.07 -8.76 -6.31 -6.85
MSNBC -6.29 -6.03 -6.81 -6.64 -6.74
KDDCup2k -2.14 -2.14 -44.53 -2.20 -2.34
Plants -12.86 -15.14 -21.50 -17.68 -33.47
Audio -40.36 -40.70 -49.35 -42.55 -46.31
Jester -54.26 -53.86 63.89 -54.26 -59.48
Netflix -60.69 -57.99 64.27 -59.35 -64.48
Accidents -29.55 -42.66 53.69 -43.54 -45.59
Retail -10.91 -11.42 -97.11 -11.42 -14.94
Pumsb-star -25.93 -45.27 -128.48 -46.54 -51.84
DNA -86.73 -99.61 -100.70 -100.10 -105.25
Kosarek -10.70 -11.22 34.64 -11.87 -17.71
MSWeb -9.89 -11.33 -59.63 -11.36 -20.69
Book -34.44 -35.55 -249.28 -36.13 -42.95
EachMovie -52.63 -59.50 -227.05 -64.76 -84.82
WebKB -161.46 -165.57 -338.01 -169.64 -179.34
Reuters-52 -85.45 -108.01 -407.96 -108.10 -108.42
20-Newsgrp -155.61 -158.01 -312.12 -160.41 -167.89
BBC -251.23 -275.43 -462.96 -274.82 -276.97
Ad -19.00 -63.81 -638.43 -63.83 -64.11

[20]Zhao et al., “Collapsed Variational Inference for Sum-Product Networks”, 2016
[21]Rashwan et al., “Online and Distributed Bayesian Moment Matching for Parameter Learning in
Sum-Product Networks”, 2016

Parameter learning VS LearnSPN
LearnSPN[22] LearnSPN-b[23] CVB-SPN[24] OBMM[25] SGD[52] EM[52] SEG[52]

NLTCS -6.11 -6.05 -6.08 -6.07 -8.76 -6.31 -6.85
MSNBC -6.11 -6.04 -6.29 -6.03 -6.81 -6.64 -6.74
KDDCup2k -2.18 -2.14 -2.14 -2.14 -44.53 -2.20 -2.34
Plants -12.98 -12.81 -12.86 -15.14 -21.50 -17.68 -33.47
Audio -40.50 -40.57 -40.36 -40.70 -49.35 -42.55 -46.31
Jester -53.48 -53.53 -54.26 -53.86 63.89 -54.26 -59.48
Netflix -57.33 -57.73 -60.69 -57.99 64.27 -59.35 -64.48
Accidents -30.04 -29.34 -29.55 -42.66 53.69 -43.54 -45.59
Retail -11.04 -10.94 -10.91 -11.42 -97.11 -11.42 -14.94
Pumsb-star -24.78 -23.31 -25.93 -45.27 -128.48 -46.54 -51.84
DNA -82.52 -81.91 -86.73 -99.61 -100.70 -100.10 -105.25
Kosarek -10.99 -10.72 -10.70 -11.22 34.64 -11.87 -17.71
MSWeb -10.25 -9.83 -9.89 -11.33 -59.63 -11.36 -20.69
Book -35.89 -34.30 -34.44 -35.55 -249.28 -36.13 -42.95
EachMovie -52.49 -51.36 -52.63 -59.50 -227.05 -64.76 -84.82
WebKB -158.20 -154.28 -161.46 -165.57 -338.01 -169.64 -179.34
Reuters-52 -85.07 -83.34 -85.45 -108.01 -407.96 -108.10 -108.42
20-Newsgrp -155.93 -152.85 -155.61 -158.01 -312.12 -160.41 -167.89

[22]Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013
[23]Vergari et al., “Simplifying, Regularizing and Strengthening Sum-Product Network Structure
Learning”, 2015
[24]Zhao et al., “Collapsed Variational Inference for Sum-Product Networks”, 2016
[25]Rashwan et al., “Online and Distributed Bayesian Moment Matching for Parameter Learning in
Sum-Product Networks”, 2016

Why learning parameters only
Even if simple, LearnSPN hardly scales on large datasets.
→ generate a random (but valid) structure, then optimize the weights

LearnSPN OBMM ODMM SGB OEM OEG

KOS -444.55 -422.19 -437.30 -3492.9 -538.21 -657.13
NIPS - -1691.87 -1709.04 -7411.20 -1756.06 -3134.59
ENRON - -518.842 -522.45 -13961.40 -554.97 -14193.90
NyTIMES - -1503.65 -1559.39 -43153.60 -1189.39 -6318.71

→ distribute the computation of gradients and updates (over instances,…etc)

LearnSPN OBMM ODMM SGB OEM OEG

KOS 1439.11 89.40 8.66 162.98 59.49 155.34
NIPS - 139.50 9.43 180.25 64.62 178.35
ENRON - 2018.05 580.63 876.18 694.17 883.12
NyTIMES - 12091.7 1643.60 5626.33 5540.40 6895.00

Rashwan et al., “Online and Distributed Bayesian Moment Matching for Parameter Learning in
Sum-Product Networks”, 2016

Other Tendencies in Parameter
Learning
Jointly learning leaf distributions parameters while optimizing.
E.g. deriving EM update rules for leaf distributions [Desana and Schnörr 2016;
Peharz et al. 2015]

Bayesian learning with continous leaf distributions. Extending OBMM to
tree SPNs with continuous Gaussian leaves [Jaini et al. 2016]→ PGM’16!

Non bayesian signomial programming approaches still considering an SPN
as a (very large) mixture over tree distributions.
Multiplicative updates (no projections, like EG, but faster convergence) for
Sequential Monomial Approximations (SMA) and Concave-Convex procedure
(CCCP) [Zhao and Poupart 2016]

Applications

Applications I: computer vision
Image reconstruction and inpainting: fill the missing pixels of test samples by
the means of efficient MPE inference.
Fixed (taking spatial autocorrelation into account) or learned structures.7.3 Face Image Completion

Original

Covered

MEAN

P
D

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

D
V

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

M
er
ge

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

7.3 Face Image Completion

Original

Covered

MEAN

P
D

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

D
V

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

M
er
ge

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

Reconstructing some simmetries
(eyes, but not beards, glasses).

Testing different approximations
for MPE inference [Peharz 2015].

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011

Applications II: activity recognition
Videos represented as regular grids of points in space and time, described by
Bag-of-Words (BoW).
An SPN structure models a hierarchy of BoW products.
Inference for activity recognition and localization.IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 2

Fig. 1. Our approach: (a) A video is represented by the counting grid model (CG) of visual words; every grid point u is assigned a distribution of
word counts ⇡uz ; space-time windows Bb are placed across the counting grid and characterized by a Bag-of-Words model in terms of aggregate
distributions of word counts on the grid that fall within the window,

P
u2B

b

⇡uz . (b) Our activity model is the sum-product network (SPN) that
consists of levels of sum and product nodes, ending with space-time windows at terminal nodes; children nodes in the SPN can be shared by
multiple parents. (c) SPN inference amounts to parsing, and identifying foreground (green space-time windows). (d) Localization of the activity
“unloading of the trunk” in an example sequence from the VIRAT dataset [1].

where the weights correspond to the relative significance
of the component in the mixture distribution.

SPN is suitable for capturing alternative structures
of an activity, because the product nodes can encode
particular configurations of BoWs, i.e., primitives of an
activity, whereas the sum nodes can account for alter-
native configurations. Also, SPN can compactly encode
a large number of alternative arrangements of BoWs,
because SPN consists of a number of levels of sums and
products, where children nodes are shared by parents.

When a new video is encountered, we place a set
of space-time windows across the video’s regular grid.
We characterize the windows with BoWs, and use them
as terminal nodes of the SPN. SPN inference amounts
to parsing the SPN graph, i.e., selecting a subset of
optimal sum, product, and terminal nodes (i.e., BoWs)
that yields the explanation of activity occurrence Fig. 1c.
The resulting parse is a tree. The video is assigned the
label of the activity whose parse tree yields the highest
parse score. The selected subset of space-time windows
localize foreground video parts Fig. 1d.

For our evaluation, we have compiled and annotated
a new Volleyball dataset. Our video classification and
activity localization are superior to those of the state of
the art on the benchmarks datasets, including VIRAT [1],
UT-Interactions [6], KTH [7], TRECVID MED 2011 [8],
and Volleyball [9].

Contributions:
• Activity representation that integrates SPN+CG in a

unified framework;
• Introducing new hidden random variables over the

graph connectivity of our SPN+CG model, whereas
previous approaches on SPN including our prelim-
inary work treat SPN edges deterministically.

• Bottom-up and top-down inference algorithm;
• Joint learning of SPN and CG under both weak

supervision, and supervision
• Volleyball dataset.

In the following, Sec. 2 reviews prior work; Sec. 3
specifies SPN; Sec. 5 formulates CG, and a joint model of
SPN and CG; Sections 6 and 7 specify our inference and
learning algorithms; and Sec. 8 presents our experiments.

2 PRIOR WORK
Our literature review is focused on prior work that
models activities using graphical models. Then, we relate
our work to that on aggregating counts of visual words
in the video, and non-linear deep models. Finally, we
present our contributions, and explain what is new in
this paper relative to our preliminary work of [9].

Graphical models have been successfully used for
modeling spatiotemporal structure of activities [10]–[12].
Representative models include Dynamic Bayesian Net-
works [13]–[15], hierarchical graphical models [16]–[18],
AND-OR graphs [19]–[21], and Logic Networks [22]–
[24]. Recognition rates increase even further by ground-
ing graphical models onto object-detector responses [16],
rather than raw video features (e.g., optical flow). How-
ever, graphical models relevant for activity recognition
are typically intractable. As learning algorithms use in-
ference to estimate latent variables on training data un-
der weak supervision, and generally assume exact infer-
ence, their behavior in the context of heuristic inference
is not well understood. In contrast, SPN allows exact
inference under certain conditions that are unrestrictive
for our purposes, as discussed later.

Among the above graphical models, SPNs are most
related to AND-OR graphs, which are also capable of
encoding alternative decompositions and configurations
of activities [19]–[21], [25]–[27]. AND-OR graphs typi-
cally require a manual specification of nodes and graph
connectivity, each associated with hand-picked seman-
tic meaning (with few exceptions [28]). Thus, learn-
ing AND-OR graphs usually amounts to only learning
model parameters of nodes and edges representing user-
specified activity parts. In contrast, SPN has a “deeper”

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 2

Fig. 1. Our approach: (a) A video is represented by the counting grid model (CG) of visual words; every grid point u is assigned a distribution of
word counts ⇡uz ; space-time windows Bb are placed across the counting grid and characterized by a Bag-of-Words model in terms of aggregate
distributions of word counts on the grid that fall within the window,

P
u2B

b

⇡uz . (b) Our activity model is the sum-product network (SPN) that
consists of levels of sum and product nodes, ending with space-time windows at terminal nodes; children nodes in the SPN can be shared by
multiple parents. (c) SPN inference amounts to parsing, and identifying foreground (green space-time windows). (d) Localization of the activity
“unloading of the trunk” in an example sequence from the VIRAT dataset [1].

where the weights correspond to the relative significance
of the component in the mixture distribution.

SPN is suitable for capturing alternative structures
of an activity, because the product nodes can encode
particular configurations of BoWs, i.e., primitives of an
activity, whereas the sum nodes can account for alter-
native configurations. Also, SPN can compactly encode
a large number of alternative arrangements of BoWs,
because SPN consists of a number of levels of sums and
products, where children nodes are shared by parents.

When a new video is encountered, we place a set
of space-time windows across the video’s regular grid.
We characterize the windows with BoWs, and use them
as terminal nodes of the SPN. SPN inference amounts
to parsing the SPN graph, i.e., selecting a subset of
optimal sum, product, and terminal nodes (i.e., BoWs)
that yields the explanation of activity occurrence Fig. 1c.
The resulting parse is a tree. The video is assigned the
label of the activity whose parse tree yields the highest
parse score. The selected subset of space-time windows
localize foreground video parts Fig. 1d.

For our evaluation, we have compiled and annotated
a new Volleyball dataset. Our video classification and
activity localization are superior to those of the state of
the art on the benchmarks datasets, including VIRAT [1],
UT-Interactions [6], KTH [7], TRECVID MED 2011 [8],
and Volleyball [9].

Contributions:
• Activity representation that integrates SPN+CG in a

unified framework;
• Introducing new hidden random variables over the

graph connectivity of our SPN+CG model, whereas
previous approaches on SPN including our prelim-
inary work treat SPN edges deterministically.

• Bottom-up and top-down inference algorithm;
• Joint learning of SPN and CG under both weak

supervision, and supervision
• Volleyball dataset.

In the following, Sec. 2 reviews prior work; Sec. 3
specifies SPN; Sec. 5 formulates CG, and a joint model of
SPN and CG; Sections 6 and 7 specify our inference and
learning algorithms; and Sec. 8 presents our experiments.

2 PRIOR WORK
Our literature review is focused on prior work that
models activities using graphical models. Then, we relate
our work to that on aggregating counts of visual words
in the video, and non-linear deep models. Finally, we
present our contributions, and explain what is new in
this paper relative to our preliminary work of [9].

Graphical models have been successfully used for
modeling spatiotemporal structure of activities [10]–[12].
Representative models include Dynamic Bayesian Net-
works [13]–[15], hierarchical graphical models [16]–[18],
AND-OR graphs [19]–[21], and Logic Networks [22]–
[24]. Recognition rates increase even further by ground-
ing graphical models onto object-detector responses [16],
rather than raw video features (e.g., optical flow). How-
ever, graphical models relevant for activity recognition
are typically intractable. As learning algorithms use in-
ference to estimate latent variables on training data un-
der weak supervision, and generally assume exact infer-
ence, their behavior in the context of heuristic inference
is not well understood. In contrast, SPN allows exact
inference under certain conditions that are unrestrictive
for our purposes, as discussed later.

Among the above graphical models, SPNs are most
related to AND-OR graphs, which are also capable of
encoding alternative decompositions and configurations
of activities [19]–[21], [25]–[27]. AND-OR graphs typi-
cally require a manual specification of nodes and graph
connectivity, each associated with hand-picked seman-
tic meaning (with few exceptions [28]). Thus, learn-
ing AND-OR graphs usually amounts to only learning
model parameters of nodes and edges representing user-
specified activity parts. In contrast, SPN has a “deeper”

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 10

(a) SPN+CG (b) CG

Fig. 4. Our inference on an example video from the VIRAT dataset: (a)
A part of the parse graph using SPN+CG and the inferred foreground
(green). (b) CG is equivalent to the counting grid model of [3] which
selects all space-time windows as foreground.

Sensitivity to model parameters. Tab. 1 shows sen-
sitivity of SPN+CG to a specific choice of the number
of: (a) SPN levels, (b) counting grid points, and (c) grid
points enclosed by each space-time window. As can be
seen, we are relatively insensitive to (a)–(c) over a certain
range of their values. As the SPN height and width
increase, the results improve. However, SPN heights
above 24 levels, and widths above 10 nodes lead to
over fitting. For all our experiments, presented below,
we choose the smallest SPN height of 8 levels and width
of 10 nodes at non-terminal levels, which give equally
good performance as more complex models.

Sensitivity to Number of Training Data. Fig. 5 shows
how the number of training examples affects our av-
erage classification accuracy on the Volleyball dataset.
We examined both learning settings: SPN+CG(WS,V)
and SPN+CG(S,V). As can be seen, our performance im-
proves in both settings as the number of training exam-
ples increases, and becomes saturated when the number
of examples goes above 20. Interestingly, difference in
the performance of SPN+CG(WS,V) and SPN+CG(S,V)
is relatively small for 20 training examples. This suggests
that our approach is able to robustly learn volleyball
activity classes from a relatively small number of exam-
ples. We observed similar behavior of SPN+CG(WS,V)
and SPN+CG(S,V) on the other datasets. For the other
datasets, we did not observe overfitting, i.e., decreasing
performance for larger numbers of training examples.

Supervision vs. Weak Supervision. Tab. 2 shows
that SPN+CG(S) outperforms SPN+CG(WS) in terms of
average classification accuracy. This is expected, since
SPN+CG(S) has access to additional ground-truth an-
notations in training. But the differences in their per-
formance range between 1.6% and 3.1% on the KTH,
UT-Interactions, VIRAT, and Volleyball datasets. This
demonstrates that SPN+CG(WS) successfully relaxes the
requirement for expensive manual annotations of fore-
ground in videos. Confusion matrices of SPN+CG(WS)
and SPN+CG(S) on the four datasets are shown in Fig. 6.

Fig. 5. Average classification accuracy of SPN+CG(WS,V) and
SPN+CG(S,V) on the Volleyball dataset as a function of the number of
training examples.

Tab. 3 presents recall and precision of SPN+CG(WS)
and SPN+CG(S) on the UT-Interactions, VIRAT, and
Volleyball datasets. Both approaches achieve the highest
F-measure when they use a hierarchy of space-time win-
dows with sizes defined by varying m={2, 3, 4}. As ex-
pected, SPN+CG(WS) yields worse foreground localiza-
tion. In some error cases we observed that SPN+CG(WS)
identified informative parts of background, providing
contextual cues for recognition, as foreground. Consid-
ering that SPN+CG(WS) is trained without any access
to foreground annotations, its localization performance
is quite good in comparison to that of SPN+CG(S).

Comparisons. Tab. 2 shows that SPN+CG outper-
forms the baselines SPN+CG+Cubes(S), SPN+LR, and
CG. In particular, on the Volleyball dataset, accuracy of
SPN+CG(S) and SPN+CG(WS) is larger by 12.5% and
10.8% than that of CG, respectively, which quantifies the
advantages of grounding SPN onto the counting grid
model of [3], even when our deep model is trained under
weak supervision. As can be seen, replacing the counting
grid model with logistic regression in SPN+LR decreases
performance. Also, using the cuboid spatiotemporal fea-
tures in SPN+CG+Cubes(S) is inferior to our weakly
supervised SPN+CG(WS).

Tab. 2 also shows a comparison with prior work: (i)
SVM of a Bag-of-Word of SCISA features [36]; (ii) SVM
of space-time grids of local features [29]; (iii) SVM with a
kernel that accounts for spatiotemporal matches of inter-
est points [41]; (iv) pLSA and LDA models [31]; (v) Con-
volutional neural networks [37]; and (vi) Action-bank
[44]. Interestingly, even without deep learning of local
features, SPN+CG+Cubes outperforms the approaches
of [29], [31], [36], [37], [41]. The comparison with the
action-bank of [44] is unfair to us, hence our lower
performance, since the approach of [44] uses a higher
level of supervision in training for expressing human
activities in terms of simpler actions. Unlike [44], we
do not have access to annotations of simpler actions in
training.

Valid vs. Invalid Graph Structure. Tab. 4 shows
the average classification accuracy, precision and recall
of SPN+CG(S,V) and SPN+CG(S,I) on the VIRAT, UT-
Interactions, and Volleyball datasets. As can be seen,
SPN+CG(S,I) is worse for each evaluation metric. One
reason is that the graph connectivity of SPN+CG(S,I)

Exploiting part based decomposability along pixels and time (frames).

Amer and Todorovic, “Sum-Product Networks for Modeling Activities with Stochastic Structure”, 2012
Amer and Todorovic, “Sum Product Networks for Activity Recognition”, 2015

Applications III: speech
SPNs to model the joint pdf of observed RVs in HMMs (HMM-SPNs).

?
?

?

?

YtYt 1- Yt 1+Yt 2- Yt 2+

?
?

?

?

?
?

?

?

?
?

?

?

?
?

?

?

St 2-

_

St 1-

_

St

_

St 1+

_

St 2+

_

Fig. 1. Illustration of the HMM with SPN observation models. State-
dependent SPNs are symbolized by triangles with a circle on top.
For the forward-backward algorithm, frequency bins marked with
“?” (missing) are marginalized out by the SPNs.

frames 1, . . . , (t + λ). An illustration of the modified HMM used
in this paper is given in Figure 1. Following [6], we use most-
probable-explanation (MPE) inference for recovering the missing
spectrogram content, where we reconstruct the high-band only. Let
Ŝt,k = (Ŝt,k(1), . . . Ŝt,k(F))T be the MPE-reconstruction of the tth

time frame, using the SPN depending on the kth HMM-state. Then
we use the following bandwidth-extended log-spectrogram

Ŝ(t, f) =

{
S̄(t, f) if f < f ′
∑K

k=1 p(Yt = k|et)Ŝt,k(f) o.w.
(1)

where f ′ corresponds to 4000Hz.

4. RECONSTRUCTING TIME SIGNALS

To synthesize a time-signal from the bandwidth extended log-
spectrogram, we need to associate a phase to the estimated magni-
tude spectrogram eŜ(t,f). The problem of recovering a time-domain
signal given a modified magnitude appears in many speech appli-
cations, such as single-channel speech enhancement [17, 18, 19],
single-channel source separation [20, 21, 22, 23] and speech sig-
nal modification [24, 25]. These signal modifications are solely
employed in spectral amplitude domain while the phase informa-
tion of the desired signal is not available. A typical approach is to
use the observed (noisy) phase spectrum or to replace it with an
enhanced/estimated phase.

In order to recover phase information for ABE, we use the it-
erative algorithm proposed by Griffin and Lim (GL) [26]. Let j ∈
{0, . . . , J} be an iteration index, and Ĉ(j) be a complex valued ma-
trix generated in the j th iteration. For j = 0, we have

Ĉ(0)(t, f) =

{
C̄(t, f) 1 ≤ f ≤ f ′

eŜ(t,f) o.w.
(2)

where C̄ is the complex spectrogram of the bandpass filtered input
signal. Within the telephone band, phase information is considered
reliable and copied from the input. Outside of the narrow-band,
phase is initialized with zero. Note that in general Ĉ(0) is not a valid
spectrogram since a time signal whose STFT equals Ĉ(0) might not
exist. The j th iteration of the GL algorithm is given by

Ĉ(j)(t, f) =

{
C̄(t, f) 1 ≤ f ≤ f ′

eŜ(t,f) ei̸ G(Ĉ(j−1))(t,f) o.w.
(3)

G(C) = STFT(STFT−1(C)). (4)

At each iteration, the magnitude of the approximate STFT Ĉ(j)

equals the magnitude eŜ estimated by our model, while temporal
coherence of the signal is enforced by the operator G(·) (see e.g. [25]
for more details). The estimated time signal sj at the j th iteration
is given by sj = STFT−1

(
Ĉ(j)

)
. At each iteration, the mean

square error between |STFT(sj)| and |Ĉ(0)| is reduced [26]. In
our experiments, we set the number of iterations J = 100, which
appeared to be sufficient for convergence.

5. EXPERIMENTS

We used 2 baselines in our experiments. The first baseline is the
method proposed in [13], based on the vocal tract filter model using
linear prediction. We used 64 HMM states and 16 components per
state-dependent GMM, which performed best in [13]. We refer as
HMM-LP to this baseline. The second baseline is almost identical
to our method, where we replaced the SPN with a Gaussian mixture
model with 256 components with diagonal covariance matrices. For
training GMMs, we ran the EM algorithm for maximal 100 itera-
tions and using 3 random restarts. Inference using the GMM model
works the same way as described in section 3, since a GMM can be
formulated as an SPN with a single sum node [7]. We refer as HMM-
GMM to this baseline. To our method, we refer as HMM-SPN. For
HMM-GMM and HMM-SPN, we used the same clustering of log-
spectra using a codebook size of 64.

We used time-frames of 512 samples length, with 75% over-
lap, which using a sampling frequency of 16 kHz corresponds to a
frame length of 32ms and a frame rate of 8ms. Before applying
the FFT, the frames were weighted with a Hamming window. For
the forward-backward algorithm we used a look-ahead of λ = 3
frames, which corresponds to the minimal delay introduced by the
75% frame-overlap. We performed our experiments on the GRID
corpus [27], where we used the test speakers with numbers 1, 2, 18,
and 20, referred to as s1, s2, s18, and s20, respectively. Speakers
s1 and s2 are male, and s18 and s20 are female. We trained speaker
dependent and speaker independent models. For speaker dependent
models we used 10 minutes of speech of the respective speaker. For
speaker independent models we used 10 minutes of speech obtained
from the remaining 30 speakers of the corpus, each speaker provid-
ing approximately 20 seconds of speech. For testing we used 50
utterances per test speaker, not included in the training set.

Fig. 2 shows log-spectrograms of a test utterance of speaker s18
and the bandwidth extended signals by HMM-LP, HMM-GMM and
HMM-SPN, using speaker dependent models. We see that HMM-LP
succeeds in reconstructing a harmonic structure for voiced sounds.
However, we see that fricative and plosive sounds are not well
captured. The reconstruction by HMM-GMM is blurry and does
not recover the harmonic structure of the original signal well, but
partly recovers high-frequency content related to consonants. The
HMM-SPN method recovers a natural high frequency structure,
which largely resembles the original full-band signal: the harmonic
structure appears more natural than the one delivered by HMM-LP
and consonant sounds seem to be better detected and reconstructed
than by HMM-GMM. According to informal listening tests1, the vi-
sual impression corresponds to the listening experience: the signals
delivered by HMM-SPN clearly enhance the high-frequency content
and sound more natural than the signals delivered by HMM-LP and

1Formal listening tests were out of the scope of the paper. All ABE sig-
nals, the full-band and the narrow-band telephone signals can be obtained as
WAV files from http://www2.spsc.tugraz.at/people/peharz/ABE/

State-of-the-art high frequency reconstruction (MPE inference)

(a) Original full bandwidth (b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

Fig. 2. Log-spectrogram of the utterance “Bin green at zed 5 now”,
spoken by s18. (a): original full bandwidth signal. (b): ABE result
of HMM-LP [13]. (c): ABE result of HMM-GMM (this paper). (d):
ABE results of HMM-SPN (this paper).

Table 1. Average LSD using speaker-dependent models.
s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41
HMM-GMM 3.18 2.93 2.28 2.82
HMM-SPN 3.12 2.84 2.15 2.59

HMM-GMM. HMM-GMM and HMM-SPN both deliver a more
realistic extension for fricative and plosive sounds. However, this
introduces also a some high frequency noise. According to our lis-
tening experience, these artifacts are less severe for the HMM-SPN
signals.

For an objective evaluation, we use the log-spectral distortion
(LSD) in the high-band [13]. Given an original signal and an ABE
reconstruction, we perform Lth-order LPC analysis for each frame,
where L = 9. This yields (L + 1)-dimensional coefficient vectors
aτ and âτ of the original and the reconstructed signals, respectively,
where τ is the frame index. The spectral envelope modeled by a
generic LPC coefficient vector a = (a0, . . . , aL)

t is given as

Ea(e
jΩ) =

σ

|
∑L

k=0 ake−jkΩ|
, (5)

where σ is the square-root of the variance of the LPC-analyzed sig-
nal. The LSD for the τ th frame, in high-band is calculated as

LSDτ =

√∫ π

ν
(20 logEaτ (ejΩ)− 20 logEâτ (ejΩ))

2 dΩ

π − ν
, (6)

where ν = π 4000
fs/2 , fs being the sampling frequency. The LSD at

utterance level is given as the average of LSDτ over all frames.
Tables 1 and 2 show the LSD of all three methods for the speaker

dependent and speaker independent scenarios, respectively, averaged
over the 50 test sentences. For each speaker, we see a clear ranking

Table 2. Average LSD using speaker-independent models.
s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34
HMM-GMM 3.62 4.46 3.82 3.60
HMM-SPN 3.42 3.85 3.05 3.36

of the three method, and that the HMM-SPN method always per-
forms best. All differences are significant at a 0.95 confidence level,
according to a paired one-sided t-test.

6. DISCUSSION

We demonstrated that SPNs are a promising probabilistic model for
speech, applying them to the ill-posed problem of artificial band-
width extension. Motivated by the success of SPNs on the also
ill-posed and related problem of image completion, we used SPNs
as observation models in HMMs, modeling the temporal evolution
of log short-time spectra. While the model is trained on full-band
speech, the fact that the high and very low frequencies are miss-
ing in telephone signals is naturally treated by marginalization of
missing frequency bins. Recovering the missing high frequencies,
is naturally treated by MPE inference. The resulting system clearly
improves the state of the art both in subjective listening tests and ob-
jective performance evaluation using the log-spectral distortion mea-
sure.

This performance improvement comes at an increased computa-
tional cost. The trained observation SPNs have 136 layers and tens
of thousand of nodes and parameters. Therefore, bandwidth exten-
sion using our HMM-SPN approach currently takes about 1−2 min-
utes computation time per utterance on a standard desktop computer,
using a non-optimized Matlab/C++-based prototype. Inference us-
ing the HMM-GMM model requires approximately 0.5− 1 minutes
per utterance; inference in the HMM-LP model requires some sec-
onds. Therefore, although we designed the overall system to be real-
time capable (small HMM look-ahead), it is currently not suitable
for a real-time application implemented on a low-energy embedded
system. For non-real-time systems, e.g. for offline processing of tele-
phone speech databases, the approach presented here is appropriate.
The basic motivation in this paper, however, was to demonstrate the
applicability of SPNs for modeling speech; according to prior studies
[6, 8], SPNs are able to express complex interaction with comparable
little inference time. Therefore one can conjecture that an ABE sys-
tem with classical graphical models, expressing a similar amount of
dependencies as the used SPNs, would have an overall computation
time in the range of hours.

The system presented in this paper is trained in a two-step ap-
proach, i.e. (i) clustering the training data which delivers the HMM
states and statistics, and (ii) subsequent training of state-dependent
observation models. Incorporating state-sequence modeling directly
into SPN training, similar as in dynamic graphical models, is a in-
teresting future research direction. Finally, future directions for re-
search on SPN-based speech models are further speech related ap-
plications, such as packet loss concealment, (single channel) source
separation, and speech enhancement.

(a) Original full bandwidth (b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

Fig. 2. Log-spectrogram of the utterance “Bin green at zed 5 now”,
spoken by s18. (a): original full bandwidth signal. (b): ABE result
of HMM-LP [13]. (c): ABE result of HMM-GMM (this paper). (d):
ABE results of HMM-SPN (this paper).

Table 1. Average LSD using speaker-dependent models.
s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41
HMM-GMM 3.18 2.93 2.28 2.82
HMM-SPN 3.12 2.84 2.15 2.59

HMM-GMM. HMM-GMM and HMM-SPN both deliver a more
realistic extension for fricative and plosive sounds. However, this
introduces also a some high frequency noise. According to our lis-
tening experience, these artifacts are less severe for the HMM-SPN
signals.

For an objective evaluation, we use the log-spectral distortion
(LSD) in the high-band [13]. Given an original signal and an ABE
reconstruction, we perform Lth-order LPC analysis for each frame,
where L = 9. This yields (L + 1)-dimensional coefficient vectors
aτ and âτ of the original and the reconstructed signals, respectively,
where τ is the frame index. The spectral envelope modeled by a
generic LPC coefficient vector a = (a0, . . . , aL)

t is given as

Ea(e
jΩ) =

σ

|
∑L

k=0 ake−jkΩ|
, (5)

where σ is the square-root of the variance of the LPC-analyzed sig-
nal. The LSD for the τ th frame, in high-band is calculated as

LSDτ =

√∫ π

ν
(20 logEaτ (ejΩ)− 20 logEâτ (ejΩ))

2 dΩ

π − ν
, (6)

where ν = π 4000
fs/2 , fs being the sampling frequency. The LSD at

utterance level is given as the average of LSDτ over all frames.
Tables 1 and 2 show the LSD of all three methods for the speaker

dependent and speaker independent scenarios, respectively, averaged
over the 50 test sentences. For each speaker, we see a clear ranking

Table 2. Average LSD using speaker-independent models.
s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34
HMM-GMM 3.62 4.46 3.82 3.60
HMM-SPN 3.42 3.85 3.05 3.36

of the three method, and that the HMM-SPN method always per-
forms best. All differences are significant at a 0.95 confidence level,
according to a paired one-sided t-test.

6. DISCUSSION

We demonstrated that SPNs are a promising probabilistic model for
speech, applying them to the ill-posed problem of artificial band-
width extension. Motivated by the success of SPNs on the also
ill-posed and related problem of image completion, we used SPNs
as observation models in HMMs, modeling the temporal evolution
of log short-time spectra. While the model is trained on full-band
speech, the fact that the high and very low frequencies are miss-
ing in telephone signals is naturally treated by marginalization of
missing frequency bins. Recovering the missing high frequencies,
is naturally treated by MPE inference. The resulting system clearly
improves the state of the art both in subjective listening tests and ob-
jective performance evaluation using the log-spectral distortion mea-
sure.

This performance improvement comes at an increased computa-
tional cost. The trained observation SPNs have 136 layers and tens
of thousand of nodes and parameters. Therefore, bandwidth exten-
sion using our HMM-SPN approach currently takes about 1−2 min-
utes computation time per utterance on a standard desktop computer,
using a non-optimized Matlab/C++-based prototype. Inference us-
ing the HMM-GMM model requires approximately 0.5− 1 minutes
per utterance; inference in the HMM-LP model requires some sec-
onds. Therefore, although we designed the overall system to be real-
time capable (small HMM look-ahead), it is currently not suitable
for a real-time application implemented on a low-energy embedded
system. For non-real-time systems, e.g. for offline processing of tele-
phone speech databases, the approach presented here is appropriate.
The basic motivation in this paper, however, was to demonstrate the
applicability of SPNs for modeling speech; according to prior studies
[6, 8], SPNs are able to express complex interaction with comparable
little inference time. Therefore one can conjecture that an ABE sys-
tem with classical graphical models, expressing a similar amount of
dependencies as the used SPNs, would have an overall computation
time in the range of hours.

The system presented in this paper is trained in a two-step ap-
proach, i.e. (i) clustering the training data which delivers the HMM
states and statistics, and (ii) subsequent training of state-dependent
observation models. Incorporating state-sequence modeling directly
into SPN training, similar as in dynamic graphical models, is a in-
teresting future research direction. Finally, future directions for re-
search on SPN-based speech models are further speech related ap-
plications, such as packet loss concealment, (single channel) source
separation, and speech enhancement.

(a) Original full bandwidth (b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

Fig. 2. Log-spectrogram of the utterance “Bin green at zed 5 now”,
spoken by s18. (a): original full bandwidth signal. (b): ABE result
of HMM-LP [13]. (c): ABE result of HMM-GMM (this paper). (d):
ABE results of HMM-SPN (this paper).

Table 1. Average LSD using speaker-dependent models.
s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41
HMM-GMM 3.18 2.93 2.28 2.82
HMM-SPN 3.12 2.84 2.15 2.59

HMM-GMM. HMM-GMM and HMM-SPN both deliver a more
realistic extension for fricative and plosive sounds. However, this
introduces also a some high frequency noise. According to our lis-
tening experience, these artifacts are less severe for the HMM-SPN
signals.

For an objective evaluation, we use the log-spectral distortion
(LSD) in the high-band [13]. Given an original signal and an ABE
reconstruction, we perform Lth-order LPC analysis for each frame,
where L = 9. This yields (L + 1)-dimensional coefficient vectors
aτ and âτ of the original and the reconstructed signals, respectively,
where τ is the frame index. The spectral envelope modeled by a
generic LPC coefficient vector a = (a0, . . . , aL)

t is given as

Ea(e
jΩ) =

σ

|
∑L

k=0 ake−jkΩ|
, (5)

where σ is the square-root of the variance of the LPC-analyzed sig-
nal. The LSD for the τ th frame, in high-band is calculated as

LSDτ =

√∫ π

ν
(20 logEaτ (ejΩ)− 20 logEâτ (ejΩ))

2 dΩ

π − ν
, (6)

where ν = π 4000
fs/2 , fs being the sampling frequency. The LSD at

utterance level is given as the average of LSDτ over all frames.
Tables 1 and 2 show the LSD of all three methods for the speaker

dependent and speaker independent scenarios, respectively, averaged
over the 50 test sentences. For each speaker, we see a clear ranking

Table 2. Average LSD using speaker-independent models.
s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34
HMM-GMM 3.62 4.46 3.82 3.60
HMM-SPN 3.42 3.85 3.05 3.36

of the three method, and that the HMM-SPN method always per-
forms best. All differences are significant at a 0.95 confidence level,
according to a paired one-sided t-test.

6. DISCUSSION

We demonstrated that SPNs are a promising probabilistic model for
speech, applying them to the ill-posed problem of artificial band-
width extension. Motivated by the success of SPNs on the also
ill-posed and related problem of image completion, we used SPNs
as observation models in HMMs, modeling the temporal evolution
of log short-time spectra. While the model is trained on full-band
speech, the fact that the high and very low frequencies are miss-
ing in telephone signals is naturally treated by marginalization of
missing frequency bins. Recovering the missing high frequencies,
is naturally treated by MPE inference. The resulting system clearly
improves the state of the art both in subjective listening tests and ob-
jective performance evaluation using the log-spectral distortion mea-
sure.

This performance improvement comes at an increased computa-
tional cost. The trained observation SPNs have 136 layers and tens
of thousand of nodes and parameters. Therefore, bandwidth exten-
sion using our HMM-SPN approach currently takes about 1−2 min-
utes computation time per utterance on a standard desktop computer,
using a non-optimized Matlab/C++-based prototype. Inference us-
ing the HMM-GMM model requires approximately 0.5− 1 minutes
per utterance; inference in the HMM-LP model requires some sec-
onds. Therefore, although we designed the overall system to be real-
time capable (small HMM look-ahead), it is currently not suitable
for a real-time application implemented on a low-energy embedded
system. For non-real-time systems, e.g. for offline processing of tele-
phone speech databases, the approach presented here is appropriate.
The basic motivation in this paper, however, was to demonstrate the
applicability of SPNs for modeling speech; according to prior studies
[6, 8], SPNs are able to express complex interaction with comparable
little inference time. Therefore one can conjecture that an ABE sys-
tem with classical graphical models, expressing a similar amount of
dependencies as the used SPNs, would have an overall computation
time in the range of hours.

The system presented in this paper is trained in a two-step ap-
proach, i.e. (i) clustering the training data which delivers the HMM
states and statistics, and (ii) subsequent training of state-dependent
observation models. Incorporating state-sequence modeling directly
into SPN training, similar as in dynamic graphical models, is a in-
teresting future research direction. Finally, future directions for re-
search on SPN-based speech models are further speech related ap-
plications, such as packet loss concealment, (single channel) source
separation, and speech enhancement.

(a) Original full bandwidth (b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

Fig. 2. Log-spectrogram of the utterance “Bin green at zed 5 now”,
spoken by s18. (a): original full bandwidth signal. (b): ABE result
of HMM-LP [13]. (c): ABE result of HMM-GMM (this paper). (d):
ABE results of HMM-SPN (this paper).

Table 1. Average LSD using speaker-dependent models.
s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41
HMM-GMM 3.18 2.93 2.28 2.82
HMM-SPN 3.12 2.84 2.15 2.59

HMM-GMM. HMM-GMM and HMM-SPN both deliver a more
realistic extension for fricative and plosive sounds. However, this
introduces also a some high frequency noise. According to our lis-
tening experience, these artifacts are less severe for the HMM-SPN
signals.

For an objective evaluation, we use the log-spectral distortion
(LSD) in the high-band [13]. Given an original signal and an ABE
reconstruction, we perform Lth-order LPC analysis for each frame,
where L = 9. This yields (L + 1)-dimensional coefficient vectors
aτ and âτ of the original and the reconstructed signals, respectively,
where τ is the frame index. The spectral envelope modeled by a
generic LPC coefficient vector a = (a0, . . . , aL)

t is given as

Ea(e
jΩ) =

σ

|
∑L

k=0 ake−jkΩ|
, (5)

where σ is the square-root of the variance of the LPC-analyzed sig-
nal. The LSD for the τ th frame, in high-band is calculated as

LSDτ =

√∫ π

ν
(20 logEaτ (ejΩ)− 20 logEâτ (ejΩ))

2 dΩ

π − ν
, (6)

where ν = π 4000
fs/2 , fs being the sampling frequency. The LSD at

utterance level is given as the average of LSDτ over all frames.
Tables 1 and 2 show the LSD of all three methods for the speaker

dependent and speaker independent scenarios, respectively, averaged
over the 50 test sentences. For each speaker, we see a clear ranking

Table 2. Average LSD using speaker-independent models.
s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34
HMM-GMM 3.62 4.46 3.82 3.60
HMM-SPN 3.42 3.85 3.05 3.36

of the three method, and that the HMM-SPN method always per-
forms best. All differences are significant at a 0.95 confidence level,
according to a paired one-sided t-test.

6. DISCUSSION

We demonstrated that SPNs are a promising probabilistic model for
speech, applying them to the ill-posed problem of artificial band-
width extension. Motivated by the success of SPNs on the also
ill-posed and related problem of image completion, we used SPNs
as observation models in HMMs, modeling the temporal evolution
of log short-time spectra. While the model is trained on full-band
speech, the fact that the high and very low frequencies are miss-
ing in telephone signals is naturally treated by marginalization of
missing frequency bins. Recovering the missing high frequencies,
is naturally treated by MPE inference. The resulting system clearly
improves the state of the art both in subjective listening tests and ob-
jective performance evaluation using the log-spectral distortion mea-
sure.

This performance improvement comes at an increased computa-
tional cost. The trained observation SPNs have 136 layers and tens
of thousand of nodes and parameters. Therefore, bandwidth exten-
sion using our HMM-SPN approach currently takes about 1−2 min-
utes computation time per utterance on a standard desktop computer,
using a non-optimized Matlab/C++-based prototype. Inference us-
ing the HMM-GMM model requires approximately 0.5− 1 minutes
per utterance; inference in the HMM-LP model requires some sec-
onds. Therefore, although we designed the overall system to be real-
time capable (small HMM look-ahead), it is currently not suitable
for a real-time application implemented on a low-energy embedded
system. For non-real-time systems, e.g. for offline processing of tele-
phone speech databases, the approach presented here is appropriate.
The basic motivation in this paper, however, was to demonstrate the
applicability of SPNs for modeling speech; according to prior studies
[6, 8], SPNs are able to express complex interaction with comparable
little inference time. Therefore one can conjecture that an ABE sys-
tem with classical graphical models, expressing a similar amount of
dependencies as the used SPNs, would have an overall computation
time in the range of hours.

The system presented in this paper is trained in a two-step ap-
proach, i.e. (i) clustering the training data which delivers the HMM
states and statistics, and (ii) subsequent training of state-dependent
observation models. Incorporating state-sequence modeling directly
into SPN training, similar as in dynamic graphical models, is a in-
teresting future research direction. Finally, future directions for re-
search on SPN-based speech models are further speech related ap-
plications, such as packet loss concealment, (single channel) source
separation, and speech enhancement.

Peharz et al., “Modeling speech with sum-product networks: Application to bandwidth extension”, 2014

Applications IV: language modeling
Fixed structure SPN encoding the conditional probability p(wi|wi−1, . . . , wi−n)

as an n-th order language model.

Figure 2: SPN for language modeling.

probability as

P (Y=y|X=x) =

� (Y=y|X=x)P
y0 � (Y=y0|X=x)

=

P
h � (Y=y,H=h|X=x)P

y0
,h � (Y=y0,H=h|X=x)

where � (Y = y|X = x) is an unnormalized probability. Thus
the partial derivative of the conditional log-likelihood with re-
spect to a weight w in an SPN is given by:

@
@w

logP (y|x)= @
@w

log

X

h

� (y,h|x)� @
@w

log

X

y0
,h

�

�
y0,h|x

�

(1)
To train an SPN, we first specify its architecture, i.e., its

sum and product nodes, and the connections between them.
Then we learn the weights of the sum nodes via gradient de-
scent to maximize the conditional log-likelihood of a training
set of (x,y) examples. The gradient of each weight (Equa-
tion 1) is computed via backpropagation. The first summation
on the right-hand side of Equation 1 can be computed tractably
in a single upward pass through the SPN by setting all hid-
den variables to 1, and the second summation can be computed
similarly by setting both hidden and query variables to 1. The
partial derivatives are passed from parent to child according to
the chain rule as described by [14]. Each weight is changed
by multiplying a learning rate parameter ⌘ to Equation 1, i.e.,
�w = ⌘ @

@w

logP (y|x). To speed up training, we could esti-
mate the gradient by computing it with a subset (mini-batch) of
examples from the training set, rather than using all examples.

3. SPN Architecture

Figure 2 shows the architecture of our discriminative SPN for
language modeling1. To predict a word (a query variable), we

1https://github.com/stakok/lmspn/blob/master/faq.md contains
more details about the architecture.

use its previous N words as evidence in our SPN. Each previous
word is represented by a K-dimensional vector where K is the
number of words in a vocabulary. Each vector has exactly one
1 at the index corresponding to the word it represents, and 0’s
everywhere else. When we predict the ith word, we have a
vector v

i�j

(1 j N) at the bottommost layer for each of
the previous N words.

Above the bottommost layer, we have a (hidden) layer of
sum nodes. There are D sum nodes H

j1 . . . HjD

for each vec-
tor v

i�j

. Each sum node H
jl

has an edge connecting it to every
entry in v

i�j

. Let the mth entry in v
i�j

be denoted by vm

i�j

,
and the weight of the edge from H

jl

to vm

i�j

be denoted by
w

lm

. We constrain each weight w
lm

to be the same for each
pair of H

jl

and vm

i�j

(1 j N). This layer of sum nodes
can be interpreted as compressing each K-dimensional vectors
v
i�j

into a smaller continuous-valued D-dimensional feature
vector (thus gaining the same advantages of [5] as described in
Section 1). Because the weights w

lm

’s are constrained to be
the same between each pair of K-dimensional input vector and
D-dimensional feature vector, we ensure that the weights are
position independent, i.e., the same word will be compressed
into the same feature vector regardless of its position. This
also makes it easier to train the SPN by reducing the number
of weights to be learned.

Above the H
jl

layer, we have another layer of sum nodes.
In this layer, each node M

k

(1 k K) is connected to every
H

jl

node. Moving up, we have a layer of product nodes. Each
G

k

product node is connected via two edges to an M
k

node.
Each G

k

node transforms the output from its child M
k

node by
squaring it. This helps to capture more complicated dependency
among the input words.

Moving up, we have another layer of sum nodes. Each B
k

node in this layer is connected to an M
k

node and a G
k

node in
the lower layers. Above this, there is a layer of S

k

nodes, each
of which is connected to a B

k

node and an indicator variable y
k

representing a value in our categorical query variable (i.e., the
ith word which we are predicting). y

k

= 1 if the query variable
is the kth word, and y

k

= 0 otherwise. Intuitively, the indicator
variables select which part of the SPN below an S

k

node gets
“activated”. Finally, we have an S node which connects to all
S
k

nodes. When we normalize the weights between S and the
S
k

nodes to sum to 1, S’s output is the conditional probability
of the ith word given its previous N words.

4. Experiments

4.1. Dataset

We performed our experiments on the commonly used Penn
Treebank corpus [15], and adhered to the experimental setup
used in previous work [6, 9]. We used sections 0-20, sections
21-22, and sections 23-24 respectively as training, validation
and test sets. These sections contain segments of news re-
ports from the Wall Street Journal. We treated punctuation as
words, and used the 10,000 most frequent words in the cor-
pus to create a vocabulary. All other words are regarded as
unknown and mapped to the token <unk>. The percentages
of out-of-vocabulary (<unk>) tokens in them are about 5.91%,
6.96% and 6.63% respectively. Thus only a small fraction of
the dataset consists of unknown words.

4.2. Methodology

Using the training set, we learned the weights of all sum
nodes in our SPN described in Section 3. To evaluate

One-hot encoding of word vocabulary.
Windowed representation of size

First embedding layer with sizeD,
sharing word weights across different
mixtures (position invariance).

State-of-the-art perplexity on PennTreeBank even for low orders (n = 4).

Cheng et al., “Language modeling with Sum-Product Networks”, 2014

Representation Learning

Extracting Embeddings
From deep neural networks

X1 X2 X3 X4 X5 X6

Build an embedding ei ∈ Rd for sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

Bengio et al., “Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives”, 2012

Extracting Embeddings
From deep neural networks

0 1 0 1 1 1

-3.5 .55 -4.2 2.01 1.89 -1.5 Build an embedding ei ∈ Rd for sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

by evaluating the network and collecting the last
layer(s) activations

e
i
= ⟨ −3.5 , .55 , −4.2 , 2.01 , 1.89 , −1.5 ⟩

Bengio et al., “Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives”, 2012

Extracting Embeddings
Exploiting SPNs as feature extractors

Given an SPN S, a filtering criterion f , generate a dense vector for each sample
xi

ei = fS(x
i)

Issues with SPNs as NNs:

▶ layer-wise extraction may be arbitrary

▶ power law distribution of nodes by scopes

▶ scope lengths as proxy for feature abstraction levels (see filter
visualizations)

→Which filtering criterion to employ?
→Which interpretation for the extracted features?

Vergari et al., “Visualizing and Understanding Sum-Product Networks”, 2016

Extracting embeddings
Inner node activations

× ×

× ×

× ×

X2X1

×

X4X3X4X3

X2X2X1X1

×

X6X6X5X5

Build an embedding ei ∈ Rd for sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

Extracting embeddings
Inner node activations

.02

.01 .013

.2 .33

.27 .34

.87 .11

.3 .44

.2.8.51

.89

.7.9.4.55

.67.81.39.48

.19

.25.73.86.11

Build an embedding ei ∈ Rd for sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

by evaluating S(xi) and collecting inner
node (sum , product but not leaves) ac-
tivations

e
i
= ⟨ .02 , .01 , .013 , .51 , .2 , .33 ,

.19 , .89 , .27 , .34 , .87 , .11 ,

.3 , .44 ⟩

Extracting embeddings
Filtering by type

.02

.01 .013

.2 .33

.27 .34

.87 .11

.3 .44

.2.8.51

.89

.7.9.4.55

.67.81.39.48

.19

.25.73.86.11

Build embeddings eisum, e
i
prod for sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

by evaluating S(xi) and collecting inner
node activations filtered by node type

e
i
sum = ⟨ .02 , .51 , .2 , .33 , .87 , .11 ⟩

e
i
prod = ⟨ .01 , .013 , .19 , .89 , .27 , .34 ,

.3 , .44 ⟩

Extracting embeddings
Filtering by scope length

.02

.01 .013

.2 .33

.27 .34

.87 .11

.3 .44

.2.8.51

.89

.7.9.4.55

.67.81.39.48

.19

.25.73.86.11

Build embeddings ei|sc(n)|=k ∈ Rd for
sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

by evaluating S(xi) and collecting inner
node activations filtered by scope length

e
i
|sc(n)|=2 = ⟨ .51 , .19 , .89 , .87 , .11 ,

.3 , .44 ⟩

e
i
|sc(n)|=4 = ⟨ .2 , .33 , .27 , .34 ⟩

e
i
|sc(n)|=6 = ⟨ .02 , .01 , .013 ⟩

Extracting embeddings
Aggregating by scope

× ×

× ×

× ×

X2X1

×

X4X3X4X3

X2X2X1X1

×

X6X6X5X5

Build an embedding ei ∈ Rd for sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

by adding fictitious sum nodes over unique
scopes (as additional roots)

Extracting embeddings
Aggregating by scope

× ×

× ×

× ×

X2X1

×

X4X3X4X3

X2X2X1X1

×

X6X6X5X5

Build an embedding ei ∈ Rd for sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

by adding fictitious sum nodes over unique
scopes (as additional roots), then evaluating
S(xi) and collecting they activations from
inner nodes

Extracting embeddings
Aggregating by scope

.02

.01 .013

.2 .33

.27 .34

.87 .11

.3 .44

.2.8.51

.89

.7.9.4.55

.67.81.39.48

.19

.25.73.86.11

.11 .75

.6 .47 .17 .82

.87

.25

Build an embedding ei ∈ Rd for sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

by adding fictitious sum nodes over unique
scopes (as additional roots), then evaluating
S(xi) and collecting they activations from
inner nodes and even leaves

e
i
w/o−leaves = ⟨ .2 , .87 , .51 , .25 ⟩

e
i
w−leaves = ⟨ .2 , .87 , .51 , .11 , .75 ,

.25 , .6 , .47 , .17 , .82 ⟩

Extracting embeddings
Random marginal queries

.13

.10 .16

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

.2.8.51

.89

1.01.01.01.0

.67.81.39.48

.19

1.01.01.01.0

To build an embedding ei ∈ Rk for sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

for each feature j = 1, . . . , k, sample
Qj ⊂ X and evaluate p(Qj = xQj).
E.g.:

Q0 = {X1, X2}

e
i
rand = ⟨ .13 , . . . ⟩

Extracting embeddings
Random marginal queries

.053

.01 .066

.2 .33

.22 .63

1.0 1.0

1.0 1.0

.21.0.51

.67

.7.9.4.55

.67.811.01.0

.81

1,01.01.01.0

To build an embedding ei ∈ Rk for sample

xi = ⟨0, 1, 0, 1, 1, 1⟩

for each feature j = 1, . . . , k, sample
Qj ⊂ X and evaluate p(Qj = xQj).
E.g.:

Q0 = {X1, X2}

Q1 = {X1, X3, X4}

e
i
rand = ⟨ .13 , .053 . . . ⟩

Supervised classification
Experimental settings to evaluate embeddings

Extract embeddings unsupervisedly onX, then train a logistic regressor on
them to predict Y .

Five image datasets: REC, CON, OCR, CAL, BMN.

Grid search with LearnSPN-b for three models with different capacities:
SPN-I, SPN-II and SPN-III form ∈ {500, 100, 50}.

Compare them against RBM models: RBM-5h, RBM-1k and RBM-5k with
500, 1000 and 5000 hidden units.

Compare them against other tractable PGMs: mixtures of 3, 15, 30 Chow-Liu
trees.

Embedding accuracies (I)

Table : Test set accuracy scores for the embeddings extracted with the best SPN, RBM
models and with the baseline LR model on all datasets. Bold values denote significantly
better scores than all the others for a dataset.

LR SPN-I SPN-II SPN-III RBM-5h RBM-1k RBM-5k
REC 69.28 77.31 97.77 97.66 94.22 96.10 96.36
CON 53.48 67.48 78.31 84.69 67.55 75.37 79.15
OCR 75.58 82.60 89.95 89.94 86.07 87.96 88.76
CAL 62.67 59.17 65.19 66.62 67.36 68.88 67.71
BMN 90.62 95.15 97.66 97.59 96.09 96.80 97.47

→ comparable or better accuracies than (intractable) RBM embeddings

Vergari et al., “Visualizing and Understanding Sum-Product Networks”, 2016

Embedding accuracies (II)

Table : Test set accuracies for embeddings filtered by node type and by Small , Medium
and Large scope lengths. Bold values denote significantly better scores than all the
others. ▲ indicates a better score than an RBM embedding with greater or equal size. ▽
indicates worse scores than an RBM embedding with smaller or equal size.

SPN-I SPN-II SPN-III SPN-III
sum prod sum prod sum prod S M L

REC 72.46 62.25 98.03▲ 97.06▲ 98.00▲ 97.04▲ 88.73 98.45▲ 93.91
CON 62.36 64.03 77.13▲ 76.07▲ 83.59▲ 82.06▲ 70.51▽ 77.18 83.32▲
OCR 74.19 81.58 89.73▲ 88.78▲ 90.02▲ 89.32 87.22▽ 89.29▲ 88.19▲
CAL 38.19 56.95 62.64 64.80 66.58▽ 66.40▽ 63.37▽ 66.23▽ 66.10
BMN 93.50 94.75 97.67 96.90▽ 97.80 97.20▽ 96.02▽ 97.42▽ 97.38

→ sum nodes only are good compressors for larger models
→mid size scope length embeddings provide best discriminative power

Vergari et al., “Visualizing and Understanding Sum-Product Networks”, 2016

Embedding accuracies (III)

Table : Test set accuracies for embeddings by aggregating node outputs with the same
scope, with and without leaves. Bold values denote significantly better scores than all
the others for each dataset. ▲ indicates a better score than an RBM embedding with
greater or equal size. ▽ indicates worse scores than an RBM embedding with smaller or
equal size.

SPN-I SPN-II SPN-III
no-leaves leaves no-leaves leaves no-leaves leaves

REC 72.47 75.92▽ 97.94▲ 97.99▲ 97.94▲ 98.02▲
CON 62.35 66.49▽ 77.21▲ 78.05 83.52▲ 83.84▲
OCR 74.32 81.85 89.71▲ 89.68▲ 89.90▲ 89.91▲
CAL 38.10 63.19▽ 62.59 62.76▽ 66.49▽ 66.58▽
BMN 93.51 94.83▽ 97.64▲ 97.62▲ 97.80 97.80

→ shorter but still accurate embeddings
→ leaves greatly contribute for smaller models

Vergari et al., “Visualizing and Understanding Sum-Product Networks”, 2016

RandomMarginal Queries

100 200 300 400 500 600 700 800 900 1000
features

65

70

75

80

85

90

95

100
te

st
 a

cc
ur

ac
y

SPNI
SPNII
SPNIII
MTI
MTII
MTIII
LR

100 200 300 400 500 600 700 800 900 1000
features

50

55

60

65

70

75

80

te
st

 a
cc

ur
ac

y

SPNI
SPNII
SPNIII
MTI
MTII
MTIII
LR

100 200 300 400 500 600 700 800 900 1000
features

70

72

74

76

78

80

82

84

te
st

 a
cc

ur
ac

y

SPNI
SPNII
SPNIII
MTI
MTII
MTIII
LR

100 200 300 400 500 600 700 800 900 1000
features

84

86

88

90

92

94

96

te
st

 a
cc

ur
ac

y

SPNI
SPNII
SPNIII
MTI
MTII
MTIII
LR

→ structure learning is meaningful!
→ an SPN representation power goes beyond single nodes

Vergari et al., “Visualizing and Understanding Sum-Product Networks”, 2016

Encoding/Decoding Embeddings
Treat an MPN as a sort of autoencoder:

▶ encoding a sample into an inner nodes embedding

▶ decoding an embedding back into input space by MPE top down traversal

Evaluating in the Multi Label Classification MLC case, whereX→ Y is much
harder thanX→ Y .
Three proxy performance metrics: jaccard, hamming and exact match scores.
Learning with Logistic Regression (LR) and Ridge Regression (RR)

▶ X
MPN7−−−−→ EX

LR−−→ Y: slight improvements

▶ (X
RR−−→ (Y

MPN7−−−−→ EY))
MPN7−−−−→ Y: huge improvements

▶ ((X
MPNX7−−−−−→ EX)

RR−−→ (Y
MPNY7−−−−−→ EY))

MPNY7−−−−−→ Y: harder

Vergari et al. Encoding and Decoding Representations with Sum-Product Networks, 2016, to appear

Trends & What to do next
Scalable structure learning to cope with million instances and RVs. LearnSPN
can be tweaked some more, but… [Krakovna and Looks 2016]

Continuous RVs structure learning. Is enough to adapt LearnSPN clustering
processes to operate on continuous RVs?

Compressing and lifting huge SPN models. Would it be fine to renounce to
answer queries of a certain kind in tractable fashion?

End-to-end learning with hybrid NN architectures. Deep learning
architectures leaped forward recently and on harder tasks…

References

awesome-spn
A curated and structured list of resources about SPNs[26].
https://github.com/arranger1044/awesome-spn

[26] Inspired by the SPN page http://spn.cs.washington.edu/ at the Washington University

https://github.com/arranger1044/awesome-spn

awesome-spn
A curated and structured list of resources about SPNs[26].
https://github.com/arranger1044/awesome-spn

Thanks to the research teams working on SPNs!

University of Washington: Domingos, Poon, Gens
University of Graz: Peharz, Pernkopf, Tschiatschek
University of Waterloo: Poupart, Zhao, Adel, Melibari, Rashwan, Jaini
University of Oregon: Lowd, Rooshenas
University of Bari: DiMauro, Vergari
Oregon State University: Todorovic, Amer
University of Texas at Dallas: Gogate, Rahman
…

[26] Inspired by the SPN page http://spn.cs.washington.edu/ at the Washington University

https://github.com/arranger1044/awesome-spn

Bibliography I
Adel, Tameem, David Balduzzi, and Ali Ghodsi (2015). “Learning the Structure of Sum-Product Networks via an SVD-based Algorithm”. In: Uncertainty in Artificial

Intelligence.

Amer, Mohamed and Sinisa Todorovic (2015). “Sum Product Networks for Activity Recognition”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on.

Amer, Mohamed R and Sinisa Todorovic (2012). “Sum-Product Networks for Modeling Activities with Stochastic Structure”. In: (CVPR), 2012 IEEE Conference on.
IEEE, pp. 1314–1321.

Bengio, Yoshua, Aaron C. Courville, and Pascal Vincent (2012). “Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives”. In: CoRR
abs/1206.5538.

Cheng, Wei-Chen et al. (2014). “Language modeling with Sum-Product Networks”. In: INTERSPEECH 2014, pp. 2098–2102.

Darwiche, Adnan (2003). “A Differential Approach to Inference in Bayesian Networks”. In: J.ACM.

— (2009). Modeling and Reasoning with Bayesian Networks. Cambridge.

Dennis, Aaron and Dan Ventura (2015). “Greedy Structure Search for Sum-product Networks”. In: IJCAI’15. Buenos Aires, Argentina: AAAI Press, pp. 932–938.
ISBN: 978-1-57735-738-4.

Desana, Mattia and Christoph Schnörr (2016). “Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models”. In: CoRR
abs/1604.07243. URL: http://arxiv.org/abs/1604.07243.

Erhan, Dumitru et al. (2009). “Visualizing Higher-Layer Features of a Deep Network”. In: ICML 2009 Workshop on Learning Feature Hierarchies, Montréal, Canada.

Gens, Robert and Pedro Domingos (2012). “Discriminative Learning of Sum-Product Networks”. In: Advances in Neural Information Processing Systems 25,
pp. 3239–3247.

— (2013). “Learning the Structure of Sum-Product Networks”. In: Proceedings of the ICML 2013, pp. 873–880.

Germain, Mathieu et al. (2015). “MADE: Masked Autoencoder for Distribution Estimation”. In: CoRR abs/1502.03509.

Jaini, Priyank et al. (2016). “Online Algorithms for Sum-Product Networks with Continuous Variables”. In: Probabilistic Graphical Models - Eighth International
Conference, PGM 2016, Lugano, Switzerland, September 6-9, 2016. Proceedings, pp. 228–239. URL:
http://jmlr.org/proceedings/papers/v52/jaini16.html.

Krakovna, Viktoriya and Moshe Looks (2016). “A Minimalistic Approach to Sum-Product Network Learning for Real Applications”. In: CoRR abs/1602.04259. URL:
http://arxiv.org/abs/1602.04259.

Larochelle, Hugo and Iain Murray (2011). “The Neural Autoregressive Distribution Estimator”. In: International Conference on Artificial Intelligence and Statistics,
pp. 29–37.

Lowd, Daniel and Pedro Domingos (2012). “Learning Arithmetic Circuits”. In: CoRR abs/1206.3271.

http://arxiv.org/abs/1604.07243
http://jmlr.org/proceedings/papers/v52/jaini16.html
http://arxiv.org/abs/1602.04259

Bibliography II
Lowd, Daniel and Amirmohammad Rooshenas (2013). “Learning Markov Networks With Arithmetic Circuits”. In: Proceedings of the 16th International Conference

on Artificial Intelligence and Statistics. Vol. 31. JMLR Workshop Proceedings, pp. 406–414.

Martens, James and Venkatesh Medabalimi (2014). “On the Expressive Efficiency of Sum Product Networks”. In: CoRR abs/1411.7717.

Melibari, Mazen et al. (2016). “Dynamic Sum Product Networks for Tractable Inference on Sequence Data”. In: Probabilistic Graphical Models - Eighth
International Conference, PGM 2016, Lugano, Switzerland, September 6-9, 2016. Proceedings, pp. 345–355. URL:
http://jmlr.org/proceedings/papers/v52/melibari16.html.

Nath, Aniruddh and Pedro Domingos (2015). “Learning Relational Sum-Product Networks”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Peharz, Robert (2015). “Foundations of Sum-Product Networks for Probabilistic Modeling”. PhD thesis. Graz University of Technology, SPSC.

Peharz, Robert, Robert Gens, and Pedro Domingos (2014a). “Learning Selective Sum-Product Networks”. In:Workshop on Learning Tractable Probabilistic Models.
LTPM.

Peharz, Robert et al. (2014b). “Modeling speech with sum-product networks: Application to bandwidth extension”. In: ICASSP2014.

Peharz, Robert et al. (2015). “On Theoretical Properties of Sum-Product Networks”. In: The Journal of Machine Learning Research.

Peharz, Robert et al. (2016). “On the Latent Variable Interpretation in Sum-Product Networks”. In: CoRR abs/1601.06180. URL:
http://arxiv.org/abs/1601.06180.

Poon, Hoifung and Pedro Domingos (2011). “Sum-Product Networks: a New Deep Architecture”. In: UAI 2011.

Rahman, Tahrima and Vibhav Gogate (2016). “Merging Strategies for Sum-Product Networks: From Trees to Graphs”. In: UAI, ??–??

Rashwan, Abdullah, Han Zhao, and Pascal Poupart (2016). “Online and Distributed Bayesian Moment Matching for Parameter Learning in Sum-Product
Networks”. In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1469–1477.

Rooshenas, Amirmohammad and Daniel Lowd (2014). “Learning Sum-Product Networks with Direct and Indirect Variable Interactions”. In: Proceedings of ICML
2014.

Vergari, A., N. Di Mauro, and F. Esposito (2016). “Visualizing and Understanding Sum-Product Networks”. In: preprint arXiv. URL:
https://arxiv.org/abs/1608.08266.

Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”. In:
ECML-PKDD 2015.

Zhao, Han and Pascal Poupart (2016). “A unified approach for learning the parameters of sum-product networks”. In: arXiv preprint arXiv:1601.00318.

Zhao, Han, Mazen Melibari, and Pascal Poupart (2015). “On the Relationship between Sum-Product Networks and Bayesian Networks”. In: ICML.

http://jmlr.org/proceedings/papers/v52/melibari16.html
http://arxiv.org/abs/1601.06180
https://arxiv.org/abs/1608.08266

Bibliography III
Zhao, Han et al. (2016). “Collapsed Variational Inference for Sum-Product Networks”. In: In Proceedings of the 33rd International Conference on Machine Learning.

Vol. 48.

Discuss

X4X3X2X1 X5

7.3 Face Image Completion

Original

Covered

MEAN

P
D

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

D
V

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

M
er
ge

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

7.3 Face Image Completion

Original

Covered

MEAN

P
D

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

D
V

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

M
er
ge

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

.02

.01 .013

.2 .33

.27 .34

.87 .11

.3 .44

.2.8.51

.89

.7.9.4.55

.67.81.39.48

.19

.25.73.86.11

	Representation
	Inference
	Interpretation
	Learning
	Applications
	Representation Learning
	References

