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Abstract. Bayesian networks are probabilistic graphical models widely
employed in AI for the implementation of knowledge-based systems.
Standard inference algorithms can update the beliefs about a variable of
interest in the network after the observation of some other variables. This
is usually achieved under the assumption that the observations could re-
veal the actual states of the variables in a fully reliable way. We propose
a procedure for a more general modeling of the observations, which al-
lows for updating beliefs in different situations, including various cases
of unreliable, incomplete, uncertain and also missing observations. This
is achieved by augmenting the original Bayesian network with a number
of auxiliary variables corresponding to the observations. For a flexible
modeling of the observational process, the quantification of the relations
between these auxiliary variables and those of the original Bayesian net-
work is done by credal sets, i.e., convex sets of probability mass functions.
Without any lack of generality, we show how this can be done by simply
estimating the bounds for the likelihoods of the observations. Overall,
the Bayesian network is transformed into a credal network, for which
a standard updating problem has to be solved. Finally, a number of
transformations that might simplify the updating of the resulting credal
network is provided.

1 Introduction

Bayesian networks ([14], Section 2.1) are graphical tools allowing for the speci-
fication of a probabilistic model through combination of local models, each in-
volving only some of the variables in the domain. This feature makes those prob-
abilistic graphical models particularly effective for capturing expert knowledge
about specific problems. Once the network has been specified, different kinds
of probabilistic information can be extracted from it. Updating beliefs about a
variable of interest after the observation of some other variables is a typical task,
that might be solved through standard inference algorithms. The underlying as-
sumption for this task is that the observations are able to reveal the actual state
of the variables in a fully reliable way. Yet, in many situations this might not be
true: unreliable sensors, imperfect diagnostic tests, qualitative observations, etc.



are not always supposed to be correct. This problem is addressed in Section 4.
Following a standard epistemological paradigm, we regard the outcomes of the
observations as the (actual) values of manifest variables, which are in general
distinguished from the latent (and hence directly unobservable) variables, whose
state we try to detect through the observations.

Following these ideas, we might regard at a Bayesian network implementing
a knowledge-based system as a model of the relations between a set of latent
variables, which should be augmented by a manifest variable for each observation
we perform. This step is achieved in Section 5 by a simple graphical transforma-
tion. We indeed model the particular observational process relating the manifest
to the latent variables by an appropriate quantification of the corresponding
conditional probabilities. In order to provide a flexible model of these relations,
we adopt credal sets, i.e., convex sets of probability mass functions ([11], Sec-
tion 2.2). Without any lack of generality, this quantification can be achieved in a
very compact way: we simply need to estimate the bounds for the likelihoods of
the observations corresponding to the different values of the observed variables
(this is proved on the basis of the technical results reported in Section 3). Our
approach is quite general, and we can easily generalize to set-valued probabilistic
assessments many kinds of observations (e.g., data missing-at-random [12] and
Pearl’s virtual evidence method [14, Section 2.2.2]).

Overall, the method we present transforms the original Bayesian network into
a credal network ([5], Section 2.3). In the new updating problem all the observed
variables are manifest, where the outcomes of the observation correspond to the
actual states of the relative variables. Thus, we can employ standard inference
algorithms for credal networks to update our beliefs. Moreover, in Section 6, we
describe a simple variable elimination procedure for some of the variables in the
credal network: the manifest variables associated to latent variables which are
root or leaf nodes in the original Bayesian network can be eliminated by simple
local computations. Conclusions and outlooks are in Section 7, while the proofs
of the theorems are in Appendix A.

2 Bayesian and credal networks

In this section we review the basics of Bayesian networks (BNs) and their exten-
sion to convex sets of probabilities, i.e., credal networks (CNs). Both the models
are based on a collection of random variables X, which take values in finite
sets, and a directed acyclic graph G, whose nodes are associated to the variables
of X. For both models, we assume the Markov condition to make G represent
probabilistic independence relations between the variables in X: every variable is
independent of its non-descendant non-parents conditional on its parents. What
makes BNs and CNs different is a different notion of independence and a dif-
ferent characterization of the conditional mass functions for each variable given
the possible values of the parents, which will be detailed next.

Regarding notation, for each Xi ∈ X, ΩXi
is the possibility space of Xi, xi a

generic element of ΩXi
. For binary variables we simply set ΩXi

= {xi,¬xi}. Let



P (Xi) denote a mass function for Xi and P (xi) the probability that Xi = xi. A
similar notation with uppercase subscripts (e.g., XE) denotes arrays (and sets)
of variables in X. The parents of Xi, according to G, are denoted by Πi and for
each πi ∈ ΩΠi

, P (Xi|πi) is the conditional mass function for Xi given the joint
value πi of the parents of Xi. Moreover, the nodes of G without children and
without parents are called respectively leaf and root nodes.

2.1 Bayesian networks

In the case of BNs, the modeling phase involves specifying a conditional mass
function P (Xi|πi) for each Xi∈X and πi∈ΩΠi

; and the standard notion of prob-
abilistic independence is assumed in the Markov condition. A BN can therefore
be regarded as a joint probability mass function over X ≡ (X1, . . . , Xn), that
factorizes as follows: P (x) =

∏n

i=1
P (xi|πi), for each x ∈ ΩX, because of the

Markov condition. The updated belief about a queried variable Xq, given some
evidence XE =xE , is:

P (xq|xE) =

∑

xM

∏n

i=1
P (xi|πi)

∑

xM ,xq

∏n

i=1
P (xi|πi)

, (1)

where XM ≡ X\({Xq}∪XE), the domains of the arguments of the sums are left
implicit and the values of xi and πi are consistent with (xq , xM , xE). Despite its
hardness in general, Equation (1) can be efficiently solved for polytree-shaped
BNs with standard propagation schemes based on local computations and mes-
sage propagation [14]. Similar techniques apply also for general topologies with
increased computational time. Figure 1 reports a simple knowledge-based sys-
tem based on a small BN to be used in the rest of the paper to explain how our
ideas apply in practice.

2.2 Credal sets

CNs relax BNs by allowing for imprecise probability statements: in our assump-
tions, the conditional mass functions of a CN are just required to belong to
a finitely generated credal set, i.e., the convex hull of a finite number of mass
functions over a variable. Geometrically, a credal set is a polytope. A credal set
contains an infinite number of mass functions, but only a finite number of ex-
treme mass functions : those corresponding to the vertices of the polytope, which
are, in general, a subset of the generating mass functions. It is possible to show
that updating based on a credal set is equivalent to that based only on its ver-
tices. A credal set over X will be denoted as K(X). It is easy to verify that, if
X is binary, any credal set has at most two vertices and can be specified by a
single linear constraint l ≤ P (x) ≤ u.

2.3 Credal networks

In order to specify a CN over the variables in X based on G, a collection of
conditional credal sets K(Xi|πi), one for each πi ∈ ΩΠi

, should be provided
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Fig. 1. The Asia network [10]. This is a small BN that calculates the probability of a
patient having tuberculosis, lung cancer or bronchitis respectively based on different
factors. The semantic of the variables, which are all binary and referred to a particular
patient is: he visited Asia (X1), he smokes (X2), he has tuberculosis (X3), he has lung
cancer (X4), he has bronchitis (X5), he has tuberculosis or cancer (X6), his X-rays
show something (X7), he has dyspnea (X8).

separately for each Xi ∈ X; while, regarding Markov condition, we assume strong
independence [6]. A CN associated to these local specifications is said to be with
separately specified credal sets. The specification becomes global considering the
strong extension of the CN, i.e.,

K(X) ≡ CH
{

n
∏

i=1

P (Xi|Πi) : P (Xi|πi) ∈ K(Xi|πi)
∀πi ∈ ΩΠi

,

∀i = 1, . . . , n

}

, (2)

where CH denotes the convex hull of a set of functions. Let {Pk(X)}nv

k=1
denote

the set of vertices of K(X). It is an obvious remark that, for each k = 1, . . . , nv,
Pk(X) is the joint mass function of a BN over G. For this reason a CN can be
regarded as a finite set of BNs. In the case of CNs, updating is intended as the
computation of tight bounds of the probabilities of a queried variable given some
evidence, i.e., Equation (1) generalizes as:

P (xq |xE) = min
k=1,...,nv

∑

xM

∏n

i=1
Pk(xi|πi)

∑

xM ,xq

∏n

i=1
Pk(xi|πi)

, (3)

and similarly with a maximum replacing the minimum for the upper probability
P (xq|xE). Exact updating in CNs displays higher complexity than in BNs: up-
dating in polytree-shaped CNs is NP-complete, and NPPP-complete in general
CNs [7]. Also non-separate specifications of CNs can be provided [2]. Here, we
sometimes consider extensive specifications where a list of possible values for
the conditional probability tables P (Xi|Πi) is provided instead of the (separate)
specification of the conditional credal sets K(Xi|πi) for each πi ∈ ΩΠi

.



3 Equivalence relations for credal networks updating

In this section, we prove some simple equivalence between CNs with respect
to updating problems. The results are simple and the proofs are reported in
Appendix A for sake of completeness.

Let us consider the updating of a CN as in Equation (3). We obtain a new
CN through each one of the four following transformations.

Transformation 1 For each Xi ∈ XE, iterate the following operations for each
children Xj of Xi (i.e., for each Xj such that Xi ∈ Πj): (i) remove from G the
arcs Xi → Xj; (ii) redefine the conditional credal sets of Xj as K(Xj|π

′
j) :=

K(Xj |π
′
j , xi) for each π′

j ∈ ΩΠ′

j
, with Π ′

j = Πj \ {Xi} and the value of xi

consistent with xE.

Transformation 2 Assume all the nodes in XE to be leaf. For each Xi ∈ XE,
iterate the following operations: (i) make Xi a binary variable by shrinking its
possibility space to Ω′

Xi
:= {xi,¬xi}; (ii) redefine the conditional credal sets

K(X ′
i|πi) by the constraint

P (Xi = xi|πi) ≤ P (X ′
i = xi|πi) ≤ P (Xi = xi|πi), (4)

for each πi ∈ ΩΠi
, with the values of xi consistent with xE .

Transformation 3 Assume all the nodes in XE to be leaf, binary, and with
the same (and unique) parent Xj. Transform the (joint) variable XE into a
(single) binary variable with ΩXE

:= {xE ,¬xE}. Define its conditional credal
sets K(XE |xj) by the constraints

∏

i∈E

P (xi|xj) ≤ P (xE |xj) ≤
∏

i∈E

P (xi|xj), (5)

for each xj ∈ Ωj, with the values of xi consistent with xE.

Transformation 4 Assume all the nodes in XE to be leaf and binary. For each
Xi ∈ XE, consider an extensive quantification {Pk(Xi|Πi)}

mi

k=1
of its conditional

probability table.1 For each k = 1, . . . , mi, define the table P ′
k(Xi|Πi) such that

P ′
k(xi|πi) = αk ·Pk(xi|πi) for each πi ∈ ΩΠi

, where αk is an arbitrary nonnega-
tive constant such that all the new probabilities remain smaller than or equal to
one. Then, set {P ′

k(Xi|Πi)}
mi

k=1
as the new extensive specification for Xi.

The relation between a CN and those returned by the above transformations is
described by the following result.

Theorem 1. The updating problem in Equation (3) can be equivalently solved
in the CNs returned by the Transformation 1, 2, 3 and 4.

1 If the credal sets are separately specified, we can obtain an extensive specification
by taking all the possible combinations of their vertices.



According to this result, we have that, with respect to belief updating: (i) ob-
served nodes can be always regarded as leaf and binary; (ii) only the (lower and
upper) probability of the observed state matters; (iii) two observed nodes having
a single and common parent can be regarded as a single node; (iv) if the quantifi-
cation of the observed node is extensive (or is formulated in an extensive form),
what really matters are the ratios between the probabilities of the observed state
for the different values of the parents.

4 The observational process

Both BNs and CNs are used in AI for the implementation of knowledge-based
systems. In fact, the decomposition properties of these graphical tools allow
for a compact and simple modeling of the knowledge of an expert. Inference
algorithms solving the updating tasks in Equation (1) and Equation (3) can be
indeed used to extract probabilistic information about the posterior beliefs for
the variable of interest Xq after the observation of xE for the joint variables XE .
Yet, the idea that the outcomes in xE would correspond to the actual states of
the variables in XE is not always realistic. In general situations, the outcome of
an observation should be better regarded as a different variable from the one we
try to measure.

This idea follows an epistemological paradigm in the conceptualization of
theoretical systems: the holistic construal proposed in [3] for the representation
of a theory. This is based on a distinction between theoretical constructs, that
are unobservable (latent) real entities, and empirical constructs (or measures),
that are observable (manifest) empirical entities representing the observation,
perception or measurement of theoretical constructs. Accordingly, any theory
can be divided into two parts: “one that specifies relationships between theo-
retical constructs and another that describes relationships between (theoretical)
constructs and measures”.

In the case of probabilistic theories, this seems to correspond to the approach
to the modeling of missing data in [18], where a latent level and a manifest level
of the information are distinguished. In the first, theoretical constructs are rep-
resented as latent variables2 and the relationships between them are represented
through conditional (in)-dependence relations and conditional probabilities. In
the manifest level, the observations (empirical constructs) are represented as
manifest variables and the correspondence rules, i.e., the relationships between
the underlying theoretical constructs and their observations, are represented
through conditional (in)-dependence relations and conditional probabilities. The
sum of the observations and the correspondence rules is called observational pro-
cess. The result of this approach is a single model, embedding both the formal
theory and the observational process.

2 Following [15], a latent variable is a random variable whose realizations are unob-
servable (hidden), while a manifest variable is a random variable whose realizations
can be directly observed.



Note that the interpretation associated to the latent variables is realistic [4]:
they are considered as (unobservable) real entities that exist independent of their
observation. In the realistic view, latent variables (theoretical entities) are con-
sidered to be causes of the observed phenomena and are usually modeled through
a reflective model [4, 9], i.e., a model where manifest variables (observations) are
specified conditional on the underlying latent variables.

5 Modeling the observations

5.1 A simple example

Let us explain by means of the example in Figure 1 how the ideas of the previ-
ous section may apply to BNs, The fact that a patient have or not cancer (or
tuberculosis, dyspnea, etc.) is clearly a real fact (realistic interpretation), but
in general we can verify that only through tests that are not fully reliable. In
order to decide whether or not the patient is a smoker (or has been to Asia, etc.)
we can just ask him, but no guarantees about the truth of its answer are given.
Similarly, the reliability of tests measuring dyspnea are not always accurate [13]
(or an x-ray might blurred, etc.). Similar considerations can be done for any
variable in the BN, which should be therefore regarded as the latent level of our
theory (and all its variables as latent ones). In fact, the answers of the patient
about having been in Asia or being a smoker, as well as the outcomes of the test
of dyspnea or of the observation of the x-ray should be therefore regarded as the
(actual) values of new manifest variables.

Generally speaking, only the relative latent variable is expected to affect the
state of a manifest variable (reflective model). Accordingly, the fact that the
patient would tell us whether he smokes or not might be influenced by the fact
that he really smokes or not (e.g., we could assume that a non-smoker would
never lie, while most of the smokers would do that). On the contrary, it seems
hard to assume that the fact that he visited or not Asia might affect his answer
about smoking. These assumptions make possible to embed the new manifest
variables into the original network as depicted in Figure 2.

5.2 The general transformation

Now let us consider a generic BN over the variables X := (X1, . . . , Xn) im-
plementing a knowledge-based system. Let XE ⊂ X denote the variables we
observe. Assume that these observations might be not fully reliable (and hence
it might have sense to consider many observations for a single variable). For
each Xi ∈ XE , let o

j
i denote the outcome of the j-th observation of Xi, with

j = 1, . . . , ni. The outcomes o
j
i are regarded as the actual values of a correspond-

ing set of manifest variables O
j
i , while the variables in XE as well as the other

variables in X are regarded as latent variables. In general the outcome of an
observation might also be missing, and we therefore set o

j
i ∈ ΩXi

∪ {∗} =: Ω
O

j

i

for each i = 1, . . . , n and j = 1, . . . , ni, where ∗ denotes a missing outcome. Let
also O := {Oj

i }
j=1,...,ni

i=1,...,n .
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Fig. 2. The Asia network in Figure 1 with manifest variables (gray nodes) modeling the
observations of four latent variables. Two different tests about dyspnea are considered.

At this point, we should extend the original BN defined over X to a prob-
abilistic model over the whole set of variables (X,O). To this aim, we assume
each manifest variables to be affected only by its corresponding latent variable.3

In the probabilistic framework this corresponds to the conditional independence
between a manifest variable and all the other variables given its relative latent
variable. According to the Markov condition this means that the manifest vari-
able is a child of its latent variable. Thus, we obtain a directed acyclic graph
over (O,X) by simply adding to G an arc Xi → O

j
i , for each j = 1, . . . , ni and

i = 1, . . . , n.
Finally, to complete the specification of the model, we quantify P (Oj

i |xi) for
each i = 1, . . . , n, j = 1, . . . , ni, xi ∈ Xi. In the BNs framework, those proba-
bilistic values should be precisely assessed. This might be problematic because
statistical data about these relations are rarely available, while the quantifica-
tion is often based on expert qualitative judgements. For this reason, it seems
much more realistic, at least in general, to allow for an imprecise-probability
specification and give therefore the expert the freedom to model his uncertainty
about the observational process through credal sets K(Oj

i |xi) instead of precise

probability mass functions P (Oj
i |xi).

Overall, this procedure transforms a BN without an explicit model of the ob-
servations into a CN which embeds in its structure the model of the observational
process.

Finally, let us detail how the results in Theorem 1 allow for a simplification of
the CN to be updated. First, the manifest variables in O can be always described
by leaf nodes (Transformation 1). This basically means that we can model situa-
tions where the outcome of some observation is affected by the outcome of some
other observation without connecting the corresponding nodes (provided that in

3 More general situations might be also considered without particular problems. Here
we focus on this assumption as it is very often satisfied in real applications.



the quantification of the corresponding credal sets we take care of this relation).
As an example, the topology in Figure 2 could model a situation where the out-
come of the first of dyspnea (O1

8) has an effect on the second test (O2
8) without

tracing any arc between these two nodes. These manifest variables can be also
assumed to be binary (Transformation 2), and we set Ω

j
i := {oj

i ,¬o
j
i } for each

i = 1, . . . , n and j = 1, . . . , ni. This basically means that, in the quantification of
K(Oj

i |xi), we might simply assess P (oj
i |xi) and P (oj

i |xi) for each xi ∈ Ωi. Note
that these numbers are the lower and upper likelihoods for the outcome of the
observation corresponding to the different values of the relative latent variable.
If the specification is extensive, we can also unequivocally describe the quantifi-
cation in terms of a collection of likelihood ratios (Transformation 4). Finally,
we can cluster together the manifest variables corresponding to the observations
of the same latent variable (Transformation 3).

5.3 Possible models of the observations

Overall, the problem of updating beliefs in a BN with unreliable observations has
been mapped into a “standard”, in the sense that now only manifest variables are
observed, updating problem for a CN. The above procedure is quite general and
proper specifications of the conditional credal sets can be used to describe many
different observational process, including various cases of unreliable, incomplete,
uncertain, and also missing observations. Let us describe how this can be done
in some important cases.

– Fully reliable observation: the outcome cannot be missing, and we have
P (oi|xi) = 1 if oi = xi and zero otherwise. This means that the mani-
fest and the latent variable coincides and, in practice, an explicit modeling
of the observation is unnecessary.

– Fully unreliable observation: this condition of complete ignorance is modeled
by a vacuous quantification of the credal sets K(Oi|xi). This corresponds
to the conservative updating rule (CUR) for modeling missing data [8]. No-
tably, the specification employed in [1] to describe the same situation can be
regarded as an equivalent (but extensive) specification of the same model.

– Missing-at-random (MAR, [12]): this is a model of an unselective missingness
process, i.e., P (Oi = ∗|xi) constant for each xi ∈ Ωi. Note also that the
situation where we assume to do not observe a variable is a particular case of
MAR (with the constant equal to one). A situation of this kind corresponds
to assume (unconditional) independence between Oi and Xi. Accordingly
we can remove the arc Xi → Oi, and that proves that also in this case the
explicit modeling of the observational process is unnecessary. Yet, in our
framework, the MAR assumption can be relaxed by setting, for instance,
all the conditional probabilities free to vary in the same interval. This also
models a epistemic irrelevance relation [16].

– Pearl’s virtual evidence [14, Section 2.2.2]: the method proposed by Pearl for
modeling ambiguous observations can be clearly modeled in our framework.
Moreover, we can easily consider situations where sets of likelihood ratios



(corresponding to an extensive specification) or a single interval-valued like-
lihood ratio (corresponding to a separate specification) could be reported.

6 Variable elimination for root and leaf nodes

In this section we call observational CN, a CN obtained from a BN after the
transformation in Section 5.2. In order to update our beliefs about the variable
of interest in the original BN after the (unreliable) observations, an updating
problem as in Equation 3 should be therefore solved for the observational CN.
With respect to the original BN, the size of the CN is larger as we have aug-
mented the model with a new variable for each observation. Yet, in the previous
section we have already shown that the observations of a same latent variable
can be equivalently clustered into a single variable. Here, we want to show how is
possible to eliminate the observation nodes corresponding to the latent variables
that are root or leaf nodes in the original BN.4 The results are based on two
simple transformations.

Transformation 5 Let Xi be a latent variable corresponding to a root node in
the original BN (which is clearly a root node also in the observational CN), and
Oi the relative manifest variable. Consider the unconditional probability mass
function P̃ (Xi) such that

p̃(xi) :=

[

1 +

∑

x′

i
6=xi∈Ωi

p(x′
i) · p(oi|x

′
i)

p(xi) · p(oi|xi)

]−1

, (6)

for each xi ∈ Ωi, with P (oi|xi) ∈ {P (oi|xi), P (oi|xi)}, and where P (Xi) is the
(unconditional) mass function associated to Xi. Let K(Xi) be the convex hull of
the 2|Ωi| possible specifications of P̃ (Xi). Finally, replace P (Xi) with K(Xi) in
the specification of the CN, and remove Oi from it.

Theorem 2. An updating problem for an observational CN can be equivalently
discussed in the CN obtained by applying Transformation 5 to each node that
was a root node in the original BN.

Something similar can be done also for the latent variables that are leaf nodes
in the original BN.

Transformation 6 Let Xi be a latent variable corresponding to a leaf node
in the original BN, and Oi the relative manifest variable. For each πi ∈ ΩΠi

,
consider the conditional probability mass function P̃ (Oi) such that:

p̃(oi|πi) :=
∑

xi∈Ωi

P (oi|xi) · P (xi|πi), (7)

4 This assumption is not particularly constraining as, for most of the BNs implement-
ing knowledge-based systems, the variables to be observed are of this kind.



with P (oi|xi) ∈ {P (oi|xi), P (oi|xi)}, and where P (Xi|πi) is a conditional mass
function associated to Xi. Let K(Oi|πi) denote the credal set whose two vertices
produce the minimum and the maximum values of P̃ (Oi|πi) among all the 2|Ωi|

possible specifications of P̃ (Oi|πi). Remove Xi from the network, and let the
parents Πi of Xi to become parents of Oi. Finally, set K(Oi|πi) as the conditional
credal sets associated to Oi for each πi ∈ ΩΠi

.

Theorem 3. An updating problem for an observational CN can be equivalently
discussed in the CN obtained by applying Transformation 6 to each node that
was a leaf node in the original BN.

As an example of the application of Theorem 2, we can remove O1
1 and O1

2 from
the observational CN in Figure 2 by means of Transformation 5, and hence by
an appropriate redefinition of the unconditional credal sets for the nodes X1 and
X2. Similarly, in order to apply Theorem 3, we can remove X7 and X8 (which
is replaced by the cluster of O1

8
and O2

8
) by Transformation 6.

7 Conclusions and outlooks

We have defined a general protocol for the modeling of unreliable observation in
Bayesian networks. This transforms the model into a credal network, for which
some variable elimination procedures by local computations are proposed. As a
future direction for this research we want to develop specific algorithms for the
particular class of credal networks returned by the transformation. Further, we
intend to investigate other models of uncertain and missing observations to be
described in this framework.

A Proofs

Proof (Theorem 1). Let us first prove the thesis for Transformations 1 and 2
in the special case where the CN is a BN and XE is made of a single node.
It is sufficient to observe that in both the numerator and denominator of the
second side of Equation (1) there is no sum over xE . Thus, we simply have the
proof, which can be easily extended to the case where XE has more than a single
variable, and to the case of CNs by simply considering Equation (3). Regarding
the result for Transformation 3, it is sufficient to consider the expression in
[17, Equation 3.8] by assuming the prior precise. Finally, for Transformation 4,
we can consider the result in [14, Section 2.2.2] for the case of BNs, and then
generalize it to CNs by simply regarding a CN as a collection of BNs.

Proof (Theorems 2 and 3). By Transformation 5 we compute the conditional
credal set K(Xi|oi), while by Transformation 6 we marginalize out Xi from
the conditional credal set K(Oi, Xi|πi). The results therefore follows from the
d-separation properties of CNs.
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