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The need for Tractable Inference

Probabilistic modeling of data aims at
» representing probability distributions compactly
» computing their marginals and modes efficiently (inference)
» learning them accurately

A solution is to use Probabilistic Graphical Models (PGMs)
However, PGMs are limited in

» representing compact distributions

» having intractable (exponential in their treewidth) exact inference in the
worst case

» falling back on approximate inference
» requiring and exponential sample size (wrt the number of variables)
» learning the structure since it requires inference

Exact inference in a tractable model may be better than performing
approximate inference in an intractable model



The need for SPN

Why should you work on SPNs?

Sum-Product Networks (SPNs) are a type of probabilistic model"

» aclass of deep probabilistic models that consist of many layers of hidden
variables and can have unbounded treewidth
— probabilistic semantics and NN interpretation

» inference in SPNs is guaranteed to be tractable

> structure and parameters can be effectively and accurately learned

SPNs represent probability distributions and a corresponding exact inference
machine for the represented distribution at the same time

Simple and effective algorithms to learn them

Successfully employed in several applications

"poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011



Representation



Density estimation

Given a set of i.i.d. samples {x; lNzl over RVs X, the aim is to learn an
estimator for the joint probability distribution px

Unsupervised learning density estimators

v

Bayesian Networks
Markov Networks
Kernel Density Estimators

>
>
» Autoregressive Neural Networks
» Sum-Product Networks

»

Once a density estimator is learned, one uses it to answer queries, i.e. to do
inference



(Different kinds of) Inference

Different types of models make different operations tractable

Operations that may be required to be efficient are
» p(X = x) (evidence)
—> tractable for SPNs, BNs
» p(E),E C X (marginals)
— tractable for SPNs, hard in BNs (even approximate)

p(QIE),Q.E C X, QN E = () (conditionals)
— tractable for SPNs, hard in BNs (even approximate)

v

v

arg maxq~q p(q|E) (MPE assignment)
— hard for both SPNs and BNs

v

Z =% ..x $(x) (partition function)
— tractable for SPNs, hard for MNs

» sampling: generate independent samples from the posterior distribution



Tractable Probabilistic Models

Due to the importance of efficient inference a lot of work has been devoted to
learning probabilistic models for which inference is guaranteed to be tractable
» Graphical models
» graphical models with low treewidth and their mixtures
» thin junction trees
» Computational graphs from Knowledge Compilation

» Arithmetic Circuits

» Sentential Decision Diagrams®

» Neural Networks

» Restricted Boltzmann Forest
> Neural Autoregressive Distribution Estimator (NADE)[3]
» Masked Autoencoder Distribution Estimator (MADE)™!

Plparwiche, Modeli g and R ing with Bayesian Networks, 2009
Bl arochelle and Murray, “The Neural Autoregressive Distribution Estimator”, 2011
¥l Germain et al., “MADE: Masked Autoencoder for Distribution Estimation”, 2015



Sum-Product Networks

A Sum-Product Network S over RVs X is a rooted weighted DAG consisting of
distribution leaves (network inputs), sum and product nodes (inner nodes).

» A leaf n defines a tractable, possibly
unnormalized, distribution ¢,, over some RVs

in X. 9

wa w1y
» A nonnegative weight w,, is associated to
each edge linking a sum node n to ¢ € ch(n) X (X

» ch(n): child (input) nodes of a node n

» pa(n): parent (output) nodes of a node n @ @ @ @

» S, sub-network rooted at node n



Scopes

The scope of a node n in S'is denoted as

sc(n) CX
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Scopes

The scope of a node n in S'is denoted as
sc(n) CX

» the scope of a leaf node 7 is the set of
RVs over which ¢, is defined

» the scope of an inner node n is defined as
sc(n) = Ucéch(n) SC(C)
E.g.
SC( ) = {X17X27X37X47X57X6}




Scopes

The scope of a node n in S'is denoted as
sc(n) CX

» the scope of a leaf node 7 is the set of
RVs over which ¢, is defined

» the scope of an inner node n is defined as
sc(n) = Ueeen(n) S¢(€)

> the scope of .S is the scope of its root, i.e.
X
E.g.
sc(S) = sc(ll) =
{ X1, Xa, X3, X4, X5, X6}




Structural Properties

Let S be an SPN and let Sg (resp. Sg) be the set of all sum (resp. product)
nodes in S

1. S'is complete iff Vn € Sg,Vc1, c2 € ch(n) @ sc(er) = sc(ca)
2. Sis decomposable iff
Vn € Sg,Ve1,ca € ch(n),c1 # ¢o 1 sc(er) Nsc(eg) =0
3. If S'is complete and decomposable, then it is valid 516!
Evaluating a valid network corresponds to evaluate a joint unnormalized
probability distribution px: Vx, S(x)/Z = p(X = x)
> Z being the normalizing partition function Z = >+ S(x)

Valid SPN correctly compiles the extended network polynomial encoding the
distribution px 1.

deli

Blparwiche, M g and R ing with Bayesian Networks, 2009
®lpoon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Mpeharz et al., “On Theoretical Properties of Sum-Product Networks”, 2015




Inference



Complete evidence inference

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.

Each node n, compute Sy, (X|sc(n)) = Sn(X):
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Complete evidence inference

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.
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Complete evidence inference

To compute p(X = x), evaluate S in a
bottom-up (feedforward) fashion.

Each node n, compute Sy, (X|sc(n)) = Sn(X):

> Sn(¥) = ¢n(sc(n) = Xjse(n))
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Complete evidence inference

To compute p(X = x), evaluate S in a
0_3%_7 bottom-up (feedforward) fashion.
Each node n, compute Sy, (X|sc(n)) = Sn(X):

> Sn(X) = (,bn(SC(TL) = X\sc(n))
if n is a leaf node

> Sn(X) = HcEch(n) SC(X)

if n is a product node

> Sp(x) = ZcEch(n) WneSe(X)

if n is a sum node




Complete evidence inference

To compute p(X x), evaluate S in a
bottom-up (feedforward) fashion.

Each node n, compute Sy, (Xjsc(n)) = Sn(X):

> S’ﬂ(x) = (bn(SC(TL) = X\sc(n))
if n is a leaf node

> S’ﬂ(x) = HcEch(n) SC(X)

if n is a product node

> Sn(X) = 2 ceh(n) WneSe(X)

if n is a sum node

the root output is ISEIEE10. €=




Marginal inference

To compute a marginal query like
p(Q=q),Q C X evaluate S as before
(feedforward)




Marginal inference

To compute a marginal query like
p(Q=q),Q C X evaluate S as before
(feedforward)

but evaluate a leaf 1 as:

) p(sc(n) = djse(n)) ifsc(n) CQ
Sl = { otherwise




Marginal inference

=
@/ \or
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To compute a marginal query like
p(Q=q),Q C X evaluate S as before
(feedforward)

but evaluate a leaf n as:

1.0 otherwise

S.(q) = {P(Sc(n) = Qjsc(n)) ifsc(n) € Q

then propagate as before

» each sub-network shall output 1 as the
probability of marginalizing over all the
RVs out of its scope

Conditionals are tractable as well:

P(Q[E) = p(Q, E)/p(E)



MPE inference®

An approximation of MPE inference can be an-
swered in linear time as well

q" = argmax p(E, q)
q~Q

forsomeRVsE,QC X, ENQ =0,
EuQ=X

Blpeharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016



MPE inference®

An approximation of MPE inference can be an-
swered in linear time as well.
eg: Q= {X3,X4,Xs},E = {X1, X2, X6}

» build a Max-Product Network M
substituting each n € Sq, for a max
node computing

max wp.M,,
cech(n)

Blpeharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016



MPE inference®

@ An approximation of MPE inference can be an-
0.3/ '\0.7 swered in linear time as well.
@ @ eg: Q={X3, X4, X5}, E={X1, X2, X6}
M\ » build a Max-Product Network M
° @ 6 » evaluate M bottom-up after setting all
06 | 0402 | 08 leaves n, sc(n) C Qto 1

w
®© & ®
€T\

o6 v'%

Blpeharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016



MPE inference®

e An approximation of MPE inference can be an-
0.3/ \0‘7 swered in linear time as well.
@ eg. Q={Xs,X4,X5},E = {X1, X2, X¢}
/ \ » build a Max-Product Network M

@ e » evaluate M bottom-up after setting all
06 [0z 0 leaves n, sc(n) C Qto 1

@ @ » atop-down traversal traces back the MPE
M assignment for each RV in Q, following:
@ @ e > only the max output child branch of a

0 5 0. 9 max node

Blpeharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016




MPE inference®

@ An approximation of MPE inference can be an-
0.3/ \0‘7 swered in linear time as well.
@ @ eg: Q= {X3, X4, X5}, E = {REWRERN. X

M » build a Max-Product Network M

e @ @ 0 » evaluate M bottom-up after setting all
0s | °><2 |os leaves n, sc(n) C Qto 1

@ @ » atop-down traversal traces back the MPE
M assignment for each RV in Q, following:
> only the max output child branch of a

0/ |05 09| \1 max node

@ @ » all child branches of product nodes
| |

Blpeharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016




MPE inference®

An approximation of MPE inference can be an-
swered in linear time as well.
S X3, X, X PR X1, X2, X6}

» build a Max-Product Network M

» evaluate M bottom-up after setting all
leaves n, sc(n) C Qto 1
» atop-down traversal traces back the MPE
assignment for each RV in Q, following:
> only the max output child branch of a

max node
» all child branches of product nodes

» determining a path whose leaves union
forms the MPE assignment

Blpeharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016



Partition function computation

As for ACs, setting all leaf outputs to 1 equals to compute the partition function



Partition function computation
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As for ACs, setting all leaf outputs to 1 equals to compute the partition function



Interpretation



SPN interpretations

Probabilistic model
» sum nodes in a valid network are probabilistic mixtures over their
children distributions whose coefficients are the children weights
> acategorical latent RV H,, can be associated to each sum node n, having
valuesin {1,...,|ch(n)|}
> the weights of a sum node 1 can also be interpreted as the probabilities of
choosing the corresponding child branch from node n, having already taken
the path from the root up to n.

» since product nodes are evaluated as product of probability values, they
identify factorizations over independent distributions

Deep feedforward neural network

» SPNs can also be interpreted as a particular kind of feedforward deep
Neural Networks (NNs) with nonnegative parameters, where the leaf
distributions are input neurons whereas sum and product nodes are the
hidden neurons



SPNs and other models

» SPNs are more general than both hierarchical mixture models and thin
junction trees

> SPNs can be exponentially more compact (distribution over states of
variables with an even number of 1's, for instance)

» SPNs are not classical PGMs
» they are computational graphs, inference machines,...
» SPNs are not “probabilistic, general-purpose convolutional networks, with

average-pooling corresponding to marginal inference and max-pooling
corresponding to MPE inference”



Network Polynomials

Let @(x) > 0 an unnormalized probability distribution on Boolean variables.
x (resp. T) denotes the indicator function [z] (resp. [Z]) for the variable X.
The network polinomial® of ®(z)is >~ ®(z)II(x)

» TI(x) is the product of the indicators that have value 1 in state
Example (Bernoulli distribution over X with parameter p)
pr+(1-p)z
Example (Bayes Network X; — X5)

02,0542, T1%2 + Oz, 0z, |2, T1T2 + 0z, 00,7, T172 + 0z, 02,7, T172

with 8. = P(-)

Blparwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003



Network Polynomials (Il)

» The network polynomial is a multilinear function of the indicator variables

» The unnormalized probability of evidence e (partial instantiation of X) is
the value of the network polynomial when all indicators compatible with e
are setto 1 and the remainder are set to 0

Example

®(X; =1, X3 = 0) is the value of the network polynomial when Z; and x3
are set to 0 and the remaining indicators are set to 1 throughout.

» The partition function is the value of the network polynomial when all
indicators are set to 1

> For any evidence e, the cost of computing P(e) = ®(e)/Z is linear in
the size of the network polynomial

» The network polynomial has size exponential in the number of variables

» itis possible to represent and evaluate it in polynomial space and time
using an AC or an SPN



Arithmetic Circuits

Arithmetic Circuits (ACs)''?): inference representation closely related to SPNs
» arooted DAG with sums and products as interior nodes
» indicator nodes and parameters as leaves
Properties
» decomposable: children of a product node have disjoint scopes
» smooth: children of a sum node have identical scopes
» deterministic: children of a sum node are mutually exclusive

> at most one is non-zero for any complete configuration

An AC represents a valid probability distribution if it is decomposable and
smooth
ACs generated by compiling graphical models are typically deterministic as well

» while for SPNs sum nodes represent mixtures of distributions and are not
deterministic in general

Mparwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003



Arithmetic Circuits (1)

ACs and SPNs representations are equivalent for discrete domains!'"

» every decomposable and smooth AC can be represented as an equivalent
SPN with fewer or equal nodes and edges

» every SPN can be represented as an AC with at most a linear increase in
the number of edges

Learning ACs has been made by

» astandard BN structure learner with the complexity of the resulting
circuit as the regularizert'

> learning MNs representable by ACs, but does not reusing sub-ACs!"!
SPN learning algorithms emphasize mixtures

» results in models that use implicit latent variables to capture all of the
interactions among the observable variables

U"Rooshenas and Lowd, “Learning Sum-Product Networks with Direct and Indirect Variable
Interactions”, 2014

U2 owd and Domingos, “Learning Arithmetic Circuits”, 2012
U31 owd and Rooshenas, “Learning Markov Networks With Arithmetic Circuits”, 2013



Arithmetic Circuits (1)

Differences with SPNs

probabilistic semantics of SPNs
» allows for direct structure learning schemes where the compilation
process is implicit
» allows sampling from their encoded distribution (generative model)
no shared weights

» differently from ACs, it is not possible to have the same tied parameter
for many nodes in SPNs
generalized SPNs

» instead of using IVs to represent the states of discrete RVs, SPNs have
been generalized to continuous RVs and discrete RVs with infinitely many
states!'¥

> Vs Ax—, are replaced by distributions

U4peharz et al., “On Theoretical Properties of Sum-Product Networks”, 2015



SPNs as NNs (1)

SPNs are a particular kind of labelled, constrained and fully probabilistic
neural networks.

Labelled: each neuron is associated a scope
Constrained: completeness and decomposability determine network

topology.
Fully probabilistic: each valid sub-SPN is still a valid-SPN.

SPNs provide a direct encoding of the input space into a deep architecture —
visualizing representations (back) into the input space.

Vergari et al., “Visualizing and Understanding Sum-Product Networks"”, 2016



SPNs as NNs (1)

A classic MLP hidden layer computes the function:
h(x) = c(Wx + b)
SPNs can be reframed as DAGs of MLPs, each sum layer computing:
S(x) = log(Wx)
and product layers computing:
S(x) = exp(Px)
where W € R7*" and P € {0, 1}°*" are the weight matrices:

wiy i ] 1 i j
W<u>={ ’ P(m:{

0 otherwise 0 otherwise

Vergari et al., “Visualizing and Understanding Sum-Product Networks"”, 2016



SPNs as NNs (I11)

XYZWK




SPNs as NNs (1V): filters

Learned features as images maximizing neuron activations!'":

x" = argmax h;;(x; 0).
x| |xll=v

With SPNs, joint solution as an MPE assignment for all nodes (linear time):

Xisc(n) = argmax Sy (Xjsc(n); W)

— scope length (|sc(n)|) correlates with feature abstraction level

0SlErhan et al., “Visualizing Higher-Layer Features of a Deep Network”, 2009
Vergari et al., “Visualizing and Understanding Sum-Product Networks"”, 2016



SPNs as BNs

Adopting Algebraic Decision Diagrams (ADDs) for CPDs, every SPN can be
converted into a BN in linear time and space complexity in the size of the SPN

» the generated BN has a simple bipartite structure

» applying the VE algorithm to the generated BN with ADD representation
of its CPDs, the original SPN can be recovered in linear time and space
with respect to the size of the SPN

> the SPN can be viewed as a caching of the VE inference process

0604 (0901 (0307 (0208 Xy

FANIVAN

a0 01 03 07 02 [

Figure from "®. Construct a BN with CPDs represented by ADDs from an SPN.

U%17hao et al., “On the Relationship between Sum-Product Networks and Bayesian Networks"”, 2015
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Learning



Learning SPNs

Parameter learning: estimate w from data considering an SPN as a latent RV
model, or as a NN.

Structure learning: build the network from data by assigning scores to
tentative structures or by exploiting constraints

How to learn a “full” SPN:

» handcrafted structure, then parameter learning [Poon and Domingos
2011] [Gens and Domingos 2012]

» random structures, then parameter learning [Rashwan et al. 2016]

» structure learning, then parameter learning (fine tuning) [Zhao et al.
2016]

» learn both weight and structure at the same time [Adel et al. 2015; Gens
and Domingos 2013; Rooshenas and Lowd 2014; Vergari et al. 2015] ...



Structure Learning

Score vs constraint based search. No closed form for likelihood scores, need
heuristics [Rooshenas and Lowd 2014].
No need for it by exploiting the inner nodes probabilistic semantics

Learning graph vs tree structures: Easier to learn a tree SPN (sometimes
SPT) with greedy approaches. Graph SPNs may be more compact and
expressive efficient.

Top-down vs bottom-up approaches: iteratively cluster data matrix
(top-down) or start by the marginal RVs (bottom-up)

LearnSPN is a greedy, top down, constraint based |learner for tree SPNs [Gens
and Domingos 2013]

—> First principled top-down learner, inspired many algorithms and variations

— Surprisingly simple and accurate



LearnSPN (I)

Build a tree SPN by recursively split the data matrix:

» splitting columns into pairs by a greedy G Test with threshold p:

i T
G(Xi, X;) —22 Z c(zi, xj) logw

R c(w)elz;)

» clustering instances into |C| sets with online Hard-EM, estimating weights
as cluster proportions with cluster penalty A

P(X) = Yo x, ex PGICP(C)

» if there are less than m instances, put a naive factorization over leaves

» each univariate distribution get ML estimation smoothed by «

Hyperparameter space: {p, A, m, a}.



LearnSPN (ll)

X1 X2 Xz Xy X5



LearnSPN (Il)

X1 Xo X3 Xy X5

3/8 /2/8 3/8



LearnSPN (Il)

X, Xy X3 X4 X; X1 Xp X3 Xy X5

3/8 /2/9 3/8



LearnSPN (Il)

X, Xy X3 X4 X; X1 Xp X3 Xy X5




Tweaking LearnSPN

LearnSPN performs two interleaved greedy hierarchical divisive clustering
processes (co-clutering on the data matrix).

Fast and simple. But both processes never look back and are committed to the
choices they take

Online EM does not need to specify the number of clusters k in advance. But
overcomplex structures are learned by exploding the number of sum node
children

Tractable leaf estimation. But too strong naive factorization independence
assumptions, hard to regularize

ML estimations are effective. But they are not robust to noise, they can overfit
the training set easily



Why Structure Quality Matters
Tractable inference is guaranteed if the network size is polynomial in | X|.
Network size influences inference complexity: smaller networks, faster
inference!

— Comparing network sizes is better than comparing inference times

Network depth influences expressive efficiency [Martens and Medabalimi
2014] [Zhao et al. 2015]

Structural simplicity as a bias: overcomplex networks may not generalize well.

Structure quality desiderata: smaller but accurate, deeper but not wider,
SPNs.



LearnSPN-b

Observation: each clustering process benefits from the other one
improvements/highly suffers from other's mistakes.

Idea: slow them down the processes by limiting the number of nodes to split to
the minimum. LearnSPN-b, binary splitting k = 2.

— one hyperparameter less, \.

— not committing to complex structures too early

— reducing node out fan increases the depth

— same expressive power as LearnSPN structures

— statistically same (or better) accuracy, smaller networks




LearnSPN-b: depth VS size
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Figure : Network sizes VS depths while varying the max number of sum node children splits
(k € {10, 4, 2}). Each dot is an experiment in the grid search hyperparameter space performed
by LearnSPN-b on NLTCS (left) and Plants (right).



LearnSPN-b: best Il VS size
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Figure : Comparing network sizes for the networks scoring the best log-likelihoods in the grid
search as obtained by LearnSPN, LearnSPN-b and LearnSPN-bT for each dataset.



Other variations on LearnSPN

ACs modeling leaves by performing a greedy score search. ID-SPN best
log-likelihood learner (but lots of hyperparameters).
Freely available in the Libral'”! toolkit [Rooshenas and Lowd 2014]

Looking for correlations instead of independencies via matrix factorizations.
Splitting matrix rows and columns at the same time: SPN-SVD.
It can cope with continuous data [Adel et al. 2015]

Post-learning mergining sub-SPNs that model “similar” distributions.
Reducing network sizes [Rahman and Gogate 2016].

Learning Relational SPNs on first order data represented in Tractable Markov
Logic (TML), LearnRSPN [Nath and Domingos 2015].

o7 http://libra.cs.uoregon.edu/



Other Tendencies in Structure Learning

Learning deterministic structures which enable closed form log-likelihood
and weight estimation.

Selective SPNs, enabling efficient Stochastic Local Search [Peharz et al. 2014a].
Mixing latent and deterministic mixtures as sum nodes (a Cutset Network is an
SPN!) [Rahman and Gogate 2016]

Learning DAGs structures instead of trees.
Substituting sub-structures with more complex ones by cloning
mixtures [Dennis and Ventura 2015]

Template learning for sequence models. Stochastic local search over well
defined constrained structures. Dynamic SPNs [Melibari et al. 2016]



Parameter Learning
Non convex optimization, solvable with (online) iterative methods (e.g. SGD)

Classical approach: compute the gradient V., S(x)
— use backpropagation (differential approach!'®)
1. Vg(x)S(x) ¢ 1 start from the root
2. if nisasum node, Veceh(n):
Vs, x)9(x) < Vg (x)5(X) + wnc Vg, (x)5(x)
3. if nis a product node, Veech(n):
Vs.x)9(%) < Vs,05(%) + Vs, x)9(X) [Teccnim (e k(%)
Issues:
» vanishing gradients: depth is a major problem for soft gradients
» hyperparameter choices

» adaptive learning rate scheduling algos not employed yet!

(8parwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003



“Hard"” gradients

From SPN S to MPN M

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Gens and Domingos, “Discriminative Learning of Sum-Product Networks"”, 2012



“Hard"” gradients

From SPN S to MPN M

» forward (bottom-up) prop x!

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Gens and Domingos, “Discriminative Learning of Sum-Product Networks”, 2012



“Hard"” gradients

From SPN S to MPN M

» forward (bottom-up) prop x!

» backprop as MPE descent

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Gens and Domingos, “Discriminative Learning of Sum-Product Networks”, 2012



“Hard"” gradients

@ From SPN S to MPN M
0v?’/ \0<7 » forward (bottom-up) prop x*
@ > backprop as MPE descent
okgﬂ\@\o » “count” the occurrencies in the
path W

0.6 | 0.4X0.2 | 0.8

_ ﬂ{wpc € Wi}

M Vu,. log M(x)
0% ¢0o0 "”’”
0/ | 0.5 0.9 | 0.1
— not vanishing (regardless depth)
? @ e | — slower convergence
o @ o (less updates/instance)

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Gens and Domingos, “Discriminative Learning of Sum-Product Networks"”, 2012




Hard/Soft Parameter Updating

Awp,
Soft Gradient
Generative (V. S(x)) Sc(x)Vs, (x)S(x)
Discriminative (V ,,. log S(y|x)) Vwé’fjglx) - ngfjf;lx)
Hard Gradient
tH{wpe €W}

Generative (V. log M (x)) e
Hwpe EWiy o0 }—#{wpc €Wz }

Discriminative (V. log M (y|x)) e
Soft Posterior (p(H,, = c|x)) x ﬁ;ssi((xx))sc(x)il)pc
) Lifwye € Wy

Hard Posterior (p(H, = c|x))
Ootherwise

Upeharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016
Gens and Domingos, “Discriminative Learning of Sum-Product Networks"”, 2012



Bayesian Parameter Learning

Learning in a Bayesian setting is computing the posterior p(w|{x?} )
having a prior p(w):

p(wi{x"}iE7) o p(wl{x"}i_y)p(x" " |w)

p(w) modeled as a product of Dirichlet, p(x!*!|w) is an exponential sum of
monomials, — the posterior becomes a mixture of products of Dirichlets
growing exponentially in the data and sum nodes!

Online Bayesian Moment Matching (OBMM): computing first two moments
to approximate the intractable posterior, efficiently for tree SPNs [Rashwan
et al. 2016].

Collapse Variational Inference (CVB-SPN) to optimize a logarithmic lower
bound (better than ELBO) efficiently (linear in |S|) [Zhao et al. 2016].



Parameter learning

CVB-SPN® OBMM®" SGD¥¥ EMU¥ SEGH

NLTCS -6.08 -6.07 -8.76 -6.31 -6.85
MSNBC -6.29 -6.03 -6.81 -6.64 -6.74
KDDCup2k -2.14 -2.14 -44.53 -2.20 -2.34
Plants -12.86 -15.14 -21.50 -17.68 -33.47
Audio -40.36 -40.70 -49.35  -42.55 -46.31
Jester -54.26 -53.86 63.89 -54.26 -59.48
Netflix -60.69 -57.99 64.27 -59.35 -64.48
Accidents -29.55 -42.66 53.69 -43.54 -45.59
Retail -10.91 -11.42 -97.11 -11.42 -14.94
Pumsb-star -25.93 -4527 -128.48  -46.54 -51.84
DNA -86.73 -99.61 -100.70 -100.10 -105.25
Kosarek -10.70 -11.22 3464 -11.87 -17.71
MSWeb -9.89 -11.33 -59.63  -11.36 -20.69
Book -34.44 -35.55 -249.28 -36.13 -42.95
EachMovie -52.63 -59.50 -227.05 -64.76 -84.82
WebKB -161.46 -165.57 -338.01 -169.64 -179.34
Reuters-52 -85.45 -108.01  -407.96 -108.10 -108.42
20-Newsgrp -155.61 -158.01  -312.12 -160.41 -167.89
BBC -251.23 -275.43  -462.96 -274.82 -276.97
Ad -19.00 -63.81 -638.43 -63.83 -64.11

2zhao et al., “Collapsed Variational Inference for Sum-Product Networks”, 2016
2lRashwan et al., “Online and Distributed Bayesian Moment Matching for Parameter Learning in
Sum-Product Networks”, 2016



Parameter learning VS LearnSPN

LearnSPN®?  LearnSPN-b® CVB-SPN®Y OBMM®! SGDF? EMP? SEGP?
NLTCS -6.11 -6.05 -6.08 -6.07 -8.76 -6.31 -6.85
MSNBC -6.11 -6.04 -6.29 -6.03 -6.81 -6.64 -6.74
KDDCup2k -2.18 -2.14 -2.14 -2.14 -44.53 -2.20 -2.34
Plants -12.98 -12.81 -12.86 -15.14 -21.50 -17.68 -33.47
Audio -40.50 -40.57 -40.36 -40.70 -49.35  -42.55 -46.31
Jester -53.48 -53.53 -54.26 -53.86 63.89 -54.26 -59.48
Netflix -57.33 -57.73 -60.69 -57.99 64.27 -59.35 -64.48
Accidents -30.04 -29.34 -29.55 -42.66 53.69 -43.54 -45.59
Retail -11.04 -10.94 -10.91 -11.42 -97.11  -11.42 -14.94
Pumsb-star -24.78 -23.31 -25.93 -45.27 -128.48  -46.54 -51.84
DNA -82.52 -81.91 -86.73 -99.61  -100.70 -100.10 -105.25
Kosarek -10.99 -10.72 -10.70 -11.22 34.64 -11.87 -17.71
MSWeb -10.25 -9.83 -9.89 -11.33 -59.63 -11.36 -20.69
Book -35.89 -34.30 -34.44 -35.55 -249.28 -36.13 -42.95
EachMovie -52.49 -51.36 -52.63 -59.50 -227.05 -64.76 -84.82
WebKB -158.20 -154.28 -161.46 -165.57  -338.01 -169.64 -179.34
Reuters-52 -85.07 -83.34 -85.45 -108.01  -407.96 -108.10 -108.42
20-Newsgrp -155.93 -152.85 -155.61 -158.01  -312.12 -160.41 -167.89

2 Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013
[ZB]Vergari et al., “Simplifying, Regularizing and Strengthening Sum-Product Network Structure

Learning”, 2015

247Zhao et al., “Collapsed Variational Inference for Sum-Product Networks"”, 2016
2Slpashwan et al., “Online and Distributed Bayesian Moment Matching for Parameter Learning in

Sum-Product Networks”, 2016



Why learning parameters only

Even if simple, LearnSPN hardly scales on large datasets.
— generate a random (but valid) structure, then optimize the weights

LearnSPN OBMM ODMM SGB  OEM OEG
KOs -444.55  -422.19  -437.30 -34929  -538.21 -657.13
NIPS - -1691.87 -1709.04 -7411.20 -1756.06 -3134.59
ENRON - -518.842  -522.45 -13961.40 -554.97 -14193.90
NyTIMES - -1503.65 -1559.39 -43153.60 -1189.39 -6318.71

— distribute the computation of gradients and updates (over instances,...etc)

LearnSPN OBMM ODMM SGB OEM OEG
KOS 1439.11 89.40 8.66 162.98 59.49  155.34
NIPS - 139.50 9.43 180.25 64.62 17835
ENRON - 2018.05 580.63 876.18 694.17 883.12
NyTIMES - 12091.7 1643.60 5626.33 5540.40 6895.00

Rashwan et al., “Online and Distributed Bayesian Moment Matching for Parameter Learning in
Sum-Product Networks”, 2016



Other Tendencies in Parameter
Learning

Jointly learning leaf distributions parameters while optimizing.
E.g. deriving EM update rules for leaf distributions [Desana and Schnorr 2016;
Peharz et al. 2015]

Bayesian learning with continous leaf distributions. Extending OBMM to
tree SPNs with continuous Gaussian leaves [Jaini et al. 2016]

Non bayesian signomial programming approaches still considering an SPN
as a (very large) mixture over tree distributions.

Multiplicative updates (no projections, like EG, but faster convergence) for
Sequential Monomial Approximations (SMA) and Concave-Convex procedure
(CCCP) [Zhao and Poupart 2016]



Applications



Applications I: computer vision

Image reconstruction and inpainting: fill the missing pixels of test samples by
the means of efficient MPE inference.
Fixed (taking spatial autocorrelation into account) or learned structures.

Original
Reconstructing some simmetries
Covered (eyes, but not beards, glasses).
BACK-ORIG  Testing different approximations
for MPE inference [Peharz 2015].
SUM
BACK-MPE

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011



Applications II: activity recognition

Videos represented as regular grids of points in space and time, described by
Bag-of-Words (BoW).

An SPN structure models a hierarchy of BoW products.

Inference for activity recognition and localization.

Point distribution Video Product

Exploiting part based decomposability along pixels and time (frames).

Amer and Todorovic, “Sum-Product Networks for Modeling Activities with Stochastic Structure”, 2012
Amer and Todorovic, “Sum Product Networks for Activity Recognition”, 2015



Applications Ill: speech

SPNs to model the joint pdf of observed RVs in HMMs (HMM-SPNs).

H

i
]
$
§

(a) Original full bandwid ion HMM-LP

(¢) Reconstruction HMM-GMM (@) Reconstruction HMM-SPN

Peharz et al., “Modeling speech with sum-product networks: Application to bandwidth extension”, 2014



Applications IV: language modeling

Fixed structure SPN encoding the conditional probability p(w;|wi—1,...,wi—n)
as an n-th order language model.

One-hot encoding of word vocabulary.
Windowed representation of size

First embedding layer with size D,
sharing word weights across different
mixtures (position invariance).

State-of-the-art perplexity on PennTreeBank even for low orders (n = 4).

Cheng et al., “Language modeling with Sum-Product Networks”, 2014



Representation Learning



Extracting Embeddings

From deep neural networks

for sample
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Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives”,

Bengio et al., “



Extracting Embeddings

From deep neural networks

for sample

€ R

Build an embedding et

71707 1’ 1’ 1>

0

x' = {

N

A

by evaluating the network and collecting the last

layer(s) activations

Nt X 7 3
N\ i\ g i\g
/ \— \\~.‘¢./
/ \\'

o\

..\“\? XN

577N

v,
LR
AR

\\w/

', 2012

“Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives”

Bengio et al.,



Extracting Embeddings

Exploiting SPNs as feature extractors

Given an SPN S, afiltering criterion f, generate a dense vector for each sample

X’L

ei _ fS (Xl)
Issues with SPNs as NNs:
> layer-wise extraction may be arbitrary
» power law distribution of nodes by scopes
» scope lengths as proxy for feature abstraction levels (see filter
visualizations)

— Which filtering criterion to employ?
— Which interpretation for the extracted features?

Vergari et al., “Visualizing and Understanding Sum-Product Networks"”, 2016



Extracting embeddings

Inner node activations

Build an embedding e’ € R for sample

x' =(0,1,0,1,1,1)




Extracting embeddings

Inner node activations

Build an embedding e’ € R? for sample
x' =(0,1,0,1,1,1)

by evaluating S(x*) and collecting inner

node (BTN, but not ) ac-

tivations
< - (12 K IO 0. . .
B



Extracting embeddings
Filtering by type

Build embeddings el q for sample

sum> pro

M@ Xi = <07170a1a171>

by evaluating S(x*) and collecting inner
% node activations filtered by node type
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Extracting embeddings

Filtering by scope Iength

o
9\
fscss

06

§

o\

Build embeddings efsc(n)|:k € RY for
sample

x' =(0,1,0,1,1,1)

by evaluating S(x%) and collecting inner
node activations filtered by scope length

B
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Extracting embeddings
Aggregating by scope

9 Build an embedding e’ € R for sample
®!® x" =1(0,1,0,1,1,1)

by adding fictitious sum nodes over unique
scopes (as additional roots)
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Extracting embeddings
Aggregating by scope

Build an embedding e’ € R for sample
x" =1(0,1,0,1,1,1)

by adding fictitious sum nodes over unique
scopes (as additional roots), then evaluating
S(x") and collecting they activations from

inner alele[=




Extracting embeddings
Aggregating by scope

Build an embedding e’ € R for sample

dq@ 9
x' =(0,1,0,1,1,1)
soi &

by adding fictitious sum nodes over unique
/ | scopes (as additional roots), then evaluating
?N@X? S(x") and collecting they activations from

@ @ @ @ @P n0d€‘S and even
@/%%g’/; el oeves = (B3 1 SN IERD)
| | | e\fv—leaves = <,7 ’,7
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Extracting embeddings

Random marginal queries

To build an embedding e’ € R for sample
e; @‘

=(0,1,0,1,1,1)
for each feature 5 = 1,...,k, sample
Q; C X and evaluate p(Q; = xq; ).
E{ E.g.:
Qo = {X1, Xo}

>< e:and = (7---)



Extracting embeddings

Random marginal queries

To build an embedding e’ € R for sample

x' =(0,1,0,1,1,1)

for each feature 5 = 1,...,k, sample
Q; C X and evaluate p(Q; = xq; ).
E.g.

Qo = { X1, X2}

Qi = {X1, X3, Xy}

efand = <7>




Supervised classification

Experimental settings to evaluate embeddings

Extract embeddings unsupervisedly on X, then train a logistic regressor on
them to predict Y.

Five image datasets: REC, CON, OCR, CAL, BMN.

Grid search with LearnSPN-b for three models with different capacities:
SPN-I, SPN-II and SPN-II1 for m € {500, 100, 50}.

Compare them against RBM models: RBM-5h, RBM-1k and RBM-5k with
500, 1000 and 5000 hidden units.

Compare them against other tractable PGMs: mixtures of 3, 15, 30 Chow-Liu
trees.



Embedding accuracies (I)

Table : Test set accuracy scores for the embeddings extracted with the best SPN, RBM
models and with the baseline LR model on all datasets. Bold values denote significantly

better scores than all the others for a dataset.

LR SPN-1 SPN-II SPN-lII RBM-5h RBM-1k RBM-5k
REC 69.28 7731 97.77 97.66 94.22 96.10 96.36
CON 53.48 6748 7831 84.69 67.55 75.37 79.15
OCR 7558 82.60 89.95 89.94 86.07 87.96 88.76
CAL 62,67 59.17 65.19 66.62 67.36 68.88 67.71
BMN 90.62 9515 97.66 97.59 96.09 96.80 97.47

— comparable or better accuracies than (intractable) RBM embeddings

Vergari et al., “Visualizing and Understanding Sum-Product Networks"”, 2016



Embedding accuracies (ll)

Table : Test set accuracies for embeddings filtered by node type and by Small, Medium
and Large scope lengths. Bold values denote significantly better scores than all the

others. A indicates a better score than an RBM embedding with greater or equal size. V
indicates worse scores than an RBM embedding with smaller or equal size.

SPN-I SPN-II SPN-II SPN-III

sum prod sum prod sum prod ‘ S M L
REC 7246 6225 98.03% 97.064 98.004 97.044 | 8873 98.454 9391
CON 6236 64.03 77.134 76.074 83.59% 82.064 | 70.51V 7718 83.324
OCR 7419 8158 89.734 88.784 90.024 8932 |87.22V 89.294 88.194
CAL 3819 56.95 62.64 64.80 66.58" 66.40V | 63.37Y 66.23Y  66.10
BMN 9350 9475 97.67 96.90Y 97.80 97.20V | 96.02V 97.42V 9738

— sum nodes only are good compressors for larger models
— mid size scope length embeddings provide best discriminative power

Vergari et al., “Visualizing and Understanding Sum-Product Networks"”, 2016



Embedding accuracies (Ill)

Table : Test set accuracies for embeddings by aggregating node outputs with the same
scope, with and without leaves. Bold values denote significantly better scores than all
the others for each dataset. A indicates a better score than an RBM embedding with
greater or equal size. V indicates worse scores than an RBM embedding with smaller or
equal size.

SPN-I SPN-II SPN-III

no-leaves leaves no-leaves leaves no-leaves leaves

REC 72.47  75.92V 97.944 97.994 97.944 98.024
CON 62.35 66.49Y 77.214 78.05 83.524 83.844
OCR 7432 81.85 89.714 89.684 89.904 89.914
CAL 3810 63.19V 6259 62.76Y 66.49V 66.587
BMN 9351 94.83V 97.64% 97.624 97.80 97.80

— shorter but still accurate embeddings
— leaves greatly contribute for smaller models

Vergari et al., “Visualizing and Understanding Sum-Product Networks"”, 2016



Random Marginal Queries
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— structure learning is meaningful!
— an SPN representation power goes beyond single nodes

Vergari et al., “Visualizing and Understanding Sum-Product Networks"”, 2016



Encoding/Decoding Embeddings

Treat an MPN as a sort of autoencoder:
» encoding a sample into an inner nodes embedding

» decoding an embedding back into input space by MPE top down traversal

Evaluating in the Multi Label Classification MLC case, where X — Y is much
harderthan X — Y.

Three proxy performance metrics: jaccard, hamming and exact match scores.
Learning with Logistic Regression (LR) and Ridge Regression (RR)

MPN
» X —— Ex LR vy slight improvements

» (X B (v MY By ) MEN

» (X—= MENx Ex) LN (Y M PNy Evy)) MENY N harder

Y: huge improvements

Vergari et al. Encoding and Decoding Representations with Sum-Product Networks, 2016, to appear



Trends & What to do next

Scalable structure learning to cope with million instances and RVs. LearnSPN
can be tweaked some more, but... [Krakovna and Looks 2016]

Continuous RVs structure learning. Is enough to adapt LearnSPN clustering
processes to operate on continuous RVs?

Compressing and lifting huge SPN models. Would it be fine to renounce to
answer queries of a certain kind in tractable fashion?

End-to-end learning with hybrid NN architectures. Deep learning
architectures leaped forward recently and on harder tasks...
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A curated and structured list of resources about SPNs2®!,
https://github.com/arranger1044/awesome-spn

2nspired by the SPN page http://spn.cs.washington.edu/ at the Washington University
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